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Abstract

We present EDA: easy data augmentation
techniques for boosting performance on text
classification tasks. EDA consists of four sim-
ple but powerful operations: synonym replace-
ment, random insertion, random swap, and
random deletion. On five text classification
tasks, we show that EDA improves perfor-
mance for both convolutional and recurrent
neural networks. EDA demonstrates particu-
larly strong results for smaller datasets; on av-
erage, across five datasets, training with EDA
while using only 50% of the available train-
ing set achieved the same accuracy as normal
training with all available data. We also per-
formed extensive ablation studies and suggest
parameters for practical use.

1 Introduction

Text classification is a fundamental task in natu-
ral language processing (NLP). Machine learning
and deep learning have achieved high accuracy on
tasks ranging from sentiment analysis (Tang et al.,
2015) to topic classification (Tong and Koller,
2002), but high performance often depends on the
size and quality of training data, which is often te-
dious to collect. Automatic data augmentation is
commonly used in computer vision (Simard et al.,
1998; Szegedy et al., 2014; Krizhevsky et al.,
2017) and speech (Cui et al., 2015; Ko et al., 2015)
and can help train more robust models, particu-
larly when using smaller datasets. However, be-
cause it is challenging to come up with generalized
rules for language transformation, universal data
augmentation techniques in NLP have not been
thoroughly explored.

Previous work has proposed some techniques
for data augmentation in NLP. One popular study
generated new data by translating sentences into
French and back into English (Yu et al., 2018).
Other work has used data noising as smoothing

Operation | Sentence

None A sad, superior human comedy played out
on the back roads of life.

SR A lamentable, superior human comedy
played out on the backward road of life.

RI A sad, superior human comedy played out
on funniness the back roads of life.

RS A sad, superior human comedy played out
on roads back the of life.

RD A sad, superior human out on the roads of
life.

Table 1: Sentences generated using EDA. SR: synonym
replacement. RI: random insertion. RS: random swap.
RD: random deletion.

(Xie et al., 2017) and predictive language models
for synonym replacement (Kobayashi, 2018). Al-
though these techniques are valid, they are not of-
ten used in practice because they have a high cost
of implementation relative to performance gain.
In this paper, we present a simple set of univer-
sal data augmentation techniques for NLP called
EDA (easy data augmentation). To the best of our
knowledge, we are the first to comprehensively
explore text editing techniques for data augmen-
tation. We systematically evaluate EDA on five
benchmark classification tasks, showing that EDA
provides substantial improvements on all five tasks
and is particularly helpful for smaller datasets.
Code is publicly available at http://github.
com/jasonwei20/eda_nlp.

2 EDA

Frustrated by the measly performance of text clas-
sifiers trained on small datasets, we tested a num-
ber of augmentation operations loosely inspired by
those used in computer vision and found that they
helped train more robust models. Here, we present
the full details of EDA. For a given sentence in the
training set, we randomly choose and perform one
of the following operations:
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1. Synonym Replacement (SR): Randomly
choose n words from the sentence that are not
stop words. Replace each of these words with
one of its synonyms chosen at random.

2. Random Insertion (RI): Find a random syn-
onym of a random word in the sentence that is
not a stop word. Insert that synonym into a ran-
dom position in the sentence. Do this n times.

3. Random Swap (RS): Randomly choose two
words in the sentence and swap their positions.
Do this n times.

4. Random Deletion (RD): Randomly remove
each word in the sentence with probability p.

Since long sentences have more words than short
ones, they can absorb more noise while maintain-
ing their original class label. To compensate, we
vary the number of words changed, n, for SR, RI,
and RS based on the sentence length [ with the for-
mula n=al, where « is a parameter that indicates
the percent of the words in a sentence are changed
(we use p=a for RD). Furthermore, for each orig-
inal sentence, we generate 7,,, augmented sen-
tences. Examples of augmented sentences are
shown in Table 1. We note that synonym replace-
ment has been used previously (Kolomiyets et al.,
2011; Zhang et al., 2015; Wang and Yang, 2015),
but to our knowledge, random insertions, swaps,
and deletions have not been extensively studied.

3 Experimental Setup

‘We choose five benchmark text classification tasks
and two network architectures to evaluate EDA.

3.1 Benchmark Datasets

We conduct experiments on five benchmark text
classification tasks: (1) SST-2: Stanford Senti-
ment Treebank (Socher et al., 2013), (2) CR: cus-
tomer reviews (Hu and Liu, 2004; Liu et al., 2015),
(3) SUBJ: subjectivity/objectivity dataset (Pang
and Lee, 2004), (4) TREC: question type dataset
(Li and Roth, 2002), and (5) PC: Pro-Con dataset
(Ganapathibhotla and Liu, 2008). Summary statis-
tics are shown in Table 5 in Supplemental Mate-
rials. Furthermore, we hypothesize that EDA is
more helpful for smaller datasets, so we delegate
the following sized datasets by selecting a random
subset of the full training set with Nyy.qi,={500,
2,000, 5,000, all available data}.

3.2 Text Classification Models

We run experiments for two popular models in
text classification. (1) Recurrent neural networks
(RNNS) are suitable for sequential data. We use a
LSTM-RNN (Liu et al., 2016). (2) Convolutional
neural networks (CNNs) have also achieved high
performance for text classification. We implement
them as described in (Kim, 2014). Details are in
Section 9.1 in Supplementary Materials.

4 Results

In this section, we test EDA on five NLP tasks with
CNNs and RNNSs. For all experiments, we average
results from five different random seeds.

4.1 EDA Makes Gains

We run both CNN and RNN models with and
without EDA across all five datasets for varying
training set sizes. Average performances (%) are
shown in Table 2. Of note, average improve-
ment was 0.8% for full datasets and 3.0% for
N, t'rain:500~

Training Set Size

Model | 500 2,000 5,000 full set
RNN 753 83.7 86.1 87.4

+EDA | 79.1 844 873 88.3
CNN 786 85.6 877 88.3

+EDA | 80.7 864  88.3 88.8
Average | 76.9 84.6  86.9 87.8

+EDA | 79.9 854 878 88.6

Table 2: Average performances (%) across five text
classification tasks for models with and without EDA
on different training set sizes.

4.2 Training Set Sizing

Overfitting tends to be more severe when training
on smaller datasets. By conducting experiments
using a restricted fraction of the available train-
ing data, we show that EDA has more significant
improvements for smaller training sets. We run
both normal training and EDA training for the fol-
lowing training set fractions (%): {1, 5, 10, 20,
30, 40, 50, 60, 70, 80, 90, 100}. Figure 1(a)-
(e) shows performance with and without EDA for
each dataset, and 1(f) shows the averaged perfor-
mance across all datasets. The best average accu-
racy without augmentation, 88.3%, was achieved
using 100% of the training data. Models trained
using EDA surpassed this number by achieving an

6383



SST-2 (N=7,447)

CR (N=4,082)

SUBJ (N=9,000)

0.6

Accuracy
Accuracy

0.6 [g —o— Normal [
—A— EDA

0.6 —o— Normal [
—A— EDA

—o— Normal
—A— EDA

Accuracy

0.4 bt
0 20 40 60 80 100

04—t
0 20 40 60 80 100

04—t
0 20 40 60 80 100

(a) Percent of Dataset (%) (b) Percent of Dataset (%) © Percent of Dataset (%)
TREC (N=5,452) PC (N=39,418) All Datasets
Il O D iy iy gy e o 1 T T T T
h <
4 =
> > 3
9 0.8 9 08 . 3
= = <
Q Q (]
é:’ 0.6 4 —e— Normal <LC) 0.6 |- —6— Normal [ eb 0.6 |- —e— Normal |
—A— EDA —A— EDA § —A— EDA
|
<

0.4 —
0 20 40 60 80 100
) Percent of Dataset (%) ©

04—t ==
0 20 40 60 80 100
Percent of Dataset (%) )

04— ==
0 20 40 60 80 100
Percent of Dataset (%)

Figure 1: Performance on benchmark text classification tasks with and without EDA, for various dataset sizes
used for training. For reference, the dotted grey line indicates best performances from Kim (2014) for SST-2, CR,

SUBJ, and TREC, and Ganapathibhotla (2008) for PC.

average accuracy of 88.6% while only using 50%
of the available training data.

4.3 Does EDA conserve true labels?

In data augmentation, input data is altered while
class labels are maintained. If sentences are sig-
nificantly changed, however, then original class
labels may no longer be valid. We take a visu-
alization approach to examine whether EDA oper-
ations significantly change the meanings of aug-
mented sentences. First, we train an RNN on
the pro-con classification task (PC) without aug-
mentation. Then, we apply EDA to the test set
by generating nine augmented sentences per orig-
inal sentence. These are fed into the RNN along
with the original sentences, and we extract the out-
puts from the last dense layer. We apply t-SNE
(Van Der Maaten, 2014) to these vectors and plot
their 2-D representations (Figure 2). We found
that the resulting latent space representations for
augmented sentences closely surrounded those of
the original sentences, which suggests that for the
most part, sentences augmented with EDA con-
served the labels of their original sentences.

4.4 Ablation Study: EDA Decomposed

So far, we have seen encouraging empirical re-
sults. In this section, we perform an ablation study

A\ Pro (original)
» Pro (EDA)

QO Con (original)
- Con (EDA)

Figure 2: Latent space visualization of original and
augmented sentences in the Pro-Con dataset. Aug-
mented sentences (small triangles and circles) closely
surround original sentences (big triangles and circles)
of the same color, suggesting that augmented sentences
maintianed their true class labels.

to explore the effects of each operation in EDA.
Synonym replacement has been previously used
(Kolomiyets et al., 2011; Zhang et al., 2015; Wang
and Yang, 2015), but the other three EDA opera-
tions have not yet been explored. One could hy-
pothesize that the bulk of EDA’s performance gain
is from synonym replacement, so we isolate each
of the EDA operations to determine their indi-
vidual ability to boost performance. For all four
operations, we ran models using a single oper-
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Figure 3: Average performance gain of EDA operations over five text classification tasks for different training
set sizes. The o parameter roughly means “percent of words in sentence changed by each augmentation.” SR:
synonym replacement. RI: random insertion. RS: random swap. RD: random deletion.

ation while varying the augmentation parameter
a={0.05,0.1,0.2,0.3,0.4,0.5} (Figure 3).

It turns out that all four EDA operations con-
tribute to performance gain. For SR, improvement
was good for small «, but high « hurt perfor-
mance, likely because replacing too many words
in a sentence changed the identity of the sentence.
For RI, performance gains were more stable for
different « values, possibly because the original
words in the sentence and their relative order were
maintained in this operation. RS yielded high per-
formance gains at «<0.2, but declined at «>0.3
since performing too many swaps is equivalent to
shuffling the entire order of the sentence. RD had
the highest gains for low « but severely hurt per-
formance at high «, as sentences are likely un-
intelligible if up to half the words are removed.
Improvements were more substantial on smaller
datasets for all operations, and av=0.1 appeared to
be a “sweet spot” across the board.

4.5

The natural next step is to determine how the num-
ber of generated augmented sentences per original
sentence, ngqyg, affects performance. In Figure 4,
we show average performances over all datasets
for nguy={1,2,4,8,16,32}.  For smaller train-
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Figure 4: Average performance gain of EDA across five
text classification tasks for various training set sizes.
Nqug 15 the number of generated augmented sentences
per original sentence.

ing sets, overfitting was more likely, so generat-
ing many augmented sentences yielded large per-
formance boosts. For larger training sets, adding
more than four augmented sentences per original
sentence was unhelpful since models tend to gen-
eralize properly when large quantities of real data
are available. Based on these results, we recom-
mend usage parameters in Table 3.

Nirain « Naug
500 0.05 16
2,000 | 0.05 8
5,000 0.1 4
More 0.1 4

Table 3: Recommended usage parameters.

5 Comparison with Related Work

Related work is creative but often complex. Back-
translation (Sennrich et al., 2016), translational
data augmentation (Fadaee et al., 2017), and nois-
ing (Xie et al., 2017) have shown improvements in
BLEU measure for machine translation. For other
tasks, previous approaches include task-specific
heuristics (Kafle et al., 2017) and back-translation
(Silfverberg et al., 2017; Yu et al., 2018). Regard-
ing synonym replacement (SR), one study showed
a 1.4% F1-score boost for tweet classification by
finding synonyms with k-nearest neighbors us-
ing word embeddings (Wang and Yang, 2015).
Another study found no improvement in tempo-
ral analysis when replacing headwords with syn-
onyms (Kolomiyets et al., 2011), and mixed re-
sults were reported for using SR in character-level
text classification (Zhang et al., 2015); however,
neither work conducted extensive ablation studies.

Most studies explore data augmentation as a
complementary result for translation or in a task-
specific context, so it is hard to directly compare
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EDA with previous literature. But there are two
studies similar to ours that evaluate augmentation
techniques on multiple datasets. Hu (2017) pro-
posed a generative model that combines a varia-
tional auto-encoder (VAE) and attribute discrim-
inator to generate fake data, demonstrating a 3%
gain in accuracy on two datasets. Kobayashi
(2018) showed that replacing words with other
words that were predicted from the sentence con-
text using a bi-directional language model yielded
a 0.5% gain on five datasets. However, training
a variational auto-encoder or bidirectional LSTM
language model is a lot of work. EDA yields re-
sults on the same order of magnitude but is much
easier to use because it does not require training a
language model and does not use external datasets.
In Table 4, we show EDA’s ease of use compared
with other techniques.

Technique (#datasets) | LM Ex Dat
Trans. data aug." (1) | yes yes
Back-translation” (1) | yes yes
VAE + discrim.? (2) yes yes

Noising® (1) yes no
Back-translation’ (2) | yes no
LM + SR (2) yes no
Contextual aug.” (5) | yes no
SR - kNN? (1) no no
EDA (5) no no

Table 4: Related work in data augmentation. #datasets:
number of datasets used for evaluation. Gain: reported
performance gain on all evaluation datasets. LM: re-
quires training a language model or deep learning. Ex
Dat: requires an external dataset.’

6 Discussion and Limitations

Our paper aimed to address the lack of standard-
ized data augmentation in NLP (compared to vi-
sion) by introducing a set of simple operations that
might serve as a baseline for future investigation.
With the rate that NLP research has progressed in

!(Fadaee et al., 2017) for translation

2(Yu et al., 2018) for comprehension

3(Hu et al., 2017) for text classification

*(Xie et al., 2017) for translation

5(Sennrich et al., 2016) for translation

8(Kolomiyets et al., 2011) for temporal analysis

7(Kobayashi, 2018) for text classification

8(Wang and Yang, 2015) for tweet classification

“EDA does use a synonym dictionary, WordNet, but the
cost of downloading it is far less than training a model on an
external dataset, so we don’t count it as an “external dataset.”

recent years, we suspect that researchers will soon
find higher-performing augmentation techniques
that will also be easy to use.

Notably, much of the recent work in NLP fo-
cuses on making neural models larger or more
complex. Our work, however, takes the opposite
approach. We introduce simple operations, the re-
sult of asking the fundamental question, how can
we generate sentences for augmentation without
changing their true labels? We do not expect EDA
to be the go-to augmentation method for NLP, ei-
ther now or in the future. Rather, we hope that our
line of thought might inspire new approaches for
universal or task-specific data augmentation.

Now, let’s note many of EDA’s limitations.
Foremost, performance gain can be marginal when
data is sufficient; for our five classification tasks,
the average performance gain for was less than 1%
when training with full datasets. And while perfor-
mance gains seem clear for small datasets, EDA
might not yield substantial improvements when
using pre-trained models. One study found that
EDA’s improvement was negligible when using
ULMFit (Shleifer, 2019), and we expect similar
results for ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2018). Finally, although we evalu-
ate on five benchmark datasets, other studies on
data augmentation in NLP use different models
and datasets, and so fair comparison with related
work is highly non-trivial.

7 Conclusions

We have shown that simple data augmentation op-
erations can boost performance on text classifi-
cation tasks. Although improvement is at times
marginal, EDA substantially boosts performance
and reduces overfitting when training on smaller
datasets. Continued work on this topic could ex-
plore the theoretical underpinning of the EDA op-
erations. We hope that EDA’s simplicity makes a
compelling case for further thought.
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