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Abstract

Our proposed system FAMULUS helps stu-
dents learn to diagnose based on automatic
feedback in virtual patient simulations, and it
supports instructors in labeling training data.
Diagnosing is an exceptionally difficult skill
to obtain but vital for many different profes-
sions (e.g., medical doctors, teachers). Pre-
vious case simulation systems are limited to
multiple-choice questions and thus cannot give
constructive individualized feedback on a stu-
dent’s diagnostic reasoning process. Given ini-
tially only limited data, we leverage a (replace-
able) NLP model to both support experts in
their further data annotation with automatic
suggestions, and we provide automatic feed-
back for students. We argue that because the
central model consistently improves, our inter-
active approach encourages both students and
instructors to recurrently use the tool, and thus
accelerate the speed of data creation and anno-
tation. We show results from two user stud-
ies on diagnostic reasoning in medicine and
teacher education and outline how our system
can be extended to further use cases.

1 Introduction

Motivation. Supporting students in learning has
been the life purpose of many teachers throughout
history. With the growing number of people who
choose an academic path, it becomes increasingly
important to leverage automatic methods to guide
students and give them individualized feedback.
However, existing systems for technology-
enhanced learning, mostly address skills on recall-
ing, explaining, and applying knowledge, e.g., in
automatically generated language learning exer-
cises (Madnani et al., 2016) and math word prob-
lems (Koncel-Kedziorski et al., 2016). More com-
plex cognitive tasks such as diagnostic reasoning
require analytic and decision-making skills, for
which there are yet only few solutions, even though
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diagnostic skills are vital for many professions (e.g.,
medical doctors searching for a therapy, teachers
identifying potential mental disorders at an early
stage, engineers diagnosing a machine failure, etc.).
Training diagnostic skills is hard and typically
relies on time-consuming and hard-to-control live
role-plays. Online case simulations involving so-
called virtual patients crystallized as an effective
alternative to role-playing games (Berman et al.,
2016; Jin et al., 2018). In case simulations, stu-
dents collect information on a virtual patient across
multiple screens, e.g., from patient—doctor dialogs,
lab results, and medical imaging. To date, the stu-
dents formulate their final diagnosis by means of
multiple-choice questions, which are easy to as-
sess, but prevent important analyses of the effec-
tiveness and the efficiency of the diagnostic rea-
soning process. This is why we propose to com-
plement multiple-choice questions with prompts
asking for explanations of the students’ thought pro-
cess. The open-form textual explanations enable
good insight into the diagnostic reasoning process
rather than only its result, leaving room for con-
structive methodological feedback. However, the
text analysis and feedback generation components
are highly complex and require advanced Natural
Language Processing (NLP) techniques.

Contributions. To tackle this task, we propose
our FAMULUS system to generate individual feed-
back on the students’ diagnostic skills. FAMULUS
integrates (a) state-of-the-art neural sequence la-
beling models to generate individualized feedback,
incorporated in our novel NeuralWeb service, and
(b) a corpus construction tool enabling interactive
model training with (c) an existing tool for conduct-
ing case simulations. The backbone of our system
is a sequence labeling approach to identify fine-
grained diagnostic entities (e.g., liver values, blood
pressure) and epistemic activities (Fischer et al.,
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(# Textaufgabe

Die Karperliche Untersuchung war unaufféllig. Allerdings waren im Labor die Entziindungswerte und Leberwerte auffallig. Der dicke Tropfen war negativ, daher war Malaria als Diagnose

ausgeschlossen. Die Hepatitis Serologie war positiv und damit die Diagnose gesichert

Vielen Dank fiir Ihre Antwort!
Falliibersicht

Die 36-jahrige Frau Hoffmann stellt sich vor, mit einem seit einer Woche bestehenden grippalen Infekt. Als zusatzliche Symptome gibt sie Abgeschlagenheit, Appetitverlust, Ubelkeit und Diarrhoe an. Sie

war vor einem Monat ins Sansibar, vor der Reise wurde eine Gelbfieberimpfung durchgehfiihrt.
Riickmeldung zu Differentialdiagnose

¢ Bei einem einwdchigen grippalen Infekt mit Gliederschmerzen und Abgeschlagenheit ware zunachst eine Influenza-Infektion denkbar gewesen. Fiir einen grippalen Infekt ist die

Symptomatik allerdings zu langanhaltend, da dieser meist nach 3 Tagen abklingt

¢ Bei einer Diarrhoe héttest du auch eine Darmerkrankung, wie die Gastroenteritis, vermuten sollen.

@ Nicht schlecht, dass du eine Tropenkrankheit differentialdiagnostisch in Betracht

gezogen hast. Méglich war

en zB. Malaria, Dengue Fieber, Cholera etc

Figure 1: Excerpt of the generated feedback (bottom) to a student’s explanation of her/his diagnostic process (top).
Blue responses are covered by the text and highlighted in yellow. Black responses are not covered by the diagnosis.

2014) such as drawing conclusions and evidence
evaluation, in German text. We have previously
published the scientific foundation of our system
(Schulz et al., 2018b,a, 2019a), but introduce the
technical aspects of the system for the first time.
Additionally, for the first time, we evaluate its ap-
plicability to real-time use cases. Our evaluation re-
sults on the prediction quality and the annotation ef-
fectiveness are based on two user studies with Ger-
man medicine (Med) and teacher education (TEd)
students. We show how instructors are relieved
from the burden of pre-annotating huge amounts
of data by our interactive annotation workflow, and
we discuss the generated individualized feedback
that helps students acquire diagnostic skills. Fi-
nally, we explain how our system can be obtained,
re-used, and extended to further use cases.

2 Case Simulation Example

Imagine a Med student training her/his skills with
our system. She/he receives information about a
virtual patient: The 36 years old Ms. Hoffmann
reports about a common cold lasting for about one
week. In an interview, she mentions abnormal fa-
tigue, diminished appetite, nausea, and diarrhea.
Further questioning reveals that she stayed in San-
sibar about a month ago. Prior to her travel, she
was vaccinated against yellow fever.

Based on such inputs and further lab results, the
student explains her/his diagnosis (see Figure 1):
“Physical examination was clinically unremarkable.
But the lab results show noticeable inflammation
markers and liver values. Thick blood film was
negative, therefore Malaria was excluded as a di-
agnosis. Hepatitis serology was positive, which
assures the diagnosis.”

In order to automatically provide feedback, we
define a set of diagnostic classes covering fine-
grained diagnostic entities related to the case (e.g.,
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names of diseases, medical examinations, thera-
pies) manually defined by domain experts, and
epistemic activities (Fischer et al., 2014) that char-
acterize the reasoning process. As epistemic activ-
ity classes, we use hypothesis generation (HG; the
derivation of possible answers to the problem), evi-
dence generation (EG; the derivation of evidence,
e.g., through deductive reasoning or observing phe-
nomena), evidence evaluation (EE; the assessment
of whether and to which degree evidence supports
an answer to the problem), and drawing conclu-
sions (DC; the aggregation and weighing of evi-
dence and knowledge to derive a final answer to
the problem) discussed by Schulz et al. (2019a).

FAMULUS analyzes the previously mentioned
diagnostic text and returns feedback on multiple im-
portant aspects related to the case. It successfully
detects all aspects verbalized in the text (e.g., the
discussion of tropical diseases; marked in blue in
Figure 1). Aspects that are not addressed in the text
are discussed and provide additional input to what
the student has missed (e.g., that the differential
diagnosis should consider a potential bowel dis-
ease due to the diarrhea). For the present example,
the student correctly diagnoses a Hepatitis variant
(correct would be Hepatitis A), which is positively
acknowledged in the generated feedback. In the
supplementary video material, we show two origi-
nal German diagnostic texts and the corresponding
feedback generated by our system.

3 System Architecture

FAMULUS consists of three intercommunicating
components introduced in this section.

3.1 NeuralWeb

NeuralWeb' is a Python-based web service that
communicates with all other components and thus

! github.com/UKPLab/emnlp2019-NeuralWeb
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Durch die Beobachtung von Tobias im Unterricht und dem Gesprach mit seinen Eltern

wird klar, dass Tobias offenbar groBe Probleme hat an einer Sache dranzubleiben,

Figure 2: Annotation suggestion (grey) and accepted
suggestion (orange) in the INCEpTION platform.

resembles the core of our system. It is responsi-
ble for interactive training and prediction of the
diagnostic classes and for the generation of individ-
ualized feedback. We divide its functionality in a
model and a feedback DB part, encompassed by a
wrapper class that can be easily adapted for new
machine learning methods and case studies.

Model. The wrapper class includes a loading
function which leverages the downstream model
architecture and copies the respective weights into
memory. The supported neural architectures are
written in Keras?, and PyTorch® and are therefore
easy to adapt. NeuralWeb currently provides a re-
cent BILSTM architecture (Reimers and Gurevych,
2017) implemented in Keras and Flair (Akbik et al.,
2018) implemented in PyTorch, which holds the
current state of the art on many sequence-labeling
tasks. A prediction function of the wrapper pre-
processes a text (sentence splitting and tokenization
using NLTK) and leverages the pre-trained model
to predict and return the diagnostic classes.

NeuralWeb additionally enables automatic re-
training of the model within the framework which
is useful when new data has been generated and
annotated, improving the model automatically.
This functionality is currently implemented for the
Keras-based model.

Feedback DB. The output of the model is a set
of discrete diagnostic class labels, which hardly
yield valuable feedback for users. It is thus essen-
tial to provide an additional description, indicating
whether or not the diagnosis is correct, what is
missing, and if the diagnostic process is sound. We
thus introduce a Feedback DB, which includes de-
scriptive text snippets written by experts. These
descriptions are associated with diagnostic classes
predicted by the model and a specific case study.
For example the patient in case 1 has Hepatitis
A, whereas the patient in case 2 does not. The
feedback for a student who diagnoses Hepatitis A
thus needs to be different with respect to the case
she/he currently works on. The Feedback DB is

*keras.io

3pytorch.org
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an independent resource queried by the wrapper
class. With respect to the predicted labels, the
corresponding feedback text will be generated. FA-
MULUS finally returns the labeled texts spans of
the diagnostic text together with the feedback text
indicating the reasons for the prediction.

3.2 INCEpTION

Expert annotation by instructors is required due to
the complexity of labeling diagnostic texts. For
this reason, we leverage the INCEpTION text an-
notation platform (Klie et al., 2018) which enables
interactive semantic annotation. The recommender
system which provides instructors with automat-
ically generated annotation suggestions is one of
the key functionalities of the platform. Suggestions
can be obtained from various integrated classifiers
as well as from external sources such as Neural-
Web. The platform uses the user feedback (ac-
cepted/rejected annotations) as well as user-created
annotations to continually improve the classifiers.
We leverage this functionality to create an efficient
interactive annotation process for our diagnostic
classes and thus to create training data for our NLP
models. Figure 2 shows an example of the labeling
process with suggestions by our pre-trained model.

3.3 CASUS

CASUS* is an interactive system designed for case
simulations with virtual patients. It incorporates all
aspects necessary for conducting diagnostic case
simulations (i.e., videos, images, text, audio inte-
gration). Students receive information relevant for
solving the case. They are subsequently required to
formulate their diagnosis in multiple-choice ques-
tions and our new, free-text prompts, directly in-
tegrated in CASUS. After submission, CASUS
presents the feedback received from Neural Web.

While CASUS is a sophisticated proprietary sim-
ulation tool, we would like to stress that this is not
a requirement. FAMULUS can be used with any
open-source front-end tool providing a text box
and communicating with NeuralWeb to print out
the individualized feedback. We provide a simple
version of such a tool in our GitHub repository
together with NeuralWeb.

4 FAMULUS Process

The FAMULUS system consists of an interactive
learning cycle connecting the three components

*www.instruct.eu
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Figure 3: FAMULUS process for annotating data, train-
ing models, and generating individualized feedback.
During the cold-start phase, only the blue edges are
used, until enough labeled data exists to train a model.

introduced in §3 and illustrated in Figure 3.

Cold-Start. Because a small initial set of anno-
tated data is necessary to train a preliminary model
in NeuralWeb, @ few pilot users first submit their
diagnoses to the CASUS system. In this cold-start
phase, the users either do not receive any feedback
or a default feedback text. For our experiments,
all users receive a default gold diagnosis written
by experts, for the users to compare their results
manually. @ The students’ diagnostic texts are
sent to INCEpTION, where @ instructors label the
data according to the predefined annotation schema.
@ The gold labels (visualized in green) are stored
and sent to NeuralWeb. Using this labeled train-
ing data, we can train our models to automatically
predict the diagnostic classes found in a given text.

Warm-Run. After an initial model has been
trained, a new set of users can benefit from the
trained model to receive individualized feedback.
@ Similarly to the cold-start phase, users work
through the case study and submit their diagnosis
to the CASUS system. ® Instead of receiving a de-
fault feedback, the diagnosis is sent to Neural Web.
® NeuralWeb processes the text through the trained
model and generates individualized feedback with
regards to the Feedback DB. @ The individualized
feedback is sent back to CASUS which visualizes
it for the user.

Like in the cold-start phase, @ the diagnostic
text is also sent to INCEpTION. ® But instead of
relying solely on the instructor, the trained model
in NeuralWeb predicts preliminary annotations (de-
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EG EE HG DC
T BiLSTM 71.60 8020 69.28 65.32
= UB 85.61 90.25 86.37 85.58
= BILSTM 7853 7887 57.16 61.77
= UB 93.29 90.71 81.77 82.11

Table 1: Individual macro-F1 scores following Schulz
et al. (2019a) for each of the epistemic activities. The
BiLSTM uses FastText embeddings (Bojanowski et al.,
2017). This architecture is equal to Flair when only us-
ing FastText embeddings. UB reports the human upper
bound (inter-annotator agreement) indicating room for
improvement.

noted in yellow) which are additionally presented
to the instructor (see Figure 2). ® These predic-
tions should increase the labeling speed, as in many
cases, the instructor simply has to accept the sug-
gestions the model has predicted. @ The validated
(green) labels are sent back to NeuralWeb and
@ the model can be interactively retrained for each
additional data point which has been labeled.

5 Evaluation

We employ our proposed FAMULUS architecture
in two studies yielding 1,107 Med and 944 TEd
diagnostic texts written for eight distinct cases per
domain. While a full analysis of the two studies is
beyond the scope of this paper, we focus on three
research questions highly relevant to the systemic
aspects of FAMULUS: (1) the quality of the pre-
dicted diagnostic classes, (2) the computation time
of the prediction and feedback generation system
to assess the applicability of our system in real-
time applications, and (3) the benefits of providing
annotation suggestions to the instructors.

Prediction quality. In Table 1, we report the per-
formance of the BiLSTM implementation for pre-
dicting epistemic activities in the Med and TEd
data. As we can see, the difficulty of predicting
the classes varies between different activities. De-
spite some room for improvement with respect to
the human upper bound (UB) based on inter-rater
agreement, the interactive nature of FAMULUS
helps in succeeding in this attempt by continually
improving the model when new data is available.
We conduct similar experiments for the predic-
tion of fine-grained diagnostic entities, but omit a
comprehensive discussion due to space limitations.
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Figure 4: Prediction time for the submitted diagnostic
texts of TEd students. The illustrated model is Flair
with character and Flair embeddings, hidden size 256,
2 layer BILSTM with CRF-head. The red dot indicates
the mean time and length of 3.15 seconds and 562 char-
acters respectively. The trendline is illustrated in black.
The experiment was conducted on a 13-inch 2017 Mac-
Book Pro with i7 Processor and 16GB RAM.

Computation time. In order to present the feasi-
bility of deploying FAMULUS in a real-time sce-
nario, we plot the inference times of the submitted
diagnostic texts in Figure 4. The inference time
includes sentence splitting, tokenization, model
prediction, and feedback generation using the Feed-
back DB. We find that on average the submitted
texts have a length of 562 characters with an aver-
age inference time of 3.15 seconds on a common
desktop machine. The different inference times for
similar text lengths are due to variable sentence
lengths, as longer sentences require more inference
time. We batch all sentences of one diagnostic text
and pass them through the model simultaneously.
As we can see in the graph, the automatic feed-
back generation does not surpass 9 seconds. This
is intuitively faster than any human is able to read,
process, and output feedback text, even by lever-
aging prewritten descriptions. This demonstrates
the effectiveness and scalability of FAMULUS in a
real-time scenario.

Annotation suggestions. To evaluate the effects
of providing annotation suggestions, we have con-
ducted an extensive study (Schulz et al., 2019b)
considering annotation time, annotation quality, po-
tential biases, and the ease of use. To this end, we
asked five Med and four TEd instructors to annotate
diagnostic texts. Two of the instructors per domain
did not receive any suggestions. For the remaining
instructors, we provided suggestions in multiple
phases using different models and setups. Overall,
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we find positive effects yielding a speed-up of 34 to
42 seconds per annotated text. The instructors ac-
cept 56 % (Med) and 54 % (TEd) of the annotations.
While we observe a slightly higher inter-annotator
agreement if instructors receive suggestions, we
also study whether the instructors’ decisions are
influenced by the suggestions, but only observe a
negligible effect.

6 Dissemination

In this section, we introduce how the components
of our system can be obtained and linked with each
other. Additionally, we discuss multiple use cases
that can benefit from our architecture.

Availability. The NeuralWeb component is the
heart of our system and has been newly developed
for our purposes. We make NeuralWeb available
as open-source software in our GitHub repository
under the Apache License 2.0. We integrate the an-
notation suggestions generated by our system into
the INCEpTION annotation tool, which is avail-
able as open-source software under the Apache Li-
cense 2.0. To conduct the case simulations, we use
the CASUS system which can be obtained from
its publisher Instruct. We provide a simple but
free alternative to CASUS which includes only the
necessary functionality for the FAMULUS system,
which is to write the diagnostic text and visualize
feedback. This system, together with connection
functionalities to INCEpTION and CASUS, can be
found in our NeuralWeb repository.

For using FAMULUS, a server or virtual ma-
chine is needed on which the system is deployed.
A thorough description can be found in our GitHub
repository, including the respective URLs and ports
that need to be adapted.

Use cases. Our proposed architecture is primarily
useful to prepare and conduct case simulations that
train diagnostic skills based on text analysis and au-
tomated feedback generation methods. Besides de-
veloping new cases for the Med and TEd domains
which is the subject of our research, case simu-
lations can be useful for students in engineering
(e.g., diagnosing a machine failure), law (investi-
gating evidence in a lawsuit), economy (optimizing
business processes), and many more.

In order to leverage the FAMULUS system, three
prior steps need to be made, independent of our sys-
tem: (1) Expert instructors develop a set of case
studies, for which they provide all necessary in-



formation. The case study can be integrated into
a simulation tool such as CASUS or provided in
printed form. (2) The instructors define an annota-
tion schema, i.e. what kinds of diagnostic classes
should be annotated (e.g., observations of teachers
in a classroom). (3) As the individualized feed-
back can vary from case to case, corresponding
descriptions need to be defined by the instructors.

7 Conclusion

In this paper, we have introduced FAMULUS, a
case simulation system integrating interactive data
acquisition and model training, and individualized
feedback generation for students’ explanations of
diagnostic reasoning processes. Our analysis shows
how FAMULUS helps experts in annotating data
fast and reliable while successfully predicting en-
tities and activities occurring in diagnostic texts.
FAMULLUS is applicable in real-time scenarios
and generates feedback much faster than humans.
While we focus specifically on diagnostic case sim-
ulations in medicine and teacher education, we
outline the steps necessary to adapt our approach
to many other disciplines requiring the training of
diagnostic skills. We open-source all components
necessary to employ FAMULUS in new case stud-
ies, hoping to encourage more research in this area.
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