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Abstract

We introduce EASSE, a Python package aim-
ing to facilitate and standardise automatic
evaluation and comparison of Sentence Sim-
plification (SS) systems. EASSE provides a
single access point to a broad range of eval-
uation resources: standard automatic metrics
for assessing SS outputs (e.g. SARI), word-
level accuracy scores for certain simplification
transformations, reference-independent qual-
ity estimation features (e.g. compression ra-
tio), and standard test data for SS evaluation
(e.g. TurkCorpus). Finally, EASSE generates
easy-to-visualise reports on the various met-
rics and features above and on how a partic-
ular SS output fares against reference simpli-
fications. Through experiments, we show that
these functionalities allow for better compari-
son and understanding of the performance of
SS systems.

1 Introduction

Sentence Simplification (SS) consists of modify-
ing the content and structure of a sentence to im-
prove its readability while retaining its original
meaning. For automatic evaluation of a simplifi-
cation output, it is common practice to use ma-
chine translation (MT) metrics (e.g. BLEU (Pap-
ineni et al., 2002)), simplicity metrics (e.g. SARI
(Xu et al., 2016)), and readability metrics (e.g.
FKGL (Kincaid et al., 1975)).

Most of these metrics are available in individual
code repositories, with particular software require-
ments that sometimes differ even in programming
language (e.g. corpus-level SARI is implemented
in Java, whilst sentence-level SARI is available
in both Java and Python). Other metrics (e.g.
SAMSA (Sulem et al., 2018b)) suffer from insuffi-
cient documentation or require executing multiple
scripts with hard-coded paths, which prevents re-
searchers from using them.

EASSE (Easier Automatic Sentence Simplifica-
tion Evaluation) is a Python package that provides
access to popular automatic metrics in SS evalu-
ation and ready-to-use public datasets through a
simple command-line interface. With this tool, we
make the following contributions: (1) we provide
popular automatic metrics in a single software
package, (2) we supplement these metrics with
word-level transformation analysis and reference-
less Quality Estimation (QE) features, (3) we pro-
vide straightforward access to commonly used
evaluation datasets, and (4) we generate a compre-
hensive HTML report for quantitative and qualita-
tive evaluation of a SS system. We believe this
package will facilitate evaluation and improve re-
producibility of results in SS. EASSE is avail-
able in https://github.com/feralvam/
easse.

2 Package Overview

2.1 Automatic Corpus-level Metrics

Although human judgements on grammaticality,
meaning preservation and simplicity are consid-
ered the most reliable method for evaluating a SS
system’s output (Štajner et al., 2016), it is common
practice to use automatic metrics. They are useful
for either assessing systems at development stage,
to compare different architectures, for model se-
lection, or as part of a training policy. EASSE
implementation works as a wrapper for the most
common evaluation metrics in SS:

BLEU is a precision-oriented metric that relies
on the proportion of n-gram matches between
a system’s output and reference(s). Previous
work (Xu et al., 2016) has shown that BLEU corre-
lates fairly well with human judgements of gram-
maticality and meaning preservation. EASSE uses

https://github.com/feralvam/easse
https://github.com/feralvam/easse
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SACREBLEU (Post, 2018)1 to calculate BLEU.
This package was designed to standardise the pro-
cess by which BLEU is calculated: it only expects
a detokenised system’s output and the name of a
test set. Furthermore, it ensures that the same pre-
processing steps are used for the system output
and reference sentences.

SARI measures how the simplicity of a sentence
was improved based on the words added, deleted
and kept by a system. The metric compares the
system’s output to multiple simplification refer-
ences and the original sentence. SARI has shown
positive correlation with human judgements of
simplicity gain. We re-implement SARI’s corpus-
level version in Python (it was originally avail-
able in Java). In this version, for each operation
(ope ∈ {add, del, keep}) and n-gram order, preci-
sion pope(n), recall rope(n) and F1 fope(n) scores
are calculated. These are then averaged over the
n-gram order to get the overall operation F1 score
Fope:

fope(n) =
2× pope(n)× rope(n)

pope(n) + rope(n)

Fope =
1

k

∑
n=[1,..,k]

fope(n)

Although Xu et al. (2016) indicate that only preci-
sion should be considered for the deletion opera-
tion, we follow the Java implementation that uses
F1 score for all operations in corpus-level SARI.

SAMSA measures structural simplicity (i.e. sen-
tence splitting). This is in contrast to SARI, which
is designed to evaluate simplifications involv-
ing paraphrasing. EASSE re-factors the original
SAMSA implementation2 with some modifica-
tions: (1) an internal call to the TUPA parser (Her-
shcovich et al., 2017), which generates the seman-
tic annotations for each original sentence; (2) a
modified version of the monolingual word aligner
(Sultan et al., 2014) that is compatible with Python
3, and uses Stanford CoreNLP (Manning et al.,
2014)3 through their official Python interface; and
(3) a single function call to get a SAMSA score
instead of running a series of scripts.

1https://github.com/mjpost/sacreBLEU
2https://github.com/eliorsulem/SAMSA
3https://stanfordnlp.github.io/

stanfordnlp/corenlp_client.html

FKGL Readability metrics, such as Flesch-
Kincaid Grade Level (FKGL), are commonly re-
ported as measures of simplicity. They however
only rely on average sentence lengths and number
of syllables per word, so short sentences would
get good scores even if they are ungrammatical,
or do not preserve meaning (Wubben et al., 2012).
Therefore, these scores should be interpreted with
caution. EASSE re-implements FKGL by porting
publicly available scripts4 to Python 3 and fixing
some edge case inconsistencies (e.g. newlines in-
correctly counted as words or bugs with memoiza-
tion).

2.2 Word-level Analysis and QE Features

Word-level Transformation Analysis EASSE
includes algorithms to determine which specific
text transformations a SS system performs more
effectively. This is done based on word-level
alignment and analysis.

Since there is no available simplification dataset
with manual annotations of the transformations
performed, we re-use the annotation algorithms
from MASSAlign (Paetzold et al., 2017). Given a
pair of sentences (e.g. original and system output),
the algorithms use word alignments to identify
deletions, movements, replacements and copies
(see Fig. 1). This process is prone to some errors:
when compared to manual labels produced by four
annotators in 100 original-simplified pairs, the au-
tomatic algorithms achieved a micro-averaged F1
score of 0.61 (Alva-Manchego et al., 2017).

We generate two sets of automatic word-level
annotations: (1) between the original sentences
and their reference simplifications, and (2) be-
tween the original sentences and their automatic
simplifications produced by a SS system. Con-
sidering (1) as reference labels, we calculate the
F1 score of each transformation in (2) to esti-
mate their correctness. When more than one ref-
erence simplification exists, we calculate the per-
transformation F1 scores of the output against
each reference, and then keep the highest one as
the sentence-level score. The corpus-level scores
are the average of sentence-level scores.

Quality Estimation Features Traditional auto-
matic metrics used for SS rely on the existence and
quality of references, and are often not enough to
analyse the complex process of simplification. QE

4https://github.com/mmautner/
readability

https://github.com/mjpost/sacreBLEU
https://github.com/eliorsulem/SAMSA
https://stanfordnlp.github.io/stanfordnlp/corenlp_client.html
https://stanfordnlp.github.io/stanfordnlp/corenlp_client.html
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Figure 1: Example of automatic transformation annotations based on word alignments between an original (top)
and a simplified (bottom) sentence. Unaligned words are DELETE. Words that are aligned to a different form are
REPLACE. Aligned words without an explicit label are COPY. A word whose relative index in the original sentence
changes in the simplified one is considered a MOVE.

leverages both the source sentence and the out-
put simplification to provide additional informa-
tion on specific behaviours of simplification sys-
tems which are not reflected in metrics such as
SARI. EASSE uses QE features from Martin et al.
(2018)’s open-source repository5. The QE fea-
tures currently available are: the compression ra-
tio of the simplification with respect to its source
sentence, its Levenshtein similarity, the average
number of sentence splits performed by the sys-
tem, the proportion of exact matches (i.e. original
sentences left untouched), average proportion of
added words, deleted words, and lexical complex-
ity score6.

2.3 Access to Test Datasets

EASSE provides access to three publicly avail-
able datasets for automatic SS evaluation (Ta-
ble 1): PWKP (Zhu et al., 2010), TurkCorpus (Xu
et al., 2016), and HSplit (Sulem et al., 2018a).
All of them consist of the data from the original
datasets, which are sentences extracted from En-
glish Wikipedia (EW) articles. EASSE can also
evaluate system’s outputs in other custom datasets
provided by the user.

PWKP Zhu et al. (2010) automatically aligned
sentences in 65,133 EW articles to their corre-
sponding versions in Simple EW (SEW). Since
the latter is aimed at English learners, its arti-
cles are expected to contain fewer words and sim-
pler grammar structures than those in their EW
counterpart. The test set split of PWKP contains
100 sentences, with 1-to-1 and 1-to-N alignments
(resp. 93 and 7 instances). The latter correspond to
instances of sentence splitting. Since this dataset
has only one reference for each original sentence,

5https://github.com/facebookresearch/
text-simplification-evaluation

6The lexical complexity score of a simplified sentence is
computed by taking the log-ranks of each word in the fre-
quency table. The ranks are then aggregated by taking their
third quartile.

Test Dataset Instances Alignment Type References

PWKP
93 1-to-1 1
7 1-to-N 1

TurkCorpus 359 1-to-1 8
HSplit 359 1-to-N 4

Table 1: Test datasets available in EASSE. An instance
corresponds to a source sentence with one or more pos-
sible references. Each reference can be composed of
one or more sentences.

it is not ideal for calculating automatic metrics that
rely on multiple references, such as SARI.

TurkCorpus Xu et al. (2016) asked crowdwork-
ers to simplify 2,359 original sentences extracted
from PWKP to collect multiple simplification ref-
erences for each one. This dataset was then ran-
domly split into tuning (2,000 instances) and test
(359 instances) sets. The test set only contains
1-to-1 alignments, mostly with instances of para-
phrasing and deletion. Each original sentence in
TurkCorpus has 8 simplified references. As such,
it is better suited for computing SARI and multi-
reference BLEU scores.

HSplit Sulem et al. (2018a) recognised that ex-
isting EW-based datasets did not contain sufficient
instances of sentence splitting. As such, they col-
lected four reference simplifications of this trans-
formation for all 359 original sentences in the
TurkCorpus test set. Even though SAMSA’s com-
putation does not require access to references, this
dataset can be used to compute an upperbound
on the expected performance of SS systems that
model this type of structural simplification.

2.4 HTML Report Generation

EASSE wraps all the aforementioned analyses
in a simple comprehensive HTML report that
can be generated with a single command. This
report compares the system output with human
reference(s) using simplification metrics and

https://github.com/facebookresearch/text-simplification-evaluation
https://github.com/facebookresearch/text-simplification-evaluation
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QE features. It also plots the distribution of
compression ratios or Levenshtein similarities
between sources and simplifications over the test
set. Moreover, the analysis is broken down by
source sentence length in order to get insights
on how the model handles short source sentence
versus longer source sentences, e.g. does the
model keep short sentences unmodified more
often than long sentences? This report further
facilitates qualitative analysis of system out-
puts by displaying source sentences with their
respective simplifications. The modifications
performed by the model are highlighted for faster
and easier analysis. For visualisation, EASSE
samples simplification instances to cover different
behaviours of the systems. Instances that are
sampled include simplifications with sentence
splitting, simplifications that significantly modify
the source sentence, output sentences with a
high compression rate, those that display lexical
simplifications, among others. Each of these
aspects is illustrated with 10 instances. An
example of the report can be viewed at https:
//github.com/feralvam/easse/blob/
master/demo/report.gif.

3 Experiments

We collected publicly available outputs of sev-
eral SS systems (Sec. 3.1) to evaluate their per-
formance using the functionalities available in
EASSE. In particular, we compare them using au-
tomatic metrics, and provide some insights on the
reasoning behind their results (Sec. 3.2).

3.1 Sentence Simplification Systems

EASSE provides access to various SS system out-
puts that follow different approaches for the task.
For instance, we include those that rely on phrase-
based statistical MT, either by itself (e.g. PBSMT-
R (Wubben et al., 2012)), or coupled with seman-
tic analysis, (e.g. Hybrid (Narayan and Gardent,
2014)). We also include SBSMT-SARI (Xu et al.,
2016), which relies on syntax-based statistical
MT; DRESS-LS (Zhang and Lapata, 2017), a neu-
ral model using the standard encoder-decoder ar-
chitecture with attention combined with reinforce-
ment learning; and DMASS-DCSS (Zhao et al.,
2018), the current state-of-the-art in the TurkCor-
pus, which is based on the Transformer architec-
ture (Vaswani et al., 2017).

3.2 Comparison and Analysis of Scores

Automatic Metrics For illustration purposes,
we compare systems’ outputs using BLEU and
SARI in TurkCorpus (with 8 manual simplifica-
tion references), and SAMSA in HSplit. For cal-
culating Reference values in Table 2, we sample
one of the 8 human references for each instance as
others have done (Zhang and Lapata, 2017).

When reporting SAMSA scores, we only use
the first 70 sentences of TurkCorpus that also ap-
pear in HSplit.7 This allows us to compute Ref-
erence scores for instances that contain structural
simplifications (i.e. sentence splits). We calculate
SAMSA scores for each of the four manual sim-
plifications in HSplit, and choose the highest as an
upper-bound Reference value. The results for all
three metrics are shown in Table 2.

TurkCorpus HSplit

System SARI BLEU SAMSA

Reference 49.88 97.41 54.00

PBSMT-R 38.56 81.11 47.59
Hybrid 31.40 48.97 46.68
SBSMT-SARI 39.96 73.08 41.41
DRESS-LS 37.27 80.12 45.94
DMASS-DCSS 40.42 73.29 35.45

Table 2: Comparison of systems’ performance based
on automatic metrics.

DMASS-DCSS is the state-of-the-art in TurkCor-
pus according to SARI. However, it gets the lowest
SAMSA score, and the third to last BLEU score.
PBSMT-R is the best in terms of these two met-
rics. Finally, across all metrics, the Reference
stills gets the highest values, with significant dif-
ferences from the top performing systems.

Word-level Transformations In order to better
understand the previous results, we use the word-
level annotations of text transformations (Table 3).
Since SARI was design to evaluate mainly para-
phrasing transformations, the fact that SBSMT-
SARI is the best at performing replacements and
second place in copying explains its high SARI
score. DMASS-DCSS is second best in replace-
ments, while PBSMT-R (which achieved the high-
est BLEU score) is the best at copying. Hybrid is
the best at performing deletions, but is the worst
at replacements, which SARI mainly measures.

7At the time of this submission only a subset of 70 sen-
tences had been released from HSplit. However, the full cor-
pus will soon be available in EASSE.

https://github.com/feralvam/easse/blob/master/demo/report.gif
https://github.com/feralvam/easse/blob/master/demo/report.gif
https://github.com/feralvam/easse/blob/master/demo/report.gif
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The origin of the TurkCorpus set itself could ex-
plain some of these observations. According to
Xu et al. (2016), the annotators in TurkCorpus
were instructed to mainly produce paraphrases, i.e.
mostly replacements with virtually no deletions.
As such, copying words is also a significant trans-
formation, so systems that are good at perform-
ing it better mimic the characteristics of the human
simplifications in this dataset.

System Delete Move Replace Copy

PBSMT-R 34.18 2.64 23.65 93.50
Hybrid 49.46 7.37 1.03 70.73
SBSMT-SARI 28.42 1.26 37.21 92.89
DRESS-LS 40.31 1.43 12.62 86.76
DMASS-DCSS 38.03 5.10 34.79 86.70

Table 3: Transformation-based performance of the sen-
tence simplification systems in the TurkCorpus test set.

Quality Estimation Features Table 4 displays
a subset of QE features that reveal other aspects
of the simplification systems. For instance, the
scores make it clear that Hybrid compresses the
input way more than other systems (compression
ratio of 0.57 vs. ≥0.78 for the other systems) but
almost never adds new words (addition proportion
of 0.01). This additional information explains the
high Delete and low Replace performance of this
system in Table 3. DRESS-LS keeps the source
sentence unmodified 26% of the time, which does
not show in the word-level analysis. This confirms
that QE features are complementary to automatic
metrics and word-level analysis.

System
Compression

ratio
Exact

matches
Additions
proportion

Deletion
proportion

PBSMT-R 0.95 0.1 0.1 0.11
Hybrid 0.57 0.03 0.01 0.41
SBSMT-SARI 0.94 0.11 0.16 0.13
DRESS-LS 0.78 0.26 0.04 0.26
DMASS-DCSS 0.89 0.05 0.15 0.21

Table 4: Quality estimation features, which give addi-
tional information on the output of different systems.

Report Figure 2 displays the quantitative part
of the HTML report generated for the DMASS-
DCSS system. The report compares the system
to a reference human simplification. The “System
vs. Reference” table and the two plots indicate
that DMASS-DCSS closely matches different as-
pects of human simplifications, according to QE
features. This contributes to explaining the high
SARI score of the this system in Table 2.

Figure 2: Overview of the HTML report for the
DMASS-DCSS system (zoom in for more details).

4 Conclusion and Future Work

EASSE provides easy access to commonly used
automatic metrics as well as to more detailed
word-level transformation analysis and QE fea-
tures which allows us to compare the quality of
the generated outputs of different SS systems on
public test datsets. We reported some experiments
on the use of automatic metrics to obtain overall
performance scores, followed by measurements of
how effective the SS systems are at executing spe-
cific simplification transformations using word-
level analysis and QE features. The former analy-
sis provided insights about the simplification capa-
bilities of each system, which help better explain
the initial automatic scores.

In the future, we plan to continue developing
the transformation-based analysis algorithms, so
that more sophisticated transformations could be
identified (e.g. splitting or subject-verb-object re-
ordering). In addition, we expect to integrate more
QE features to cover other aspects of the simplifi-
cation process (e.g. depth of the dependency parse
tree to measure syntactic complexity).
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Sanja Štajner, Maja Popović, Horacio Saggion, Lucia
Specia, and Mark Fishel. 2016. Shared task on qual-
ity assessment for text simplification. In Proceeding
of the Workshop on Quality Assessment for Text Sim-
plification - LREC 2016, QATS 2016, pages 22–31,
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