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Abstract

In this paper, we demonstrate an Interactive
Machine Translation interface, that assists hu-
man translators with on-the-fly hints and sug-
gestions. This makes the end-to-end transla-
tion process faster, more efficient, and cre-
ates high-quality translations. We augment the
OpenNMT backend with a mechanism to ac-
cept the user input and generate conditioned
translations.12

1 Introduction

Machine Translation (MT) has witnessed several
leaps of advancements and is now capable of pro-
ducing human level translations (Läubli et al.,
2018). However, a single source sentence can
be translated into multiple forms, often varying in
expression (Halliday, 1978), formality (Heylighen
and Dewaele, 1999) or context. Several real-world
documents such as books and news require such
translations. Even with performance of state-of-
the-art MT systems being at par with humans, cur-
rent MT systems are useful only for information
assimilation (Hutchins, 2009). Wider dissemina-
tion of translated content requires substantial man-
ual post processing, and saves only a little time
compared to a fully manual human translation.
Combining the pros of both human and machine
translation can potentially lead to streamlining of
the translation process by assisting humans with
producing high quality translations quicker.
This Machine Assisted Translation can be ei-

ther done through Post Editing (PE) or Interactive
Translation Prediction (ITP). In PE tools such as
MateCat (Federico et al., 2014), the translator is
provided with a complete translation and is asked
to edit tokens which they feel are not appropri-
ate. There are no suggestions provided by the ma-

1Screencast: https://youtu.be/DHan93R8d84
2Demo: inmt.southeastasia.cloudapp.azure.com/simple

chine beyond the initial gist. Interactive Trans-
lation started off with TransType (Langlais et al.,
2000), which uses a rule-based translation system.
With the introduction of StatisticalMachine Trans-
lation, it became easier to provide richer phrase
based suggestions, which led to creation of tools
such as CASMACAT (Alabau et al., 2014)3 and
LILT4. Green et al. (2014) extensively researched
the user experience of such systems and compared
between manual and assisted translation using var-
ious metrics. The current method of constrained
decoding, in particular coupled with the advent of
Neural Machine Translation (NMT), was put for-
ward by Wuebker et al. (2016) and Knowles and
Koehn (2016). All these studies have shown that
ITP provides improved translation quality com-
pared to PE, and also suggest that human trans-
lators prefer ITP over PE. However, due to heavy
resource (parallel data) requirements, the available
ITP systems work only for a handful of resource-
rich languages such as Spanish, Chinese, French
and German.
In this paper, we present a proof-of-concept in-

teractive translation system between English and
five Indic languages (Bengali, Hindi, Malayalam,
Tamil and Telugu) using state-of-the-art NMT
models. As Indian languages are resource poor,
we could use only 100-1500 thousand parallel sen-
tences for training. There are prominent syntactic
differences between Indic languages and English
such as the basic word order, which requires sub-
stantial replanning of the translation suggestions
in real time. These characteristics make ITP a
challenging problem for English to/from Indic lan-
guages. To the best of our knowledge, this is the
first ITP for Indic languages, and the only publicly
available Neural ITP system.

3http://www.casmacat.eu/
4http://lilt.com

https://youtu.be/DHan93R8d84
http://inmt.southeastasia.cloudapp.azure.com/simple/


104

2 Advantages of ITP

Interactive translation is beneficial to human
translators and translation seekers alike:

• Faster turnaround of document translations
The gisting and suggestion (refer Interface
Overview 5) helps the translator breeze through
the translation task with minimal typing. Our
preliminary study suggests that regular users use
relatively very less number of keystrokes in ITP
as compared to both manual typing and the PE
process.

• High quality translation due to human-
machine interaction
Language is inherently divergent and human
translators cannot quickly enumerate all accept-
able variants of a translation. On the other hand,
in general, machine translation has not yet reached
human quality though it can provide a number
of variants. Combining the strengths of both of
human and machine through interaction helps in
getting higher quality translations compared to the
individual processes. Another interesting usecase
of interactive MT is in low resource settings
where NMT is not able to churn out the most
fluent translation. However, along with human
help, this can lead to producing better translations,
as compared to other mixed-initiative processes
like post-editing often used in computer assisted
translation tools.

• Opens translation tasks to non-expert trans-
lators
Expert human translators are often scarce for a
large number of language pairs and are expensive
to hire. In some countries (such as in the Indian
subcontinent) it is easy to find multilingual
speakers with native and near-native proficiency
in multiple languages, and interactive MT systems
enable non-expert translators to perform transla-
tion tasks through gisting and suggestions. The
requirements of less proficiency also makes such
a system more amenable to a non-expert large
crowdsourced setting where the objective can be
to gather more data for low resource languages.

3 Methods

3.1 Neural Machine Translation
Neural MT paradigms, starting from
Seq2Seq (Bahdanau et al., 2014) to the current
state-of-the-art Transformer-based architec-

tures (Vaswani et al., 2017), use an encoder-
decoder combination along with attention which
helps in correct alignment of the tokens.
At time step t, the conditional probability of

generating output token yt given the full in-
put sequence x and the previously output tokens
y1, ..., yt−1 is:

p(yt|y1, ..., yt−1, x) = g(yt−1, st, ct) (1)

where g is a non-linearity function and st and ct are
the hidden state and context vector, respectively.
The vector ct is a weighted average of all encoder
hidden states with weights generated by the atten-
tion mechanism. We use sparsemax (Martins and
Astudillo, 2016) attention instead of the usual soft-
max attention as it helps in focusing on specific
source tokens similar to hard attention but still be-
ing differentiable. This is done in order to help
with word coverage visualization.

3.2 Interactive Neural Machine Translation

In INMT, instead of conditioning the prediction
of each token on the previous model predictions
{y1, ..., yt−1} (as is done above), we condition
based on the partial input from the human transla-
tor {y′1, ..., y′t−1}. This results in a new conditional
probability equation:

p(yt|y′1, ..., y′t−1, x) = g(y′t−1, st, ct) (2)

For producing multiple suggestions based on the
partial input, we rely on beam search decoding
which features in all current NMT architectures.
It selects the most probable full translation for a
given input sentence. If and when the translator
diverges from this full translation, a new beam
search is conducted from the partial input prefix
till end of sentence is encountered. A full beam
search (till end of sentence) is done only for gist-
ing. In case of suggestion, we do beam search of
maximum length of 2. Beam search has been criti-
cized for its lack of diversity (Gimpel et al., 2013),
which is why, showing full sentence suggestions
from beam search will present the translator with
very similar suggestions. Beam search with length
of 2 will produce bigrams with reasonable diver-
sity.

3.3 Character-Level Search

We use a word level sequence modelling for NMT
in this task, which does not allow partial words
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Figure 1: Example sentence being translated. (a) Hindi to English and (b) English to Hindi.

to be input inherently. We introduce two differ-
ent techniques to help with character level sugges-
tions:

• Start with Partial Word Prefix
During beam search, at each timestep each word
in the vocabulary is assigned a score for k times,
where k is the beam width. We mask the vocabu-
lary set for words which only star with the partial
word prefix input by the translator. This helps in
getting top-k words which start with the intended
prefix.

• Closest to Partial Word Prefix
We also devise a edit distance-based (Yujian and
Bo, 2007) algorithm to rerank the beams which
not only helps in suggesting sentences with partial
word inputs but also helps in cases where the trans-
lator makes spelling mistakes for complex words.
The latter algorithm already includes tokens which
are limited by the former, but the former is faster
due to lesser search complexity. We provide an
option for the translator to select either one.

4 System Overview

We use OpenNMT (Klein et al., 2017), an open
source neural machine translation toolkit to build
the MT system.5 We write a new interactive trans-
lation mechanism to accept the user input and do
constrained decoding, which is plugged on top of
this toolkit. This helps in keeping up with the

5http://opennmt.net/

state-of-the-art models and other updates released
through the toolkit and still keeping the interac-
tion functional. The primary advantage of using
OpenNMT as our translation backend is that it is
highly efficient, modular, extensible and well doc-
umented. In order to add new models (e.g. ex-
tending to new languages etc.) into this system,
the models have to be trained based on OpenNMT
instructions. If the target language uses a non-
Latin script and users wish to use an Latin key-
board, the developer has to add an API to help
with transliteration. In our case, we use the openly
available Quillpad Indic Transliteration service for
Indic languages.6 There is also a default sup-
port for ISO romanizations (like ITRANS for Indic
Languages) which can help with transliterations,
though it might not be particularly convenient for
non-Latin.
We use the Django framework (Python) for

server purposes. The system makes use of the Py-
Torch (Paszke et al., 2017) version of OpenNMT
for its ease of use. The interface, which is de-
scribed below is made with JQuery (JavaScript)
and communicates with the server through sock-
ets - for interactive typing as they are faster and
AJAX requests for all other calls.

5 Interface Overview

The interface is designed similar to MateCat
(Federico et al., 2014) which is a open-source

6http://www.quillpad.in
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Word Coverage and Translation Gisting Suggestions Keystrokes

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
Similarly , knowledge for mental health is necessary .

Similarly ,

↓ ↓ Enter ←↩

In the
The knowledge
Thus ,
So the

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge of knowledge is essential for mental health same way Tab Tab Tab Tab

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge of knowledge is essential for mental health

of knowledge
iis essential

is necessary
for mental

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge is essential for mental health

is essential for
Enter ←↩is necessary for

is required to
उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge is essential for mental health Page ↓

Table 1: Translation workflow when translating from “उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक ह”ै
to “In the same way , knowledge is essential for mental health”. The bold black text shows the current state of
user input, the gray text shows gisting and suggestions. 10 keystrokes are required when using interactive typing,
whereas for manual typing 60 keystrokes will be required (Refer Keystroke Reduction 6.2)

freely available web-based post-editing transla-
tion software. In our interface, the user is able
to upload documents in the format they choose,
or just input free-flowing text. The user then
has to select the source and target language. The
next page will show tokenized sentences from
the input corpus on the left with a corresponding
right column where the user is expected to add
the translation. Figure 1 shows how the interface
looks. For each translation we use 2 different
techniques to assist in the translation flow:

(i) Translation gisting
Gisting the user with a full sentence translation
will prime the translator with a quick translation
with very less cognitive load. Users have much
less cognitive load when it comes to spotting
errors in the gisting, than trying to mentally
structure the translations. This accelerates the
translator’s initial time taken.

(ii) Translation suggestion
Gisting is not expected to always be what the
translator ideally wants. This would mean that the
translator needs to change the default gist which
the translation engine provides. Based on the
context of the previous sentence, the translation
engine also sends a maximum of 5 suggestions
from which the user can choose to select to move
forward with the translation. If the user can
find nothing from either the gist or suggestion,
the translator can choose to type. The user still
does not need to type the complete word, the

suggestions are assigned a score based on the
edit-distance between the partial input and the
tokens in the decoding lattice. The suggestions
are then re-ranked taking into account both the
edit-distance score along with the beam score.

Furthermore, we provide mechanisms which
allow increased throughput of translations as
below:

(iii) Word Coverage Visualization
The standard NMT architectures use attention
to correctly align the words from source to
target. We use sparsemax attention rather than
softmax, as it allows us to attend to a specific
word in context while translating. This helps in
an appropriate visualization of word coverage
which the translator can use to their benefit to
validate whether they have correctly translated the
sentence (cf. Table 1).

(iv) Transliteration
Languages, except the European ones generally
have a non-Latin script. Translators especially
non-expert ones usually use English keyboards
to type. Usually they are assisted with some
browser plugin like Google input tools which
helps them in transliterating whatever they type
in English to the target language. Here they
use English characters as phones rather than as
actual English words. However, such plugins
deteriorates the experience when it comes to such



107

an interactive interface, where each character is
used for translation and such post-replacement of
English to target language cannot work properly.
For experimentation, we use an openly available
transliterationAPI (Quillpad) for Indic Languages.

Throughmultiple design iterations and feedback
from our pre-pilot study, it was observed that cer-
tain keyboard commands are naturally helpful for
the translator to breeze through translations. Op-
tions available are:

• Tab : To get the next word from the selection

• Enter ←↩ : To get all the words from the selec-
tion.

• ↑ ↓ : To alter the selection between multiple
suggestions.

• Page ↑ Page ↓ : To traverse from one sentence
to another.

• End : To end the translation process and
download the translated document.

The system is designed in such a way that trans-
lators never need to take their hands off from the
keyboard. This helps in faster typing and selection
of suggestions.

6 Experiments

We use parallel corpus from OPUS (Tiedemann,
2012) to build our NMTmodel for 5 different Indic
Languages and English (en). These 5 Indic Lan-
guages include Bengali (bn), Hindi (hi), Malay-
alam (ml), Tamil (ta) and Telugu (te). The training
data from OPUS contain 100-1500 thousand par-
allel sentences each for the mentioned Indic lan-
guages. All our models have been tested on the
Indic Language Dataset (Post et al., 2012)7 which
contains around 1000 parallel sentences with each
sentence having 4 English references. This helps
us measure multi-reference BLEU score which is
often useful for relatively free word order lan-
guages.
We take inspiration from Aharoni et al. (2019)

to build a multilingual many-to-one and one-to-
many indic neural MT system based on the state
of the art transformer architecture (Vaswani et al.,

7The widely usedWMT testset is only available for Hindi.
Thus, to make the testset uniform across language we do not
use WMT testset for our experiments.

2017). We use the recommended set of parameters
for transformers from Vaswani et al. (2017) to get
comparable results. We conduct multiple simula-
tion experiments to show the efficacy of our sys-
tem.

6.1 BLEU Score Analysis
BLEU (Papineni et al., 2002) scores are the current
standard to evaluate MT performance. We mea-
sure the BLEU score of the generated gist after
a certain fraction - x% of words of the intended
translation has been provided. Table 2 shows the
average BLEU score for each language pair at dif-
ferent values of x. As we can see, after 40% of the
sentence has been provided by the user, rest of the
gist is almost always perfectly correct.

Data
Size

0% 10% 20% 40%

bn-en 1.1M 25.31 27.54 35.68 54.03
hi-en 1.5M 40.64 42.06 47.90 62.18
ml-en 897K 19.76 21.95 29.84 49.88
ta-en 428K 18.71 20.90 27.05 44.55
te-en 104K 11.92 14.57 21.17 41.98

Table 2: Multi-BLEU Score with x% of partial input

The difference in performance for different lan-
guages is presumably because of the amount of re-
sources available for each of them.

6.2 Keystroke Reduction
Keystroke Reduction algorithmically compares
the minimum number of keystrokes required when
typing interactively versus the same when man-
ually typing. Interactive typing accounts for the
keystrokes made when navigating through like ↑ ,
↓ , Tab , Enter ←↩ each of which is one keystroke,
whereas for manual typing, number of keystrokes
is determined by the number of characters in the
sentence. This allows us to get an approximate
idea of howmany keystrokes are being savedwhile
using interactive typing. We observe a reduction
of around 30% keystrokes for all the above men-
tioned languages.

7 Conclusion and Future Work

The system currently provides an interface for in-
teractive machine translation with a latency of less
than 0.5 seconds. However, a real-time interactive
application should focus on keeping latency to the
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minimum. Network calls are the primary latency
bottleneck for web-based applications. We are cur-
rently working on adding support for front-end
deep learning frameworks such as TensorflowJS to
do heavy lifting for network intensive components
like dropdown suggestions on client side.
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