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Abstract

An anagram is a sentence or a phrase that is
made by permutating the characters of an in-
put sentence or a phrase. For example, “Trims
cash” is an anagram of “Christmas”. Ex-
isting automatic anagram generation methods
can find possible combinations of words form
an anagram. However, they do not pay much
attention to the naturalness of the generated
anagrams. In this paper, we show that simple
depth-first search can yield natural anagrams
when it is combined with modern neural lan-
guage models. Human evaluation results show
that the proposed method can generate signif-
icantly more natural anagrams than baseline
methods.

1 Introduction

Making an anagram is one of the most popu-
lar wordplay games and has a long history that
can be traced back to the time of the Ancient
Greeks (Wheatley, 1862). An anagram is a sen-
tence or a phrase that is made as a permutation of
characters of an input sentence or phrase. For ex-
ample, “Trims cash” is an anagram of “Christmas”
since the former can be made by permutating the
characters contained in the latter.

The automatic generation of anagrams is a chal-
lenging task since it is NP-hard1. Existing auto-
matic anagram generation methods mainly focus
on search efficiency in finding word combinations
that can form anagrams (Jordan and Monteiro,
2003). However, they place little consideration on
the word orders that seem natural to humans. For-
tunately, recent progress in NLP techniques now
enables natural sentences to be generated in many

∗This work was conducted while the author was at NTT
Communication Science Laboratories.

1NP-hardness of anagram generation can be proved by us-
ing the fact that it contains an exact cover problem, which has
been proven to be NP-complete (Karp, 1972), as a special
case.

NLP tasks (Józefowicz et al., 2016; Gehrmann
et al., 2018; Skadina and Pinnis, 2017). However,
beam search, the de-facto decoding algorithm used
in many language generation methods, cannot be
used as-is to generate anagrams since it cannot en-
sure that the generated sentences are anagrams.
Although beam search variants that can gener-
ate sentences that satisfy some constraints have
been proposed (Anderson et al., 2017; Hokamp
and Liu, 2017), applying them to anagram gener-
ation tasks soon becomes intractable. To summa-
rize, generating natural anagrams is a challenging
task that cannot be solved by simply applying ex-
isting methods.

In this paper, we propose an anagram generation
algorithm. The proposed algorithm is very simple;
we run depth-first search to enumerate anagrams.
As to the generation procedure, we use a neural
language model and character frequency to sup-
press unnecessary search operations. Due to the
power of the currently available pre-trained neural
language models, this simple approach works sur-
prisingly well. In experiments that employ human
evaluations we confirm that the proposed natu-
ral anagram generation method can generate more
natural anagrams than a baseline method.

2 Related Work

Although anagram generation is NP-hard, the ba-
sic algorithm that can output a set of words as
anagrams is relatively simple (Jordan and Mon-
teiro, 2003). As a result many anagram generation
software and web services exist including the In-
ternet Anagram Server2 and the Anagram Artist3.
Unfortunately, these methods pay scant attention
to the naturalness of the generated anagrams. In
Wikipedia (Wikipedia, 2019), it is said that the

2https://wordsmith.org/anagram/
3https://www.anagrammy.com/resources/

anagram_artist.html

https://wordsmith.org/anagram/
https://www.anagrammy.com/resources/anagram_artist.html
https://www.anagrammy.com/resources/anagram_artist.html
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automatic anagram generators work poorly when
challenged with multi-word anagrams since they
cannot take word meanings into account.

The anagram generation task can be seen as a
variant of the language generation problem under
some constraints. Anderson et al. (2017) proposes
a constrained beam search algorithm for image
captioning. Their method can generate sentences
containing pre-specified words. Their method first
creates a finite-state automaton (FSA) represent-
ing the constraints. Then it runs beam search
over the FSA to obtain results that satisfy the con-
straints. It is possible to apply their method to ana-
gram generation. However, since the number of
FSA states grows exponentially with input length,
it rapidly becomes intractable. Hokamp and Liu
(2017) proposes the constrained decoding method
called grid beam search for machine translation. It
is also impractical if applied to the anagram gen-
eration task.

3 Preliminaries

We represent sentence s as a sequence of words,
s = (w1, w2, . . . , w|s|), where |s| is the number of
words contained in s. Every word wi is selected
from vocabulary V , which consists of |V | distinct
words. We use C(s) to represent the multiset of
characters contained in s. For example, if s =
“Christmas”, then C(s) = {a, c,h, i,m, r, s, s, t}.
In the following, we ignore case and we assume
that every word w ∈ V consists of the characters
from a to z. We say sentence t is an anagram of
sentence s if C(s) = C(t). For example, if t =
“Trims cash”, then C(t) = {a, c,h, i,m, r, s, s, t},
which is equivalent to C(s) for s = “christmas”.
The anagram generation problem is the problem
of finding sentence t given input sentence s, where
t is an anagram of s.

We use a language model when generating ana-
grams. Let p(s) be the probability that sen-
tence s = (w1, w2, . . . , w|s|) appears. A lan-
guage model is a stochastic model that gives con-
ditional probability p(wi+1|w1, . . . , wi). A lan-
guage model derives probability p(s) by

p(s) = p(w1)

|s|−1∏
i=1

p(wi+1|w1, . . . , wi). (1)

While our anagram generation algorithm can use
any language model, our experiments use the neu-
ral language model of ELMo (Peters et al., 2018).

4 Anagram Generation

Our anagram generation algorithm uses simple
DFS. Given input string s, we start the search with
the initial string t =“〈S〉” and then try to append a
word w ∈ V to the tail of t for each step to search
for anagrams of s. If we find that t yields no so-
lution by appending any words to it, we pop back
the last word from t and continue the search by
appending a different word to the tail of t. Since
there are |V |N possible sentences consisting of N
words, naive DFS is intractable. Thus we need to
reduce the search steps. For this we introduce the
following two criteria.

The first criteria checks frequency of each char-
acter appearing in t. Partial sentence t cannot
be an anagram of s by appending any words to
it once the condition C(t) \ C(s) 6= ∅ is satis-
fied. For example, partial sentence t =“〈S〉 The”
cannot form an anagram of s =“Christmas” since
C(t) \ C(s) = {e} 6= ∅.

The second criterion exploits sentence proba-
bility. Since a language model can evaluate how
natural a sentence is by calculating sentence oc-
currence probability, we threshold this probability
and remove candidates with insufficient sentence
probability. We use score function f(w) defined
as

f(w) = p(w | t) · |w|2 (2)

as the score yielded by adding word w to sentence
t, where |w| is the number of characters of w. We
select word w if it makes f(w) larger than thresh-
old value η. We use the number of characters of
word w in the score function since shorter words
tend to have high conditional probability p(w | t)
but using them would often read to unnatural sen-
tences that consist of only very short (|w| ≤ 2)
words.

Branch and Bound for top-K search If we
need only a few solutions, then we can further
reduce the number of search steps by employing
a simple branch and bound technique. Here we
assume that we need K anagrams with high sen-
tence probability p(t). We use the fact that the sen-
tence probability p(t) defined in (1) is monotone
decreasing when we append new word w to the
sentence tail. Therefore, once we have found K
anagrams and their probabilities are larger than θ,
we can omit unnecessary subsequent search steps
if the current partial sentence t satisfies θ > p(t).

We show the final natural anagram generation
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Algorithm 1 Anagram generation algorithm
Input: Input sentence s
Output: At most K anagrams of s
1: t←“〈S〉”
2: A← a set of K dummy solutions
3: θ ← 0.0
4: SEARCH(t, A)
5: Output anagrams in A.
6:
7: procedure SEARCH(t, A)
8: if t is an anagram of s then
9: if p(t) > mina∈A p(a) then

10: Replace amin = argmina∈Ap(a) with t.
11: θ ← mina∈A p(a)

12: else
13: for all w ∈ V do
14: if f(w) > η and
15: C(t+ w) \ C(s) = ∅ and p(t+ w) > θ then
16: SEARCH(t+ w)

Score Description

5 Natural as a written language.
4 Natural as a spoken language.
3 A few grammatical errors.
2 Meaning is guessable.
1 Meaning is unclear.

Table 1: Human evaluation criteria.

procedure in Algorithm 1. It first initializes sen-
tence t and set of top-K anagramsA and then calls
the recursive search procedure SEARCH. SEARCH

first checks whether t is an anagram or not (line
8). If t is an anagram whose probability p(t)
is larger than mina∈A p(a), then replace anagram
a∗ = argmina∈Ap(a) with t (line 10). If t is not an
anagram, we proceed with the search by append-
ing a wordw ∈ V to the tail of t. Here we use t+w
to represent the sentence obtained by appending w
to the tail of t. We check that appending word w
satisfies the conditions shown above (lines 14, 15),
then we recursively call SEARCH(t+ w).

Implementation Details We tried to use the
data structure called dancing links (Knuth, 2000)
for managing the set of words satisfying the char-
acter frequency constraints. Dancing links is a
link-based data structure that supports efficient
DFS for some combinatorial search problems (De-
tails are shown in (Knuth, 2019)). However, we
found that using a simple array-based representa-
tion is sufficient since the conditional probability
evaluation consumes most of the time.

5 Experiments

We conduct human evaluations to assess the per-
formance of the proposed method. For inputs, we

Method Average Score

Proposed 4.11 (0.99)
Baseline 2.18 (1.17)

Table 2: Human evaluation results. The values in
parentheses are standard deviations.

randomly select 100 titles of English Wikipedia
articles whose length lies between 15 to 20 char-
acters. We use the language model included in
the TensorFlow (Abadi et al., 2015) implementa-
tion of ELMo4, which is a CNN-LSTM language
model trained with a 1 billion word benchmark
corpus and that consists of approximately 800 mil-
lion tokens5. It is also possible to combine the
proposed method with conventional n-gram lan-
guage models. However, since the superiority of
neural language models over n-gram models has
been reported in previous works (e.g., (Du et al.,
2016; Józefowicz et al., 2016)), we conducted ex-
periments using only ELMo. We use parameter
η = 0.005 and we conduct top-K search with
K = 5. We terminate the search after 20000 steps,
which takes about 40 minutes.

The baseline method used Anagram Artist,
a freely available anagram generation software
package. Anagram Artist can generate anagrams
consisting of at most 5 words given inputs with
lengths less than 25 characters. Although the al-
gorithm used in anagram artist is not explained, it
seems to use dictionary matching combining with
some heuristics for deciding word order. We also
tried an Internet anagram server. However, the
quality of the anagrams generated by those two
baseline methods are not much different. We com-
pute the perplexities of the outputs of the base-
line method and use the values to select the top-K
anagrams. We run all experiments on computers
with GeForce GTX 1080 Ti GPUs. The proposed
method was mainly implemented in Python and
the module for checking character frequency con-
straints was implemented in C++. We asked three
native speakers to rate each anagram with scores
ranging from 1 to 5 following the criteria shown
in Table 1.

Table 2 shows the human evaluation results,
where we compute the average score by first com-

4https://github.com/allenai/bilm-tf
5We also considered the use of pre-trained BERT (Devlin

et al., 2018) since it is trained with a larger dataset. However,
the pre-trained model does not contain weights of output lay-
ers and we cannot use it as-is for our task.

https://github.com/allenai/bilm-tf
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Inputs Proposed outputs Baseline outputs

Economic experiment

Expect more in income 5.0
Mine economic expert 3.0
One comic experiment 4.3
Common experience it 2.7
More except in income 3.7

Nonce epimer toxemic 1.0
Peen commix neoteric 1.0
Entice opener commix 1.3
Mine compeer exciton 1.7
Peen commix erection 1.0

What would Reagan do

Two had a large wound 3.3
We had a long draw out 4.7
What would a range do 3.3
We laugh and draw too 4.7
We had no law to guard 5.0

Two waul dragonhead 1.0
What wauled gadroon 1.0
What godown radulae 1.0
Thaw godown radulae 1.0
Wood gulden waratah 1.0

Ashgate publishers

Belarus gas the ship 2.0
Higher sales at pubs 5.0
This has a superb leg 4.7
The bags are plus his 2.7
She has a subtle grip 5.0

Litharge subphases 1.3
Is the alpha burgess 2.0
This huge sparables 1.3
A lighter subphases 3.3
The agas publishers 2.7

Table 3: Example anagrams generated by the proposed method and baseline methods.

Anagrams Proposed outputs

William Shakespeare
↓

I am a weakish speller

Phillies was a remake
We all make his praise
Speaker William Shea
Hawaii keeps smaller
William Ashe speaker

Tom Marvolo Riddle
↓

I am Lord Voldemort

I told Mr Lord a move
Roll met David Romo
Mr Ali drove to Mold
Dr Millar moved too
Mr Orlov told media

Table 4: Results of generating famous anagrams.

puting the average score of the three evaluators for
each of the top-K outputs, then selecting the max-
imum of the K scores as the score of the method.
The average shown in the table is the average
of such maximum scores. The proposed method
failed to generate any anagram for 3 instances.
We therefore set the score of the proposed method
to 1.0 for them. We can see that the proposed
method yielded significantly higher human eval-
uation scores. Table 3 shows example anagrams
generated by the proposed method and the base-
line method. While the baseline method seems
to employ some heuristics for deciding the word
order, the combinations of selected words tend to
form meaningless sentences. On the other hand,
the proposed method tends to generate readable
sentences. The anagrams shown in the table are
listed in decreasing order of sentence probability.
We can find that sentences with high probability
are not always highly rated by the human evalua-
tions. However, the normalized discounted cumu-
lative gain (NDCG) score for the proposed method
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Figure 1: Running time comparison of the proposed
method when applying the branch and bound method
for retaining top-K solutions.

was 0.86. It suggests that using sentence probabil-
ity works well for finding natural anagrams.

To evaluate the effectiveness of applying the
branch and bound technique, we select problem
instances that took longer than 600 seconds to
complete and compared the maximum sentence
probabilities of solutions found at a given time
when top-K search is used. Figure 1 shows the
comparison results, where the vertical axis plots
the maximum scores of found anagrams normal-
ized by the maximum one found within 600 sec-
onds. This figure suggests using branch and bound
accelerates the output of high score solutions. For
example, with top-K, solutions with 0.8 maxi-
mum solution scores are found after 150 seconds,
while it takes about 250 seconds without top-K
search.

We also evaluated whether some famous ana-
grams appearing in Wikipedia (Wikipedia, 2019)
can be generated with the proposed method. Ta-
ble 4 shows the results of trying to generate fa-
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mous anagrams. Unfortunately, the proposed
method fails to find the famous anagram for these
inputs. This is due to the fact that the famous ana-
grams use relatively rare words. However, the gen-
erated anagrams contain natural sentences.

6 Conclusion

We proposed an algorithm for generating natu-
ral anagrams. Surprisingly, a simple depth-first
search approach is shown to be sufficient for gen-
erating natural anagrams when it is combined with
modern neural language models. Since our current
search procedure is relatively naive, there is room
for improvement. More efficient use of GPUs in
performing the DFS procedure is a promising fu-
ture work.
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