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Abstract

Twitter is used for various applications such as
disaster monitoring and news material gather-
ing. In these applications, each Tweet is clas-
sified into pre-defined classes. These classes
have a semantic relationship with each other
and can be classified into a hierarchical struc-
ture, which is regarded as important informa-
tion. Label texts of pre-defined classes them-
selves also include important clues for clas-
sification. Therefore, we propose a method
that can consider the hierarchical structure of
labels and label texts themselves. We con-
ducted evaluation over the Text REtrieval Con-
ference (TREC) 2018 Incident Streams (IS)
track dataset, and we found that our method
outperformed the methods of the conference
participants.

1 Introduction

Twitter is used for various applications such
as disaster monitoring (Ashktorab et al., 2014;
Mizuno et al., 2016) and news material gathering
(Vosecky et al., 2013; Hayashi et al., 2015). In
these applications, each Tweet is classified into
pre-defined classes. These classes have a seman-
tic relationship with each other and can be classi-
fied into a hierarchical structure. Consider a news
material gathering system that has classes such as
“Tornado,” “Flood,” and “Riot.” These can be
classified into two upper classes, “Natural disas-
ter” (“Tornado” and “Flood” as lower classes) and
“Incident” (“Riot” as a lower class). These rela-
tionships can be an important clue for classifica-
tion. Needless to say, label texts of pre-defined
classes themselves include important clues. Peo-
ple can understand what the criterion of the clas-
sification is by reading labels. Therefore, we pro-
pose a method that can consider the hierarchical
structure of labels and the labels themselves.

Our method is based on the Label Embedding

(LE) method (Zhang et al., 2018). The typical
LE method embeds input text and label text, and
then the embedded vectors are fed into “Matcher,”
which outputs the score between the input text
and label. We use a two-step attention mechanism
for LE to consider the hierarchical structure of la-
bels. We confirm the effectiveness of our method
through evaluation over the Text REtrieval Con-
ference (TREC) 2018 Incident Streams (IS) track
dataset.

Our contributions are as follows: (1) we pro-
pose label embedding using the hierarchical struc-
ture of labels, and (2) our method outperformed
others on the TREC 2018 IS track dataset for
several metrics, including the Any-type Micro F1
score, which is the target metric of the track.

2 TREC 2018 IS track

The TREC 2018 IS track is a shared-task that
aims to mature social media-based emergency re-
sponse technology (McCreadie et al., 2019). The
task of the track is classifying Tweets by informa-
tion type, which consists of 24 classes. The list of
information types and the description for each in-
formation type are given as ontology as shown in
Table 1. The dataset contains approximately 1,300
Tweets for training and more than 20,000 for test-
ing. The numbers of samples for each class are
also given in the table1. As shown in the table, a
training dataset does not include much data and is
unbalanced for classes.

The track uses two evaluation methods —
Multi-type and Any-type — as follows2.

Multi-type: Calculating categorization perfor-
mance per information type in a 1-vs-All manner.

1 Note that, each sample has just one information type for
training data, but more than one for testing data.

2 See http://trecis.org/2018/Evaluation.html for de-
tails.
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Table 1: Ontology information type.

Intent type Information type Description # (train) # (test)

REQUEST
REQUEST-GOODSSERVICES The user is asking for a particular service or physical good 0 126
REQUEST-SEARCHANDRESCUE The user is requesting a rescue (for themselves or others) 0 286
REQUEST-INFORMATIONWANTED The user is requesting information 10 172

REPORT

REPORT-WEATHER The user is providing a weather report (current or forecast) 41 1,325
REPORT-FIRSTPARTYOBSERVATION The user is giving an eye-witness account 28 3,807
REPORT-THIRDPARTYOBSERVATION The user is reporting a information that they received from someone else 15 4,160
REPORT-EMERGINGTHREATS The user is reporting a potential problem that may cause future loss of life or damage 36 686
REPORT-SIGNIFICANTEVENTCHANGE The user is reporting a new occurrence that public safety officers need to respond to 34 415
REPORT-MULTIMEDIASHARE The user is sharing images or video 127 3,974
REPORT-SERVICEAVAILABLE The user is reporting that they or someone else is providing a service 15 1,076
REPORT-FACTOID The user is relating some facts, typically numerical 140 2,383
REPORT-OFFICIAL An official report by a government or public safety representative 52 403
REPORT-CLEANUP A report of the clean up after the event 2 62
REPORT-HASHTAGS Reporting which hashtags correspond to each event 4 3,363

CALLTOACTION
CALLTOACTION-VOLUNTEER The user is asking people to volunteer to help the response effort 2 116
CALLTOACTION-DONATIONS The user is asking people to donate goods/money 15 804
CALLTOACTION-MOVEPEOPLE The user is asking people to leave an area or go to another area 26 27

OTHER

OTHER-PASTNEWS The post is generic news, e.g. reporting that the event occurred 12 1,351
OTHER-CONTINUINGNEWS The post providing/linking to continuous coverage of the event 250 4,871
OTHER-ADVICE The author is providing some advice to the public 39 1,209
OTHER-SENTIMENT The post is expressing some sentiment about the event 39 6,952
OTHER-DISCUSSION Users are discussing the event 51 2,060
OTHER-IRRELEVANT The post is irrelevant, contains no information 163 2,605
OTHER-UNKNOWN Does not fit into any other category 26 77
OTHER-KNOWNALREADY The responder already knows this information 112 1101

embed
Hierarchical 

attention

Label 
attention

Matcher

embed

embed

𝑤𝑥

𝑤𝐿

𝑤𝐿

𝑋

𝑈𝑗

𝐿𝑗

𝑠𝑗

Pre-trained 
model

Bi-directional
LSTM

Two-layer
FFNN

Lower label
text

Input 
Tweet text

Upper label
text

ℎ𝑙𝑗

ℎ𝑢𝑗

ℎ𝑥

Figure 1: Overview of our proposed method.

Methods are evaluated using four metrics: Pre-
cision, Recall, F1 (positive class), and Accuracy
(overall).

Any-type: A system receives a full score for a
Tweet if the system assigned any of the categories
that the human assessor selected for that Tweet.
Methods are evaluated using four metrics: Preci-
sion, Recall, F1 (micro average: the target metric
of the track), and Accuracy (micro average).

3 Our Method

As shown in Table 1, each information type has
a rather rich description, so we think that us-
ing the description can improve the performance.
Also, the information types can be regarded as
a hierarchical-structure label, which consists of
four upper classes (equal to intent type, such as
REQUEST and REPORT) and 24 lower classes
(equal to information type, such as REQUEST-
GOODSSERVICES and REPORT-WEATHER). To
use these useful features, we propose a label em-
bedding using the hierarchical structure of labels.

The overview of our method is given in Fig-
ure 1. Our method is similar to the one
Zhang et al. (2018) used, but it differs in that our

method considers the hierarchical structure of la-
bels, which is our key feature.

X , Lj , and Uj are the input text, label text of the
j-th lower class, and label text of the upper class
corresponding to the j-th lower class, respectively.
We use “description” and “intent type” in Table 1
for the label text of the lower and upper classes, re-
spectively. “Embed” in the figure is a pre-trained
model such as BERT (Devlin et al., 2019) and
ELMo (Peters et al., 2018) of V ×m, where V and
m denote the vocabulary size and embedding size,
respectively. wX and wL means Bi-directional
Long Short-Term Memory (Bi-LSTM), and both
have a d dimension of hidden layer.

First, X , Lj , and Uj are embedded using the
pre-trained model, and then the embedded vectors
are fed into wX for X and wL for Lj and Uj ,
respectively. We gather the hidden states of Bi-
LSTM for each input token and stack them, and
then we get three matrices:

Text representing matrix: hx ∈ R
|X|×2d ,

Lower label representing matrix: hlj ∈ R
|Lj |×2d ,

Upper label representing matrix: huj ∈ R
|Uj |×2d ,

where |X|, |Lj | and |Uj | represent the number of
tokens in X , Lj and Uj , respectively. Note that we
have a 2d dimension for the row of each matrix
because of concatenating forward and backward
states.

Next, we calculate “label attention” and “hi-
erarchical attention.” The label attention weight
wlabel ∈ 1

|Lj | and label attention vector alabel ∈
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1
2d are calculated as follows:

wlabel = softmax (h · hT
lj
/
√
2d) ,

alabel = wlabel · hlj ,

where h ∈ 1
2d is the concatenation of hidden

states of the final step of both directions of huj .
We use scaled-dot product attention for label at-
tention (Vaswani et al., 2017).

By using alabel, the hierarchical attention weight
whier ∈ 1

|X| and hierarchical attention vector
ahier ∈ 1

2d are obtained as follows:

whier = alabel · hT
x ,

ahier = whier · hx .

Note that we use normalization for label attention
but not for hierarchical attention. We confirm that
this condition is best by an experiment, which is
detailed in the Discussion section.

Then, ahier is fed to “Matcher,” which con-
sists of a two-layer Feed-Forward Neural Network
(FFNN):

vmid = Wmid · ReLU (ahier) + bmid ,

sj = Wmatcher · ReLU (vmid) + bmatcher ,

where Wmid ∈ R
d×2d and Wmatcher ∈ R

1×d are
weight matrices, and bmid ∈ 1

d and bmatcher ∈ 1
1

are bias. sj is a score between input Tweet X and
information type j.

We gather sj for all j ∈ C, where C denotes the
set of the information type. Finally, we obtain the
estimation result o for input Tweet X as follows:

o = argmax (s1, s2, . . . , s|C|) .

4 Experiments

4.1 Experimental Settings
Our experiments were based on TREC 2018 IS
track in terms of the dataset and evaluation. The
dataset consists of original json data of Tweets.
We excluded @-mentions and URLs. We con-
ducted 10-fold cross validation to find the best set-
ting, and all models were used as ensemble models
to predict the information type for testing data.

The models were implemented in Chainer
(Tokui et al., 2015) and learned with the Adam op-
timizer (Kingma and Ba, 2014), on the basis of
categorical cross-entropy loss with class weights
Wc = |cmax|

|c| , where |c| is the number of sam-
ples of information type c appearing in the training
data, and |cmax| is that of the most-frequent infor-
mation type. We used BERT-base, Uncased3 as

3
https://github.com/google-research/bert
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Figure 2: Baseline methods based on label embedding.

the pre-trained model, which has a 12-layer, 768-
hidden states transformer model with 12-heads at-
tention. The BERT model was used as a frozen
model without fine-tuning.

The hyperparameters used were: a minibatch
size of 32; hidden layer size of 200; L2 regulariza-
tion coefficient of 10−5; dropout rate of 0.5; and
100 training iterations, with early stopping on the
basis of the Macro F1 score of the development
data.

4.2 Baseline Methods

We prepared three baseline methods. All base-
line methods used the same hyperparameters as
the proposed method.

Non-LE: This method is not based on LE. We
use the BERT model as token embedding. The
embedded vectors are fed into Bi-LSTM, and then
the concatenation of hidden states of the final step
of both directions is fed into the two-layer FFNN
for classification into the information type.

Non-hier: This method is almost the same as
our proposed method but does not use hierarchi-
cal attention. The vector fed into Matcher is cal-
culated as attention between embedding vectors of
the input text and label text of the lower class (Fig-
ure 2-(a)).

Transfer: This method uses the same structure
as Non-hier, but we use transfer learning to con-
sider the hierarchical structure of labels. This is in-
spired by Shimura et al. (2018). First, the model is
learned as classifying upper class labels, and then
the model is transferred to be learned as classify-
ing lower class labels (Figure 2-(b)). We tried sev-
eral settings and found that transferring only the
Bi-LSTM layer is better in this task.
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Table 2: Experimental results. italics denote the best results in TREC 2018, and bold denotes the overall best
results. For some metrics, the best results are for other TREC 2018 participants’ methods not shown in the table,
so no results are in italics or bold for these metrics.

Method Multi-type, Macro Avg. Any-type, Micro Avg.
Precision Recall F1 Accuracy Precision Recall F1 (target metric) Accuracy

Non-LE 0.2461 0.1302 0.1523 0.9073 0.5032 0.7055 0.5874 0.4387
Non-hier 0.2522 0.1300 0.1497 0.9065 0.5206 0.6301 0.5701 0.4282
Transfer 0.2448 0.1324 0.1533 0.9071 0.5097 0.6810 0.5830 0.4361
Proposed 0.2464 0.1300 0.1521 0.9079 0.5164 0.7018 0.5950 0.4460

TREC2018 participants (Top-3 on Any-type Micro F1 score and Top-1 on Multi-type Macro F1 score)
cbunS2 0.2666 0.1122 0.1262 0.9059 0.4549 0.7780 0.5749 0.4213
KDEIS4 DM 0.1483 0.0708 0.0734 0.9035 0.3914 0.9856 0.5603 0.3908
umdhcilfasttext 0.1827 0.0962 0.1117 0.9044 0.4534 0.7260 0.5582 0.4022
DLR Augmented 0.2496 0.1657 0.1571 0.8996 0.3965 0.6165 0.4826 0.3419

4.3 Results
Table 2 presents the results for our methods and
part of the TREC 2018 participants’ results. At
TREC 2018, cbunS2, KDEIS4 DM, and umd-
hcilfasttext had the top three results for the Any-
type Micro F1 score, which is the target metric of
the track. DLR Augmented had the best Multi-
type Macro F1 score.

Our proposed method outperformed others in
terms of the Any-type Micro F1 score and both
types of accuracy, while the best for the Multi-type
F1 score is DLR Augmented.

4.4 Discussion
Comparison with other methods
Our proposed method performs the best for several
metrics including the target metric (Any-type Mi-
cro F1 score). Our hierarchical attention can give
less weight for verbose phrases such as “The user
is asking” in label text. These phrases include only
a little information useful for classifying, so giv-
ing them less weight is reasonable and effective.
This is one of the advantages of our method, which
distinguishes it from LE-based baseline methods.
Our method outperforms not only LE-based meth-
ods, but also the simple but strong baseline (Non-
LE) and the TREC 2018 participants’ methods.
Therefore, we confirmed the effectiveness of our
proposed method.

On the other hand, our method did not per-
form the best for the Multi-type Macro F1 score.
DLR Augmented, which performed the best for
this metric, uses augmented data. This is effec-
tive in the learning process especially for classes
that have small training data. Our method does
not use augmented data, so it has lower accuracy
for these classes than DLR Augmented. Compar-
ing our proposed method with the baseline meth-
ods, differences in the Multi-type Macro F1 score

Table 3: Comparing normalization methods.

label attention hierarchical attention Macro F1 score
normalized normalized 0.2676
normalized none 0.3539
none normalized 0.0303
none none 0.0329

were small, and the proposed method achieved
the best score for Multi-type accuracy. We think
that the differences come from labels that have a
small number of samples in test set because the F1
scores for these classes are sensitive to the output,
which greatly affects the Macro F1 score.

Insight of our proposed method
To determine which combination of normalization
is effective for our task, we conducted a small
experiment using development data. Results are
shown in Table 3. We used the Macro F1 score as
the metric4. We can see that using normalization
for label attention but not for hierarchical attention
is best. One reason is that the norm of the output
vector of hierarchical attention directly affects the
score sj . Hierarchical attention without normal-
ization can make distinctions for the output vector
of each class in the norm, so it works well. On the
other hand, using normalization is better in label
attention. We observed that not using normaliza-
tion for label attention makes the model diverge,
so normalization needs to be used for label atten-
tion.

Table 4 shows the macro F1 scores summarized
for each upper class of the proposed method and
Non-hier. ∆ in the table means the difference
between two methods. Interestingly, our method
works best for the upper class OTHER, which con-
tains the fewest meanings in the upper class label

4 Each sample has just one information type for develop-
ment data and more than one for testing data, so the Macro
F1 score between Table 2 and 3 cannot be compared directly.
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Table 4: Comparing macro F1 score for each upper
class between proposed and Non-hier.

Upper class Proposed Non-hier ∆
REQUEST 0.030 0.037 -0.007
REPORT 0.124 0.125 -0.001

CALLTOACTION 0.180 0.170 +0.010
OTHER 0.228 0.216 +0.012

text. The lower class label text for the upper class
OTHER includes less verbose phrases such as “The
user requesting,” so label attention can give higher
weight for important parts of the label text more
precisely.

On the other hand, the F1 score of the proposed
method for the upper class REPORT is worse than
that of Non-hier. This is caused by the lower class
REPORT-SIGNIFICANTEVENTCHANGE (the ∆ is
−0.05, which is the worst in all lower classes).
The label text of the lower class includes a mis-
spelling (“occurence” instead of “occurrence”5).
This confuses our model when calculating label
attention weight, so the F1 score is lower.

We found that the number of tokens in the lower
class label text affects the effectiveness of the pro-
posed method. The proposed method has a better
F1 score than Non-hier for nine lower classes with
a mean number of tokens in the lower class labels
of 11.2. On the other hand, the proposed method
has a lower F1 score than Non-hier for seven
lower classes with a mean number of tokens of 8.0.
This shows that the more tokens the lower class
label text has, the more effective the proposed
method becomes. Of course, this does not mean
that our method works for only classes that have
rich label text. For example, our method improves
the F1 score for some classes that have short label
text such as OTHER-DISCUSSION, which has only
five tokens in the label text.

Overall, using hierarchical structure of labels is
effective in many cases, but it is sensitive to the
quality and quantity of label texts of the lower
classes.

5 Related Work

Label embedding has attracted attention, es-
pecially for few- and zero-shot learning
tasks (Socher et al., 2013; Akata et al., 2013;
Kodirov et al., 2017). Now, many methods ap-
plied to natural language processing are proposed.

5 Our label texts are made from provided ontology, so they
contain misspellings arising from the original ontology.

Zhang et al. (2018) used multi-task learning, and
Xia et al. (2018) used capsule networks for LE
and obtained good results. Our method differs
in that it considers the hierarchical structure of
labels.

There are many studies using a pre-defined
hierarchical structure of labels (Wu et al., 2014;
Li et al., 2015; Bilal et al., 2018), and some
methods are used with LE (Bengio et al., 2010;
Ren et al., 2016). These approaches are effec-
tive but large-scale hierarchical data from a the-
saurus need to be prepared. Our method does
not need large-scale data, so it is advantageous
when it comes to calculating cost and flexibil-
ity. Shimura et al. (2018) used transfer learning to
consider the hierarchical structure of labels, which
is the basis of our baseline method (Transfer).

6 Conclusion and Future Work

In this paper, we proposed a method of label em-
bedding using the hierarchical structure of labels
and confirmed its effectiveness through evaluation
over the Text REtrieval Conference (TREC) 2018
Incident Streams (IS) track dataset. Our method
outperformed other methods and obtained the best
results on the dataset for several metrics including
the Any-type Micro F1 score, which was the target
metric of TREC 2018 IS track.

We used rather long sentences for lower label
text. Typical applications use shorter labels such
as “Tornado” and “Riot.” Confirming whether our
method works well for other datasets including
ones that have only shorter label texts is left for
our future work.
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