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Abstract

The task of entity recognition has tradition-
ally been modelled as a sequence labelling
task. However, this usually requires a large
amount of fine-grained data annotated at the
token level, which in turn can be expensive and
cumbersome to obtain. In this work, we aim to
circumvent this requirement of word-level an-
notated data. To achieve this, we propose a
novel architecture for entity recognition from
a corpus containing weak binary presence/ab-
sence labels, which are relatively easier to ob-
tain. We show that our proposed weakly su-
pervised model, trained solely on a multi-label
classification task, performs reasonably well
on the task of entity recognition, despite not
having access to any token-level ground truth
data.

1 Introduction

Entity Recognition frequently finds use as a first
step in numerous downstream NLP tasks (Wang
and Xue, 2017; Lee et al., 2018; Liang et al.,
2018). Traditionally, it has been posed as a se-
quence labeling task (Lample et al., 2016; Ma and
Hovy, 2016), which in turn requires corpora with
token-based annotations. A key drawback of this
formulation, however, lies in its dependence on
corpora annotated at the token-level, which can of-
ten be tedious to obtain and expensive to annotate.

One potential way of overcoming this limitation
is to move towards a method that utilizes a weaker
form of supervision that is easier to obtain. In
this work, we focus on one such form of weak su-
pervision: binary labels that indicate the presence
of an entity type. The cognitive load of selecting
whether an entity type is present or not is usually
less than that of actually highlighting and annotat-
ing spans with their correct entity types. It also
stands to reason that providing these binary labels
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might be faster. Both these properties are particu-
larly advantageous for a human-in-the-loop setup
in a user facing task, since a user is more likely
to answer a yes/no question than to provide the
annotated entity spans. This, in turn, facilitates
cheaper and faster data collection; be it explicitly
in the form of feedback questions, or implicitly
from mined user logs (for example, clicked search
engine results for queries related to “movies” are
likely to contain the entity in question (Xu et al.,
2009)).

In this work, we make first steps towards
moving away from span-based corpora, relying
solely on binary presence/absence classification
labels for extracting entities. We propose a novel
attention-based model that, though trained on a
multi-label classification task, can be used for en-
tity recognition. We show the efficacy of our pro-
posed model on the widely used 2003 CoNLL
dataset. Our model achieves reasonable perfor-
mance without having access to token-level anno-
tations. We thus show that it is possible to extract
entities using a weak classification signal. !

2 Related Work

Commonly used methods for entity extraction rely
on token-level annotated corpora. Convention-
ally, these supervised methods learn a CRF (Laf-
ferty et al., 2001) or a Seq2Seq (Sutskever et al.,
2014) model over either hand-crafter or neural fea-
tures. More recently, pre-trained embeddings from
language models trained on large corpora (Peters
et al., 2018; Devlin et al., 2018), when augmented
with previous methods, have shown marked im-
provements.

A contrasting line of work has been to ex-
plore unsupervised entity extraction without using

'All our code can be found at https://github.
com/joelmoniz/AttentionSegmentation

6268

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 6268—6273,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics


https://github.com/joelmoniz/AttentionSegmentation
https://github.com/joelmoniz/AttentionSegmentation

@ Lo mm—
PER EE—
—
—

E ORG

MISC

Sum |& Dense

Product @ BiGRU

Attention BERT

T
I

Thanos

—
did

= = -

nothing wrong

Figure 1: Model Architecture: Sentence-level Classifier. q represents the learned query vector per tag, o denotes
the attention weights computed per token and p denotes the probability of predicting each tag at the sentence level.

ground-truth token or sentence level annotations.
For example, a common paradigm for unsuper-
vised Named Entity Recognition involves relying
on a seed gazetteer, as in the case of Zhang and EI-
hadad (2013) and Ghiasvand and Kate (2015) both
in the medical domain. In a more general setting,
Carlson et al. (2009) use gazetteers to bootstrap
training by labelling sequences that can be confi-
dently annotated, and then use this partly labelled
data to train their proposed Partial Perceptron al-
gorithm; although they make use of a gazetteer,
being the closest in setting to our proposed ap-
proach, we use Carlson et al. (2009) as our pri-
mary baseline. Another common technique in-
volves bootstrapping the system with a set of rule
templates, such as in (Etzioni et al., 2005) and
(Collins and Singer, 1999). However, these meth-
ods often rely on an initial seed rule-base or on
the availability of gazetteers (or the effective gen-
eration of these gazetteers using an online source
such as Wikipedia).

Aside from directly improving performance on
various tasks, attention (Bahdanau et al., 2014,

Luong et al., 2015) has proven to be extremely
useful when used indirectly in a wide variety
of other ways (for example, for segmentation
(Tang and Yang, 2018) and unsupervised speech-
to-text alignment (Boito et al., 2017; Godard et al.,
2018)). In addition, using attention-based mod-
els for object segmentation in a weakly supervised
setting has been well explored in the vision do-
main (Teh et al., 2016; Zhang et al., 2018). In-
spired by this, we leverage the attention weights
of the model to identify entity spans.

3 Method

Figures 1 and 2 describe the different compo-
nents of our model. Our model comprises of
4 modules: a sentence representation module,
an attention module, a token-level tagger and a
sentence-level classifier. Concretely, given a sen-
tence (x1, - - - x7), the model predicts whether a tag
t € T is present in the sentence, as well as an
attention distribution over the words for each tag
(o ---aye)Vt € T (where T is the set of entity
tags), as described below:
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Figure 2: Model Architecture: Token Tagger. The Token Tagger performs tagging using the attention weights. «

denotes the attention weights of the predicted tag(s).

Token Representation Module: generates an
embedding for each token, representing the word’s
meaning and its left and right context. We use
BERT embeddings (Devlin et al., 2018) for gener-
ating a word-level representation. We further use a
Bidirectional GRU (Cho et al., 2014) layer to bet-
ter adapt BERT embeddings to the task to obtain
token representations (ej - - - €;).

Attention Module: consists of an attention
mechanism for each tag type. Given the token
embeddings, a softmax distribution pertaining to
the corresponding tag is generated, modelling the
conditional probability of a word in a sentence be-
ing of that tag, given that the entire sentence con-
tains the tag. We compute attention as in Bah-
danau et al. (2014), using one learned query vec-
tor ¢; per tag t € T . The token embeddings
(e1 - - - e) are passed through a dense layer to gen-
erate keys (ki ---k;) in the query space, which
together with query ¢;, yield a set of attention
weights (o ;- - ).

Sentence-level Classifier: generates the prob-
ability of the presence of a tag in the sen-
tence. For each tag, the token-level representa-
tions (ej - - - ¢;) are weighed by the attention distri-
bution (a4 - - - ) corresponding to the tag. The
weighted sum generates a sentence representation
s¢ per tag, which is passed through a sigmoid layer
to generate the probability of the tag being present
(pe), with p; > 0.5 denoting the presence of a tag.

Token Tagger Module: combines the prob-
abilities from the Sentence-level Classifier with
the attention weights obtained from the Attention
Module to generate BIO tags for each token. Only
the attention weights pertaining to the predicted la-
bels 7" are considered (i.e., if no tag is predicted,
the entire sentence is marked ’O”), with the atten-
tion weights being scaled by the probability of the

predicted label (i.e p; * (o1 - - ). A word x;
is assigned the label y; = argmax;c7(p; * v t)
if p; * v y, is greater than a small threshold € and
it is neither a punctuation symbol nor a stop-word
(Figure 2).

4 Experiments

Dataset: To demonstrate the feasibility of our
model, we adapt the commonly used CoNLL 2003
dataset (Ratinov and Roth, 2009). The dataset
contains token-level annotations of the Reuter’s
Corpus (Lewis et al., 2004) for 4 entity types: per-
son (PER), location (LOC), organization (ORG)
and miscellaneous (MISC), with each token be-
ing tagged in the IOB format (Ramshaw and Mar-
cus, 1999). For training and validation, we strip
out the token-level annotations, instead annotat-
ing sentences to merely indicate the presence of
entity-types. In order to quantify the quality of the
extracted entities, we then measure the span level
f-score on the test set using the gold entity spans.
Modelling Choices and Hyperparameters:
We use the BERT-Base Multilingual Cased model
for the Token Representation Module, similar to
the NER tagging setup in Devlin et al. (2018).
We experiment both with using the embeddings
as is, and fine-tuning the top layers of the atten-
tion encoder (we only try fine-tuning the top, top-
two and top-three layers due to computational con-
straints). For the Token Tagger module, we find
that the attention probabilities usually demarcate
the tagged words quite clearly, and that an e value
of 0.01 performs reasonably well. We use early
stopping based on the (averaged) validation accu-
racy of the sentence-level predictions. We also
observe that fine-tuning the BERT model requires
learning rates comparable in order of magnitude to
those used in Devlin et al. (2018), and hence use
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a learning rate of 2e-7 for fine-tuning the trans-
former layers, and 1e-3 for the rest of the network.
More details related to the hyperparameters used
are presented in Appendix A. All our models have
been implemented using the AllenNLP framework
(Gardner et al., 2017).

5 Results and Analysis

Type | Model F-score Acc
(Lample et al., 2016) 90.9 -
S (Peters et al., 2018) 92.2 -
(Devlin et al., 2018) 92.8 -
UsS ‘ (Carlson et al., 2009) 55.3 -
BERT + PS 65.8 95.5
WS BERT(FT) + PS 68.4 95.5
BERT + GRU + PS 79.2 95.5
BERT(FT) + GRU 80.7 95.6
‘ BERT(FT) + GRU + PS 81.1 95.6

Table 1: Different model performances on the 2003
CoNLL test set. FT denotes fine-tuning, PS denotes
probability scaling. S is supervised, US is unsupervised
and WS is weakly supervised

Table 1 shows the performance of our model.
We observe that our proposed approach signif-
icantly outperforms the baseline, and performs
reasonably well when compared to various state-
of-the-art supervised approaches that use signifi-
cantly more ground-truth annotation information.

To further investigate the impact of the differ-
ent components of the model, we ablate our model
components (Table 1). We observe that having a
contextual GRU layer for adapting to the task has
a significant impact on the performance, with the
final model performing much better than BERT
+ PS. Further, fine-tuning and probability scaling
also help improve model performance.

5.1 Impact of Stop-Word Removal

We find that the model learns to focus on indica-
tor words that frequently occur in sentences where
a particular tag is present, and tends to use them
to identify the presence of entities at the sentence
level. For example, the word at” is often indica-
tive of the existence of a location in a sentence, the
name of the location itself aside, and the model
tends to focus on both. This behaviour is unsur-
prising, given that the model is trained purely us-
ing a signal of whether or not a sentence contains

an entity of that type, with no idea about the entity
boundaries themselves. Based on what we com-
monly observe, a few of these indicator words in-
clude: prepositions such as “at” and “in” when a
LOC entity is present; common titles preceding
PER names (such as “President” X or “Miss” Y);
conjunctions that might separate two or more en-
tities (such as X “and” Y).

This results in the model picking out spuri-
ous words alongside the actual entity, which ne-
cessitates the use of stop-word and symbol re-
moval. However, this removal also results in the
model not being able to pick out words when they
occur within an entity span (for example, “Re-
public of Iceland”). This is particularly prob-
lematic for ORG (4.85% spans have stop-words)
and MISC (3.15% spans have stop-words), com-
pared to LOC(0.6%) and PER(0.76%). This is-
sue can potentially be mitigated with either a
more sophisticated tagger module or a better stop-
word/symbol removal mechanism, which we leave
to future work.

5.2 Errors due to Incorrect Entity

Boundaries
Model ‘Text Type Micro
(Peters et al., 2018) \95.9 93.8 94.8
BERT(FT) + GRU+PS [84.0 89.0  86.5

Table 2: MUC f-scores for the model

Since our model does not have access to an-
notated training data, it has no direct supervision
for learning entity boundaries. This particularly
hurts the model in the CoNLL task, since preci-
sion, recall and f-score are measured based on an
exact string match. In order to investigate this, we
use the metric used in MUC events (Grishman and
Sundheim, 1996; Chinchor, 1998), wherein a sys-
tem is scored on two axes: finding the correct text
and the correct type. A text is correct if the en-
tity boundaries are correct, regardless of their type,
while a type is correct if an entity is tagged with a
correct type, regardless of the boundaries, as long
as there is an overlap with the gold type. The final
score is a micro average f-measure (see Nadeau
and Sekine (2007) for more details).

Table 2 shows the performance of the model
along the two axes, as well as the MUC score.
We also report the same metrics for the super-
vised model proposed in Peters et al. (2018). We
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Idx| S e Predicti Gold

0 |@0@ Neal Lancaster , Dave Barr ( Canada ) , Mike Sullivan , Willie LOC PER

1 |@0@. Fatima Yusuf ( Nigeria ) @0@.@0@ LOC PER

h Russian peacemaker Alexander Lebed said he and rebel military leader Aslan Maskhadov agreed after overnight talks to defer the decision on LOC MISC
whether Chechnya should be independent until December @0@ , @0@ . PER

3 " The world community should not be indifferent to the fact that President Lukashenko , who leads this European state of @0@ million people , MISC PER
is trying to establish a dictatorship with his new constitution , " Sharetsky said .

4 Sa}dwould like to thank the Eagles organisation and the wonderful fans of Philadelphia for supporting me throughout my career , - LOC ORG PER

5 |June @0@-@0@ v Hampshire ( three days ) LOC ORG

Figure 3: Qualitative Analysis (Best viewed in color) PER, R R

. The Gold column shows the gold

tags contained in the sentence while the Predictions column contains the tags predicted by the model. Tags in green

are correctly predicted, while those in red are incorrect.

see that the model primarily loses out on the text
based measure, and performs quite well on the
type based one. This is in accordance with our hy-
pothesis that the model identifies the correct enti-
ties, but fails at finding the exact entity boundaries.
A better boundary detection method can conse-
quently be used alongside our model to improve
the entity retrievals in a downstream task.

5.3 Qualitative Analysis

Fig 3 shows examples of where our proposed
model performs well, and where it fails. Exam-
ples 0, 1 and 2 show when the model is correctly
able to identify the entity classes persons, loca-
tions and miscellaneous. Examples 3, 4 and 5
show some of the shortcomings. As described in
5.1, indicator tokens like President (Example 3)
are usually marked as the PER entity type, which
gets penalized when compared to the gold labels.
Another common failure case we observe is when
outside domain knowledge is necessary to disam-
biguate the entity type. For example, in Example
4, the model predicts Philadelphia as LOC, while
the correct tag is ORG (referring to the Philadel-
phia Eagles). Similarly, in Example 5, the model
classifies Hampshire as LOC, while the correct tag
is ORG (the cricket club).

6 Conclusion

We present a novel method for entity recognition
using a relatively weak supervision signal. Our
proposed model, trained on a multi-label classifi-
cation task, achieves reasonable entity recognition
performance.

While our proposed method is simple, we
demonstrate that it works surprisingly well. Var-
ious other formulations for this task are possible:
for example, one might involve marginalizing over
the tags and using this for predicting a label; an-
other could perform attention over spans instead
of tokens. We plan on investigating these alternate

approaches in future work.
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