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Abstract

Neural NLP models are increasingly accu-
rate but are imperfect and opaque—they break
in counterintuitive ways and leave end users
puzzled at their behavior. Model interpreta-
tion methods ameliorate this opacity by pro-
viding explanations for specific model pre-
dictions. Unfortunately, existing interpreta-
tion codebases make it difficult to apply these
methods to new models and tasks, which hin-
ders adoption for practitioners and burdens in-
terpretability researchers. We introduce Al-
lenNLP Interpret, a flexible framework for in-
terpreting NLP models. The toolkit provides
interpretation primitives (e.g., input gradients)
for any AllenNLP model and task, a suite of
built-in interpretation methods, and a library
of front-end visualization components. We
demonstrate the toolkit’s flexibility and util-
ity by implementing live demos for five in-
terpretation methods (e.g., saliency maps and
adversarial attacks) on a variety of models
and tasks (e.g., masked language modeling
using BERT and reading comprehension us-
ing BiDAF). These demos, alongside our code
and tutorials, are available at https://allennlp.
org/interpret.

1 Introduction

Despite constant advances and seemingly super-
human performance on constrained domains,
state-of-the-art models for NLP are imperfect:
they latch on to superficial patterns (Gururan-
gan et al., 2018), reflect unwanted social bi-
ases (Doshi-Velez and Kim, 2017), and signifi-
cantly underperform humans on a myriad of tasks.
These imperfections, coupled with today’s ad-
vances being driven by (seemingly black-box)
neural models, leave researchers and practitioners
scratching their heads, asking, “why did my model
make this prediction?”

Figure 1: An interpretation generated using AllenNLP
Interpret for NER. The model predicts three tags for an
input (top). We interpret each tag separately, e.g., input
reduction (Feng et al., 2018) (bottom) removes as many
words as possible without changing a tag’s prediction.
Input reduction shows that the words “named”, “at”,
and “in downtown” are sufficient to predict the People,
Organization, and Location tags, respectively.

Instance-level interpretation methods help to
answer this question by providing explanations for
specific model predictions. These explanations
come in many flavors, e.g., visualizing a model’s
local decision boundary (Ribeiro et al., 2016),
highlighting the saliency of the input features (Si-
monyan et al., 2014), or adversarially modifying
the input (Ebrahimi et al., 2018). Interpretations
are useful to illuminate the strengths and weak-
nesses of a model (Feng et al., 2018), increase user
trust (Ribeiro et al., 2016), and evaluate hard-to-
define criteria such as safety or fairness (Doshi-
Velez and Kim, 2017).

Many open-source implementations exist for
instance-level interpretation methods. However,
most codebases focus on computer vision, are
model- or task-specific (e.g., sentiment analysis),
or contain implementations for a small number of
interpretation methods. Thus, it is difficult for
practitioners to interpret their model. As a re-
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sult, model developers rarely leverage interpre-
tations and thus lack a robust understanding of
their system. The inflexibility of existing in-
terpretation codebases also burdens interpretabil-
ity researchers—they cannot easily evaluate their
methods on multiple models.

We present AllenNLP Interpret, an open-
source, extensible toolkit built on top of Al-
lenNLP (Gardner et al., 2018) for interpreting
NLP models. The toolkit makes it easy to apply
existing interpretation methods to new models, as
well as develop new interpretation methods. The
toolkit consists of three contributions: a suite of
interpretation techniques implemented for broad
classes of models, model- and task-agnostic APIs
for developing new interpretation methods (e.g.,
APIs to obtain input gradients), and reusable front-
end components for interactively visualizing the
interpretations.

AllenNLP Interpret has numerous use cases.
Our external website shows demos of:
• Uncovering Model Biases: A SQuAD model

relies on lexical overlap between the words in
the question and the passage. Alternatively, a
textual entailment model infers contradiction on
observing the word “politics” in the hypothesis.
• Finding Decision Rules: A named entity recog-

nition model predicts the location tag when it
sees the phrase “in downtown”.
• Diagnosing Errors: A sentiment model incor-

rectly predicts the positive class due to the tri-
gram “tony hawk style”.

2 Interpreting Model Predictions

This section introduces an end user’s view of our
toolkit, i.e., the available interpretations, models,
and visualizations.

2.1 What Are Instance-Level Interpretations

AllenNLP Interpret focuses on two types of inter-
pretations: gradient-based saliency maps and ad-
versarial attacks. We choose these methods for
their flexibility—gradient-based methods can be
applied to any differentiable model.

Saliency maps explain a model’s prediction
by identifying the importance of the input to-
kens. Gradient-based methods determine this im-
portance using the gradient of the loss with respect
to the tokens (Simonyan et al., 2014).

Adversarial attacks provide a different lens into
a model—they elucidate its capabilities by exploit-

ing its weaknesses. We focus on methods that
modify tokens in the input (e.g., replace or remove
tokens) in order to change the model’s output in a
desired manner.

2.2 Saliency Map Visualizations

We consider three saliency methods. Since our
goal is to interpret why the model made its pre-
diction (not the ground-truth answer), we use the
model’s own output in the loss calculation. For
each method, we reduce each token’s gradient
(which is the same dimension as the token embed-
ding) to a single value by taking the L2 norm.

Vanilla Gradient This method visualizes the
gradient of the loss with respect to each token (Si-
monyan et al., 2014). Figure 2 shows an example
interpretation of BERT (Devlin et al., 2019).

Integrated Gradients Sundararajan et al.
(2017) introduce integrated gradients. They
define a baseline x′, which is an input absent
of information (we use a sequence of all zero
embeddings). Word importance is determined by
integrating the gradient along the path from this
baseline to the original input.

SmoothGrad Smilkov et al. (2017) average the
gradient over many noisy versions of the input.
For NLP, we add small Gaussian noise to every
embedding and take the average gradient value.

2.3 Adversarial Attacks

We consider two adversarial attacks: replacing
words to change the model’s prediction (HotFlip)
and removing words to maintain the model’s pre-
diction (Input Reduction).

Untargeted & Targeted HotFlip We consider
word-level substitutions using HotFlip (Ebrahimi
et al., 2018). HotFlip uses the gradient to swap
out words from the input in order to change the
model’s prediction. It answers a sensitivity ques-
tion: how would the prediction change if certain
words are replaced? We also extend HotFlip to
a targeted setting, i.e., we substitute words in or-
der to change the model’s prediction to a specific
target prediction. This answers an almost counter-
factual question: what words should be swapped
in order to cause a specific prediction?

We closely follow the original HotFlip algo-
rithm: replace tokens based on a first-order Taylor



9

Figure 2: A saliency map generated using Vanilla Gradient (Simonyan et al., 2014) for BERT’s masked language
modeling objective. BERT predicts the [MASK] token given the input sentence; the interpretation shows that BERT
uses the gendered pronoun “her” and the hospital-specific “emergency” to predict “nurse”.

approximation of the loss around the current to-
ken embeddings.1 Figure 3 shows an example of a
HotFlip attack on sentiment analysis.

Input Reduction Feng et al. (2018) introduce
input reduction. They remove as many words
as possible from the input without changing a
model’s prediction. Input reduction works by it-
eratively removing the word with the smallest gra-
dient value. We classify input reduction as an “ad-
versarial attack” because the resulting inputs are
usually nonsensical but cause high confidence pre-
dictions (Feng et al., 2018). Figure 1 shows an ex-
ample of reducing an NER input.

2.4 Currently Available Models

The toolkit currently interprets six tasks which
cover a wide range of input-output formats and
model architectures.

• Reading Comprehension using the
SQuAD (Rajpurkar et al., 2016) and
DROP (Dua et al., 2019) datasets. We use
NAQANet (Dua et al., 2019) and BiDAF
models (Seo et al., 2017).

• Masked Language Modeling using the trans-
former models available in Pytorch Trans-
formers2, e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and more.

• Text Classification and Textual Entailment
using BiLSTM and self-attention classifiers.

• Named Entity Recognition (NER) and Coref-
erence Resolution. These are examples of
tasks with complex input-output structure; we
can use the same function calls to analyze each
predicted tag (e.g., Figure 1) or cluster.
1We also adapt HotFlip to contextual embeddings; details

provided in Section 3.2.
2https://github.com/huggingface/pytorch-transformers

3 AllenNLP Interpret Under the Hood

This section provides implementation details for
AllenNLP Interpret: how we compute the token
embedding gradient in a model-agnostic way, as
well as the available front-end interface. Figure 4
provides an overview of our software implementa-
tion and the surrounding AllenNLP ecosystem.

3.1 Model-Agnostic Input Gradients

Existing Classes in AllenNLP Models in Al-
lenNLP are of type Model (a thin wrapper around
a PyTorch Module). The Model wrapper includes
a forward() function, which runs the model and
optionally computes the loss if a label is provided.

Obtaining predictions from an AllenNLP Model
is simplified via the Predictor class. This class
provides a model-agnostic way for obtaining pre-
dictions: call predict json() with a JSON contain-
ing raw strings and it will return the model’s pre-
diction. For example, passing {“input”: “this
demo is amazing!”} to a sentiment analysis Pre-
dictor will receive positive and negative class
probabilities in return.

Our AllenNLP Extension The core backbone
of our toolkit is an extension to the Predictor class
that allows interpretation methods to compute in-
put gradients in a model-agnostic way. Creating
this extension has two main implementation chal-
lenges: (1) the loss (with the model’s own predic-
tions as the labels) must be computed for widely
varying output formats (e.g., classification, tag-
ging, or language modeling), and (2) the gradi-
ent of this loss with respect to the token embed-
dings must be computed for widely varying em-
bedding types (e.g., word vectors, ELMo (Peters
et al., 2018) embeddings, BERT embeddings).

Predictions to Labeled Instances To handle
challenge (1), we leverage the fact that all mod-

https://github.com/huggingface/pytorch-transformers
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Figure 3: A word-level HotFlip attack on a sentiment analysis model—replacing “anyone” with “inadequate”
causes the model’s prediction to change from Positive to Negative.

els will return a loss if a label is passed to their
forward() function. We first query the model
with the input to obtain its prediction. Next,
we convert this prediction into a set of “la-
beled examples” using a function called predic-
tions to labeled instances(). For categorical pre-
dictions (e.g., classification, span prediction), this
function returns a single instance with the label set
to the model’s argmax prediction.

For tasks with structured outputs (e.g., NER,
coref), this function returns multiple instances,
where each instance is used to compute the loss
for a different part of the output. For example,
there are separate instances for each of the three
NER tags predicted in Figure 1. Separating out
the instances allows us to have more fine-grained
interpretations—we can analyze one part of the
overall prediction rather than interpreting the en-
tire tag sequence.

Embedding-Agnostic Gradients To handle dif-
ficulty (2)—computing the gradients of varying to-
ken embeddings—we rely on the abstractions of
AllenNLP. In particular, AllenNLP uses a Token-
Embedder interface to converts token ids into em-
beddings. We can thus compute the gradient for
any embedding method by registering a PyTorch
backward gradient hook on the model’s TokenEm-
bedder function.

Our end result is a simple API for com-
puting input gradients for any model: call
predictions to labeled instances() and then
get gradients().

3.2 Context-Independent Embedding Matrix
for Deep Embeddings

The final implementation difficulty arises from the
fact that contextual embeddings such as ELMo
and BERT do not have an “embedding matrix”
to search over (their embeddings are context-

dependent). This raises difficulties for meth-
ods such as Hotflip (Section 2.3) that require
searching over a discrete embedding matrix. To
solve this, we create a context-independent ma-
trix that contains the features from the model’s
last context-independent layer. For instance, we
pass all of the words from a particular task’s train-
ing set into ELMo and save the features from its
context-independent Char-CNN into a “word em-
bedding matrix”. This allows us to run HotFlip for
contextual embeddings while still capturing con-
text information since the gradient backpropagates
through the contextual layers.

3.3 Frontend Visualizations

We interactively visualize the interpretations us-
ing the AllenNLP Demo, a web application for
running AllenNLP models. We add HTML and
JavaScript components that provide visualizations
for saliency maps and adversarial attacks. These
components are reusable and greatly simplify the
process for adding new models and interpretation
methods (Section 4). For example, a single line of
HTML code can create the visualizations shown in
Figures 1–3. Note that visualizing the interpreta-
tions is not required—AllenNLP Interpret can be
run in an offline, batch manner. This is useful for
aggregating interpretation results, e.g., as in Feng
et al. (2018) and Wallace et al. (2018).

4 Adding a Model or Interpretation

This section describes the high-level process for
adding new analysis methods or AllenNLP models
to our toolkit.

New Interpretation We provide a tutorial for
adding a new analysis method to our toolkit. In
particular, it walks through the three main require-
ments for adding SmoothGrad:

https://demo.allennlp.org


11

Existing

   

NER
   SaliencyMap
   AdversarialAttack
   ...

   

Front-end Pages

   

Entailment
   SaliencyMap
   AdversarialAttack
   ...

   

AllenNLP

Predictor
 def predict_json()
    ...
 def get_gradients()
    ...
 def p_to_label_inst()
    # abstract    

Interpreter
  def interpret()
    # abstract
     

AllenNLP-Demo

...

  Front-end Components

SaliencyMap
  ./interpret

AdversarialAttack
  ./attack

...

 NERPredictor
  def p_to_label_inst()
     ...

...

SmoothGrad   
 def interpret()
   ...                
   p_to_label_inst()
   get_gradients()
   ...

Attacker
  def attack()
     # abstract
     

HotFlip
 def attack()
   ...                
   p_to_label_inst()
   get_gradients()
   ...

... ...

AllenNLP Interpret

Figure 4: System Overview: Our toolkit (in blue) and the surrounding AllenNLP ecosystem. The only model-
specific code is a simple function called predictions to labeled instances() (abbreviated as p to label inst()),
which is added to the model’s Predictor class (e.g., for an NER model’s predictor; left of figure). This func-
tion allows input gradients to be calculated using get gradients() in a model-agnostic manner (e.g., for use in
SmoothGrad or HotFlip; middle left of Figure). On the front-end (right of Figure), we create reusable visualization
components, e.g., for visualizing saliency maps or adversarial attacks.

1. Implementing SmoothGrad in AllenNLP, us-
ing predictions to labeled instances() and
get gradients() (requires adding about ten
lines of code to the vanilla gradient method).

2. Adding a SmoothGrad Interpreter to the
demo back-end (about five lines of code).

3. Adding the HTML/JavaScript for saliency vi-
sualization (requires making a one-line call to
the reusable front-end components).

New Model We also provide a tutorial for inter-
preting a new model. If your task is already avail-
able in the demos (e.g., text classification), you
need to change a single line of code to replace the
demo model with your model. If your task is not
present in the demos, you will need to:

1. Write the predictions to labeled instances()
function for your model (consists of three
lines for classification).

2. Create a path to your model in the demo’s
back-end (about 5-10 lines of code).

3. Add a front-end page to visualize the model
and interpretation output. This is simplified
by the reusable front-end components (con-
sists of copy-pasting code templates).

5 Related Work

Alternative Interpretation Methods We focus
on gradient-based methods (saliency maps and
adversarial attacks) but numerous other instance-
level model interpretation methods exist. For ex-
ample, a common practice in NLP is to visual-
ize attention weights (Bahdanau et al., 2015) or to

isolate the effect of individual neurons (Karpathy
et al., 2016). We focus on gradient-based methods
because they are applicable to many models.

Existing Interpretation Toolkits In computer vi-
sion, various open-source toolkits exist for ex-
plaining and attacking models (e.g., Papernot et al.
(2016); Ozbulak (2019), inter alia); some toolk-
its also include interactive demos (Norton and Qi,
2017). Similar toolkits for NLP are significantly
scarcer, and most toolkits focus on specific models
or tasks. For instance, Liu et al. (2018), Strobelt
et al. (2019), and Vig (2019) visualize attention
weights for specific NLP models, while Lee et al.
(2019) apply adversarial attacks to reading com-
prehension systems. Our toolkit differs because it
is flexible and diverse; we can interpret and attack
any AllenNLP model.

6 Conclusion

We presented AllenNLP Interpret, an open-source
toolkit that facilitates the interpretation of NLP
models. The toolkit is flexible—it enables the de-
velopment and evaluation of interpretation meth-
ods across a wide range of NLP models and tasks.

The toolkit is continually evolving—we will
continue to implement new interpretation methods
and models as they become available. We wel-
come open-source contributions, and we hope the
toolkit is useful for model developers and inter-
pretability researchers alike.
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