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Abstract

Building named entity recognition (NER)
models for languages that do not have much
training data is a challenging task. While
recent work has shown promising results on
cross-lingual transfer from high-resource lan-
guages to low-resource languages, it is unclear
what knowledge is transferred. In this paper,
we first propose a simple and efficient neu-
ral architecture for cross-lingual NER. Exper-
iments show that our model achieves competi-
tive performance with the state-of-the-art. We
further analyze how transfer learning works
for cross-lingual NER on two transferable fac-
tors: sequential order and multilingual em-
beddings, and investigate how model perfor-
mance varies across entity lengths. Finally,
we conduct a case-study on a non-Latin lan-
guage, Bengali, which suggests that leveraging
knowledge from Wikipedia will be a promis-
ing direction to further improve the model per-
formances. Our results can shed light on future
research for improving cross-lingual NER.

1 Introduction

Named Entity Recognition (NER) is an important
NLP task that identifies the boundary and type of
named entities (e.g., person, organization, loca-
tion) in texts. However, for some languages, it is
hard to obtain enough labeled data to build a fully
supervised learning model. Cross-lingual transfer
models, which train on high-resource languages
and transfer to target languages are a promis-
ing direction for languages with little annotated
data (Bharadwaj et al., 2016; Tsai et al., 2016;
Pan et al., 2017; Yang et al., 2017; Mayhew et al.,
2017; Wang et al., 2017; Cotterell and Duh, 2017;
Feng et al., 2018; Xie et al., 2018; Zhou et al.,
2019).

*The work was done when the first author worked as an
intern at USC ISI.

Cross-lingual NER models learn transferable
knowledge mainly from four sources: transla-
tion (Mayhew et al., 2017; Feng et al., 2018), bilin-
gual embeddings (Ni et al., 2017; Xie et al., 2018),
phonetic alphabets (Bharadwaj et al., 2016) and
multi-source learning (Mayhew et al., 2017; Lin
et al., 2018; Zhou et al., 2019; Chen et al., 2019;
Rahimi et al., 2019). Translation can be applied
at either the sentence level via machine transla-
tion or at the word and phrase level via applica-
tion of bilingual dictionaries. Bilingual embed-
dings are a form of bilingual dictionaries; they
constitute a projection from one pre-trained lan-
guage representation into the same vector space
as the other such that words with the same mean-
ing have similar representations (Conneau et al.,
2018). Phonetic alphabets enable different lan-
guages to share the same pronunciation characters
so that the character-level knowledge is transfer-
able between languages that otherwise have dif-
ferent character sets, such as English and Ben-
gali (Hermjakob et al., 2018). Multi-source learn-
ing is effective when multiple or similar lan-
guage resources are available by learning share-
able knowledge. For example, training a model on
both English and Hindi can significantly improve
the model performance on Bengali than only using
English (Mayhew et al., 2017). However, there
is little prior work with detailed analysis of how
cross-lingual NER models transfer knowledge be-
tween languages on different levels.

In this paper, we focus on a single-source zero-
shot transfer setting where we transfer from En-
glish to target languages that have no annotated
data. In our settings, the resources are limited to
annotated source language data, bilingual dictio-
naries, and unlabeled corpora from both source
and target languages. We first propose a neural
cross-lingual NER model that combines the ideas
of translation, bilingual embedding, and phonetic
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alphabets. Next, we conduct qualitative analy-
ses to answer the following questions on how the
model transfers knowledge under the cross-lingual
settings: 1) does the source language syntax mat-
ter? 2) how do word and character embeddings af-
fect the model transfer? We analyze how F1 scores
differ across different entity lengths. Finally, we
conduct a case study on Bengali.

2 Model

NER models take a sequence of tokens as input
and predict a sequence of labels such as person
(PER) or location (LOC). In this paper, we adopt
the neural architecture NER model from Lample
etal. (2016); Ma and Hovy (2016). The model first
combines pre-trained word and character embed-
dings as token representations, then feeds the rep-
resentations to one layer of a Bidirectional Long
Term Short Memory (Bi-LSTM) (Hochreiter and
Schmidhuber, 1997), and finally predicts the out-
puts via a Conditional Random Field (CRF). We
show the model architecture on left of Figure 1.
However, languages express the same named en-
tity in different words and characters. To bridge
the barriers, we combine three strategies: bilin-
gual embedding, reverse translation, and translit-
eration.

Bilingual Embedding. Word embeddings are
usually trained for each language separately and
therefore in different vector spaces (Ruder et al.,
2019). To map word embeddings into the same
shared space, we use MUSE (Conneau et al.,
2018) to build our bilingual embeddings. The
bilingual embeddings enable the words with the
same meaning to have similar word representa-
tions in the shared space.

Reverse Translation. We use the bilingual
dictionaries provided by Rolston and Kirchhoff
(2016). Language variations exist among source
and target languages and training on monolingual
corpus might limit learning the variations. There-
fore, we translate the source language, English,
to the target language for the training corpus to
reconstruct source language sentences and learn
source and target languages jointly. However, one
English word might have multiple corresponding
translations. To select the best translation, we de-
fine an empirical score function F'(w,wy;) that
calculates the cosine similarity between the trans-
lated target word (w;;) and the English source

word (w) based on its contextual words (w. ;).

F(w,w;) = - cos(E(w), E(we;))
f(1—a)- Z cos(E(ww), E(we;)) 0

Jj=1

where E(w) is the bilingual embedding vector of
the word, d; is the sequential distance between
the word and its contextual word j, and « is the
trade-off factor that balances impacts of transla-
tion pair and contextual words. In this study, we
set a to 0.5. We choose the translation pair with
the highest similarity score. Note that the reverse
only applies during the training step that translates
English into the target language.

Target word | Source word | Uroman | Type
griinen green gruenen | ORG
ENEiGEl Europe iuropera | LOC

Table 1: Examples of Uroman that maps different lan-
guages into the same character space. We show two
target languages, German (top) and Bengali (bottom).
The second column is a translation of the target lan-
guage. The transliterations show the phonetic similar-
ity between the source and target languages.

Character - Uromanization. Different lan-
guages may not share the same characters, but
some named entities in the multilingual corpora
share phonetic similarities (Huang et al., 2004).
To map multilingual corpora into the same char-
acter space and connect the phonetic similarity
between entities, we employ Uroman! (Herm-
jakob et al., 2018), which transliterates any lan-
guage into something roughly pronounceable En-
glish spellings, while keeps the English words un-
changed. We show some examples of Uroman in
Table 1.

3 Experiments

In this study, we first evaluate our proposed cross-
lingual method on the CoNLL 2002 and 2003
NER datasets (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003). We then con-
duct ablation studies to examine how the model
learns transferable knowledge under the cross-
lingual settings. Finally, we conduct a case study
on Bengali, a low resource language.

"https://www.isi.edu/~-ulf/uroman.html
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Figure 1: Architecture of our proposed model. Each word is translated from the source. Each token representation
contains two concatenated parts: a bilingual word embedding (light orange) and character representations (blue).
The character representation for each word is generated via the Bi-LSTM. Words are first transliterated and split
into individual characters before being fed into the character Bi-LSTM.

3.1 Data

The CoNLL datasets contain four different Euro-
pean languages, Spanish, Dutch, English, and Ger-
man. The data contains four types of named enti-
ties: person (PER), organization (ORG), location
(LOC) and MISC. We use Bengali language data
from LDC2015E13 (V2.1). To be consistent, we
only keep the PER, ORG and LOC tags and ignore
MISC tags from the Bengali corpus.

In this study, we choose the BIOSE tag schema
instead of standard BIO, where the B, I, O, S, E re-
fer to the beginning, inside, outside, single and end
of an entity, respectively. Previous work shows
that BIOSE can learn a more expressive model
than the BIO schema does (Ratinov and Roth,
2009). We lowercase the data and replace numbers
and URLs as “num” and “url” respectively. We
use the training data to train our model, the devel-
opment sets to select the best well-trained model,
and the test sets to evaluate performance, where
the training data is English and the development
and test sets are from the target language.

3.2 Experimental Settings

Bilingual Embedding. We use the 300-
dimensional bilingual word embeddings pre-
trained by MUSE (Conneau et al., 2018) and 300-
dimensional randomly initialized character em-
beddings. Specifically, we first collect mono-
lingual pre-trained word embeddings from fast-
Text (Bojanowski et al., 2017). We then align the
embeddings using the MUSE supervised model.
We normalize the inputs to MUSE and keep the
other hyperparameters as defaults. We merge the
aligned word embeddings and remove duplicates.
Updating the embedding during training time will

change the vector space of partial bilingual em-
beddings and therefore break the vector alignment.
Thus, we freeze the embedding weights during
the training step. For OOV (out-of-vocabulary)
words, we use a randomly initialized 300 dimen-
sion vector within [—0.1,0.1].

Reverse Translation. We follow the general
translation step in Section 2. Specifically, we re-
place English words with target language words if
the translation pairs exist in the bilingual dictio-
naries (Rolston and Kirchhoff, 2016). If a trans-
lation pair does not exist for a word, we keep the
word unchanged in the training data. We use the
pre-trained bilingual embedding to help select the
best choice of polysemy.

Model parameters. We use 300-dimension
hidden states for both character and token level
Bi-LSTMs. To prevent overfitting, we apply
dropout (Srivastava et al., 2014) with a rate of 0.5
on outputs of the two Bi-LSTMs. We follow the
Conditional Random Field (CRF) setup of Peng
and Dredze (2015). We then randomly initialize
the weights of the layers within [—0.1,0.1]. We
train the model for 200 epochs and optimize the
parameters by Stochastic Gradient Descent (SGD)
with momentum, gradient clipping, and learning
rate decay. We set the learning rate (Ir) and the de-
cay rate (dr) as 0.01 and 0.05 respectively. We up-
date the learning rate by m after epoch
n. We clip the gradients to the range of [-5.0, 5.0].
We measure performance by F1 score.

3.3 Baselines

In this study, we compare our proposed method
with three close works under the cross-lingual set-
tings. We compare our method with the best-
reported performance from their works. We briefly
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summarize the the three baselines in this section.

e WikiNER (Tsai et al., 2016) first links named
entities in the multilingual Wikipedia corpora
and extracts page categories as “wikifier” fea-
tures, and use these features to achieve cross-
lingual transfer.

o CTNER (Mayhew et al., 2017) first translates
the corpora into English via bilingual dictio-
naries and multilingual Wikipedia entries on
both word and phrase levels, and directly per-
form NER on the translated target language.

e NCNER (Xie et al., 2018) proposes a neural
NER model with attention mechanism. The
work is closest to ours. However, our model
takes different approaches in obtaining multi-
lingual embedding, translation, and translit-
eration as Xie et al. (2018), while the neural
models share the similar architecture of Bi-
LSTMs-CRF, and use multi-lingual embed-
dings to achieve transfer.

3.4 Results
Models Spanish | Dutch | German
WikiNER* | 60.55 | 61.60 | 48.10
CTNER* 51.82 | 5394 | 50.96
CTNER*+ | 65.95 | 66.50 | 59.11
NCNER 7237 | 71.25 | 57.76
Our Model | 64.48 | 73.44 | 62.26

Table 2: F1 score comparisons of cross-lingual models
on Spanish, Dutch and German. The “*” indicates the
model uses the Wikipedia resources. The “+” means
training model by multiple language resources.

As seen in Table 2, our proposed method out-
performs the previous works in nearly all cross-
lingual tasks. Moreover, the two neural model
methods exceed the performance of the other mod-
els. These results suggest the effectiveness of
neural cross-lingual transfer through multi-lingual
embedding space, and show competitive results of
our proposed methods.

3.5 Ablation Studies

We conduct ablation analyses to understand how
the model transfers learned knowledge from one
language to the other. We focus on two aspects:
syntax and embeddings.

Syntax analysis. Different languages might
not share the same syntax structures. The neu-
ral model learns sequential information from the

Models Spanish | Dutch | German
Full Model | 64.48 | 73.44 | 62.26

Shuffle 49.44 | 40.61 | 27.25
Word-only | 53.00 | 59.60 | 52.58
Char-only 18.88 | 12.15 | 16.46

Table 3: F1 scores of different ablation analyses, com-
pared to our full model.. “Shuffle” means the train-
ing data is shuffled. “Word-only” means our proposed
model is only fed bilingual word embeddings, and
“Char-only” means the model only receives character
embeddings as input.

source language and applies the learned knowl-
edge on the target language. The importance of
this sequential information is unknown. We shuf-
fle the sentences of training data while keeping
the internal order of named entities unchanged.
We show the results in Table 3. The results show
that after shuffling, the performances of our model
decrease and the decreases vary among different
languages. This suggests the importance of se-
quential information for those languages under the
cross-lingual settings.

Embeddings analysis. We train our proposed
models with both character and bilingual word
embeddings, however, how the model values dif-
ferent embeddings is unknown. We feed the model
with either bilingual word or character embed-
dings. Table 3 shows that bilingual word embed-
dings have better performance than character em-
beddings across the three languages. The results
suggest that the aligned bilingual embeddings are
more important than the character embeddings for
the three languages.

3.6 Entity length analysis

While we can observe how models perform over-
all on the named entities, we can not know how
models differ from short to long entities. Particu-
larly, probing if models hold strong biases towards
shorter entities can help interpret the process of
cross-lingual transfer learning. To make the com-
parison, we first categorize entities into three lev-
els: single token, two tokens and greater or equal
to three tokens. We then calculate the F1-score of
the three entity lengths in the test set and among
correctly predicted entities. Finally we summarize
the F1-score in Table 4.

With comparing to the overall performance
across the three languages in Table 2, we can ob-
serve that the single token shows relatively closer
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Language 1 2 >3
47.57

Spanish | 68.93 68.21
Dutch 69.49 82.46 60.85
German | 59.50 70.76 37.22

Table 4: F1 scores of different lengths of entities across
the three languages: Spanish, Dutch and German. The
number 1 refers to the entities with single token, the 2
means the entities with two tokens and the > 3 indi-
cates the entities with not less than three tokens.

to the performance, the entities with two tokens
achieve the higher scores, while the entities with
more than 2 tokens decrease significantly rang-
ing from 12.59 to 25.04 absolute percentages of
F1 scores. The observation indicates that entities
longer than two tokens are more difficult to in-
fer. This might encourage us to balance the weight
of long entities in our current evaluation method
which ignores entity length when datasets have
high volumes of long entities.

4 Case Study: Bengali

Models F1 score
CTNER 30.47
CTNER+ 31.70
CTNER* 46.28
CTNER*+ | 45.70
Our Model 34.29

Table 5: F1 score comparisons of translation-based
models on Bengali. The “*” indicates the model uses
Wikipedia resources. The “+” means a model is trained
with multiple language resources.

The previous cross-lingual settings were only
for European languages, which share similar al-
phabets. However, many languages use non-Latin
orthography. In this work, we present a case
study on Bengali, which does not use a Latin al-
phabet. We compare our proposed method with
the translation-based method, CTNER (Mayhew
et al., 2017). The results in Table 5 show that our
model outperforms the previous methods without
Wikipedia.

The results suggest multilingual Wikipedia is
critical for future performance improvements be-
yond simple transfer. This is to be expected; a do-
main discrepancy exists between the source and
target language data and therefore many named
entities are missing or mismatched: partial data
sources of the Bengali come from social media

and online forums (Cieri et al., 2016). By contrast,
the only data source of CoNLL data is from news
articles (Tjong Kim Sang, 2002; Tjong Kim Sang
and De Meulder, 2003). While transfer can help
provide universal context clue information across
languages there is no substitute for a resource of
actual names.

Language | Type Token
Spanish 2.5 0.8
Dutch 2.5 0.9
German 23 1.5
Bengali | 18.2 12.2

Table 6: OOV rate (percentage) in our bilingual word
embeddings across the four languages. Type indicates
unique words, and token refers to counting token num-
bers.

The colloquium words from social media may
cause the issue of out of vocabulary (OOV) and
further impact the transferring process. We sum-
marize the percentage of missing words in our pre-
trained bilingual word embeddings in Table 6. The
OOV rate of Bengali is significantly higher than
that of the other three languages. This suggests
that the high OOV rate and the discrepancy of data
sources may hurt the effectiveness of transfer.

5 Conclusion

We have presented a simple but efficient method
to adapt neural NER for the cross-lingual set-
tings. The proposed method benefits from multi-
ple transferable knowledge and shows competitive
performances with the state of the art using limited
resources. We examine multiple factors that im-
pact the transfer process and conduct an ablation
study to measure their influences. Our experiment
on Bengali shows that leveraging knowledge from
Wikipedia will be a promising direction for future
research.
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