A Modular Architecture for Unsupervised Sarcasm Generation

Abhijit Mishra, Tarun Tater, Karthik Sankaranarayanan
IBM Research
{abhijimi,ttater24 kartsank } @in.ibm.com

Abstract

In this paper, we propose a novel framework
for sarcasm generation; the system takes a lit-
eral negative opinion as input and translates
it into a sarcastic version. Our framework
does not require any paired data for training.
Sarcasm emanates from context-incongruity
which becomes apparent as the sentence un-
folds. Our framework introduces incongruity
into the literal input version through modules
that: (a) filter factual content from the in-
put opinion, (b) retrieve incongruous phrases
related to the filtered facts and (c) synthe-
size sarcastic text from the filtered and incon-
gruous phrases. The framework employs re-
inforced neural sequence to sequence learn-
ing and information retrieval and is trained
only using unlabeled non-sarcastic and sarcas-
tic opinions. Since no labeled dataset exists
for such a task, for evaluation, we manually
prepare a benchmark dataset containing lit-
eral opinions and their sarcastic paraphrases.
Qualitative and quantitative performance anal-
yses on the data reveal our system’s superior-
ity over baselines, built using known unsuper-
vised statistical and neural machine translation
and style transfer techniques.

1 Introduction

Sarcasm! is an intensive, ironic construct that is

intended to express contempt or ridicule. It is of-
ten linked with intelligence, creativity, and wit,
and therefore empowering machines to generate
sarcasm 1is in line with the key goals of Strong
AI’. From the perspective of Natural Language
Generation (NLG), sarcasm generation remains
an important problem and can prove useful in
downstream applications such as conversation sys-
tems, recommenders, and online content genera-
tors. For instance, in a conversational setting, a
"https://www.thefreedictionary.com/Sarcasm

“https://en.wikipedia.org/wiki/Artificial_general
intelligence

more natural and intriguing form of conversation
between humans and machines could happen if
machines can intermittently generate sarcastic re-
sponses, like their human counterparts.

Over the years, a lot of research and develop-
ment efforts have gone into the problem of detect-
ing sarcasm in text, which aims to classify whether
a given text contains sarcasm or not (Joshi et al.
(2017b) provide an overview). However, systems
for generation of sarcasm have been elusive. This
is probably due to the fact that in sarcasm gener-
ation both selection of contents for sarcastic opin-
ion generation and surface realization of contents
in natural language form are highly nuanced.

In the broader area of style transformation of
texts, most of the existing works have focused
narrowly on transformations at lexical and syn-
tax levels, i.e.,, text simplification (Siddharthan,
2014), text formalization (Jain et al., 2018), sen-
timent style transfer (Shen et al., 2017; Xu et al.,
2018), sentiment flipping (Li et al., 2018) and
understanding humor (West and Horvitz, 2019).
However, very little work has been done ((Piwek,
2003),(Hovy, 1987)) on incorporating pragmat-
ics into generation tasks such as sarcasm. Sar-
casm generation offers a rich playground to study
this challenge and push the state-of-the-art in text
transformation. Moreover, being a pragmatic task,
sarcasm construction offers diverse ways to con-
vey the same intent, based on cultural, social and
demographic backgrounds. Hence, a supervised
treatment of sarcasm generation using paired la-
beled data (such as parallel sentences) will be
highly restrictive. This further motivates the need
for exploring unsupervised approaches as the one
we propose in this paper.

We make the first attempt towards automatic
sarcasm generation where the generation is con-
ditioned on a literal input sentence. For example,
the literal opinion “I hate it when my bus is late.”

6144

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 6144—6154,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics

https://www.thefreedictionary.com/Sarcasm
https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Artificial_general_intelligence

should be transformed into “Absolutely love wait-
ing for the bus”. As sarcasm conveys a negative
sentiment, our system expects a negative senti-
ment opinion as input. Out of various possible the-
ories proposed to explain the phenomenon of sar-
casm construction (Joshi et al., 2017b), our frame-
work relies on the theory of context incongruity
(Campbell and Katz, 2012). Context incongruity
is prevalent in textual sarcasm (Riloff et al., 2013;
Joshi et al., 2015b). The theory presents sarcasm
as a contrast between positive sentiment context
(e.g., absolutely loved it) and negative situational
context (e.g., my bus is late).

In our framework, translation of literal sen-
tences to sarcastic ones happens in four stages
viz., (1) Sentiment Neutralization, during which
sentiment-bearing words and phrases are filtered
from the input, (2) Positive Sentiment Induc-
tion, where the neutralized input is translated into
phrases conveying a strong positive sentiment, (3)
Negative Situation Retrieval, during which a
negative situation related to the input is retrieved,
and (4) Sarcasm Synthesis, where appropriate
sarcastic constructs are formed from the positive
sentiment and negative situation phrases gathered
in the first three stages.

Training and development of these modules re-
quire only three unpaired corpora of positive, neg-
ative, and sarcastic opinions. For evaluating the
system, we manually prepare a small benchmark
dataset which contains a set of literal opinions and
their corresponding sarcastic paraphrases. Quan-
titative evaluation of our system is done using
popular translation-evaluation metrics, and docu-
ment similarity measurement metrics. For qual-
itative evaluation, we consider the human judg-
ment of sarcastic intensity, fluency, and adequacy
of the generated sentences. As baselines, we con-
sider some of our simplistic model variants and
existing systems for unsupervised machine trans-
lation and style transfer. Our overall observation
is that our system often generates sarcasm of bet-
ter quality than the baselines. The code, data,
and resources are available at https://github.com/
TarunTater/sarcasm_generation.

2 Challenges in Sarcasm Generation

Generation of sarcasm, unlike other language gen-
eration tasks, is highly nuanced. If we reconsider
the example in the introductory section, the out-
put sentence is sarcastic as it presents an unusual

situation where the opinion holder has liked the
rather boring act of waiting for a bus. The unusu-
alness (and hence, the sarcasm) arises from two
implicitly opposing (incongruous) contexts: love
and waiting for the bus. Such a form of sarcasm,
based on the context incongruity theory (Camp-
bell and Katz, 2012), is more common in text than
other forms such as prepositional, embedded or il-
locutionary sarcasm (Camp, 2012). For any tex-
tual sarcasm generator, figuring out contextually
incongruous phrases will be as difficult as gen-
erating a fluent sentence. Moreover, most of the
existing language generators are known to work
on large scale literal/non-sarcastic texts (e.g., lan-
guage models trained on Wikipedia articles), and
are agnostic of the possible collocations of con-
textually incongruous phrases (Joshi et al., 2017a).
We try to overcome these challenges through our
modular system design, discussed as follows.

3 System Architecture

The overall system architecture is presented in
Figure 1. For development of the modules three
corpora are needed: (a) a corpus of positive senti-
ment sentences (P), (b) a corpus of negative sen-
timent sentences (A), and (c) a corpus of sarcas-
tic sentences (S). The framework performs trans-
formation of literal text into sarcastic ones in four
stages as given below:

3.1 Sentiment Neutralization

The neutralization module is designed to filter sen-
timent information out from the input text. For ex-
ample, the input hate when my bus is late should
be filtered to produce a neutral statement like bus
is late. Neutralization is performed by a neural
sentiment classification module. Each word in the
input sentence of length N (x = {z1,x2,...,2N})
(in one-hot representation, padded wherever nec-
essary) is transformed into K -dimensional embed-
ding. The embeddings are then passed through
a layer of recurrent units such as Long Short
Term Memory (LSTM)(Hochreiter and Schmid-
huber, 1997). The output of the LSTM layers are
then sent to a self-attention layer before passing
through a softmax based classifier. The classi-
fier is trained with the supervision from sentiment
positive/negative labels using corpora P and N .
During testing, for a given input of length N,
the self attention vector « = «q,as,...,ay iS
first extracted (details skipped for brevity, refer Xu

6145

https://github.com/TarunTater/sarcasm_generation
https://github.com/TarunTater/sarcasm_generation

(©) —

Retrieval \‘A:V'\ Negative
System2
Sarcasm Content based Reward Score -------------------- ‘
waiting for the bus i
I love when bus is late '
Sarcasm Classifier Sarcasm
,,,,,,,,,,,,,,, $ 4 $ Content
[‘1 |j Ij [L‘ D ‘ 4> Reward
3 OUTPUT: absolutely love waiting for the bus <EOS> ---------- ! :
/\rtenrlon RN | T ' :
Context f----------- @ - Reconstruction 3
S RENERERERENE N S
IR , feomnoneed 3
1 when bus is late RN Attention Context
[Neutralized Context } D)
o G Pos/Neg ‘ ‘
Self Context }—',_'—' o
Attention Processing
(A) Classifier and
Stopword
D D D D D |—:| D Removal
T * *] love waiting bus late
INPUT: I hate it when bus is late

Figure 1: System Architecture. Input to the system are literal sentences. The blue and green boxed represent layers
of embedding and LSTMs. The components are (A) Sentiment Neutralizer (B) Positive Sentiment Inducer (C)
Negative Situation Retriever , and (D) Sarcasm Synthesizer.

et al. (2018)). We then inverse and discretize the
self attention vector as follows:

0, ifa;>pu+20
1, otherwise

(D

ay =

where «; is the attention weight for the i** word, p
and o are the mean and standard deviation for the
attention vector. For each word in the input, if the
discretized attention weight is 0, it is filtered out.

The motivation behind such a design is that if
the classifier is trained well, the attention weights
will represent the contribution of each word to the
overall sentiment decision (Xu et al., 2018). Sen-
timent bearing words will receive higher attention
whereas neutral words will have lower attention
weights. It is worth noting that neutralization can
be done in several other ways such as filtering
based on a sentiment lexicon. However, such oper-
ations would require additional resources such as
sentiment dictionary, sense disambiguation tools,
whereas the neural classification based filtering
can only work with binary sentiment labeled data.
Also, for computing word-level sentiment contri-
butions, recent techniques (such as gradient-based
methods (Sundararajan et al., 2017)) can be used.
For simplicity, we use attention based filtering.

3.2 Positive Sentiment Induction

Once the neutralized output is extracted, it is
passed to the positive sentiment induction mod-
ule which transforms it into a positive sentiment
sentence. For this, we use a traditional sequence
to sequence pipeline (Bahdanau et al., 2014) with
attention and copy mechanisms (Gulcehre et al.,
2016). The input is a set of words coming from the
neutralization module. These are transformed into
embeddings and are then encoded with the help
of LSTM layers. The decoder attends over the en-
coded output and produces the output tokens based
on the attended vector and the previously gener-
ated tokens. This is a standard technique, typically
used in neural machine translation.

As the output from the system is expected to
be positive in sentiment, for training the frame-
work, we use only a set of positive sentences from
P . Each sentence in the data is filtered us-
ing the neutralization module. The filtered ver-
sion, and the original positive sentence are used
as (source, target) pairs.

3.3 Negative Situation Retrieval

Negative situations present in sarcastic opinions
are typically extrinsic and are loosely related to
the semantics of its literal version. Hence, a se-
quence to sequence module analogous to Section

6146

S-grams: getting up for school facts, getting yelled at by people, trying to schedule my classes, feeling like every single
person, walking to class in pouring, making people who already hate, working on my last day, spending countless hours

at doctors, getting overdraft statements in mail

4-grams: talking about world politics, stuck in a generation, sitting in class wondering, canceled at short notice,

distancing myself from certain, wipe my own tears

3-grams: born not breathing, paid to sleep, scared those faces, taking a shower, starting your monday, accused of
everything, worrying about someone, fight jealousy arguments, license to trill, awarded literature prize
2-grams: scratching itchy, looking chair, getting hiv, shot first, collecting death, lost respect

1-gram: canceled, sleeping, trying, buying, stapling

Table 1: Example negative situations extracted using bootstrapping technique (Riloff et al., 2013)

3.2 may not be very useful. Moreover, for sar-
casm generation, for a certain topic, it is safe to as-
sume that there can be a finite set of negative situ-
ations. From this set appropriate situation phrases
can be “retrieved” depending on the given input.
Thus, finding out appropriate negative situations
boils down to two sub-problems of (a) preparing a
finite set of negative situations, and (b) setting up
the negative situation retrieval process. We discuss
each of these two steps below.

3.3.1 Building Negative Situation Gazetteer

This is a one-time process and is done using the
unsupervised bootstrapping technique similar to
Riloff et al. (2013). For each sentence in the sar-
casm corpus S , a candidate negative situation
phrase is extracted. A candidate negative situa-
tion phrase is a word n-gram (n < 5) that follows
a positive sentiment phrase in a sarcastic sentence
3. After the candidates for a positive phrase are
obtained, their Part of Speech tags are extracted
with the help of a POS tagger. Specific patterns
of n-gram are then obtained using the POS tags.
This ensures that the phrases extracted are mostly
verb phrases, noun-phrases, and to-infinitive verb
phrases that describe situations. In our setting we
use 30 predefined POS n-gram patterns following
Riloff et al. (2013).

Once the candidate negative situation phrases
are extracted, they are filtered based on a scoring
function as given below:

#ns; in S

#ns; in S, P,N @

score; =

where ns; is the i negative situation extracted for
a certain positive phrase.

The scoring function returns a real value indi-
cating the exclusiveness of the negative situation
w.r.t the sarcastic sentences. If the score exceeds

3the word “love” is considered as the seed positive senti-
ment phrase to begin the bootstrapping procedure

a threshold (i.e., p > 0.5), the candidate phrase is
added to the gazetteer. Once all the possible neg-
ative situation phrases are extracted, each phrase
is used to extract more positive sentiment phrases
similarly as above. This process of positive phrase
and negative situation extraction is repeated until
no new phrases are found. Table 1 shows some
example negative situation phrases extracted from
our dataset.

3.3.2 Retrieval Process

The idea is to find negative situations relevant to
the input sentence. We implement an informa-
tion retrieval system based on PyLucene. All the
negative situations from the gazetteer (Sec. 3.3.1)
are first indexed. The input sentence is considered
as the query for which the most relevant negative
situation is retrieved from the indexed list. The
factors involved in PyLucene’s retrieval algorithm
include #f-idf, number of matching terms in the
query sentence and the retrieved sentence, and im-
portance measure of a term according to the total
number of terms in the search.

Once the positive sentiment and negative situa-
tions are generated for the input sentence, they un-
dergo a post-processing step where stopwords and
redundant words are removed and given as input
to the sarcasm synthesis module.

3.4 Sarcasm Synthesis

The sarcasm synthesis module is a sequence-to-
sequence network that expects a set of keywords
related to positive sentiment and negative situa-
tion phrases. For training this module, the sarcasm
corpus & is used. To prepare the input, we im-
plement a keyword extraction technique based on
POS tagging. Sentences in S are POS-tagged and
then stopwords are removed, and then based on the
POS tags noun, verb, adjective and adverbs are re-
tained. This way, the input keywords to the sys-
tem would somewhat be similar to the keywords
expected in real time scenario.

6147

The module follows an encode-attend-decode
style architecture like the positive sentiment in-
duction module, but with a different learning ob-
jective. Keywords in the input (in one-hot repre-
sentation, padded wherever necessary) are trans-
formed into a sequence of embeddings and then
encoded by layers of LSTMs, which produces a
hidden representations for each input word. The
decoder, consisting of a single layer of LSTMs
stacked on the top of a decoder embedding layer,
attend over the encoded hidden representations
and generate target words. In general, for T'
training instances of keywords and sarcastic texts,
{2% y'}L_, the training objective is to maximize
the likelihood of a target 3/ given z*, which is sim-
ilar to minimizing the cross entropy between the
target distribution and the predicted output distri-
bution. For training the neural network, the cross-
entropy loss is back propagated. In other words,
the gradient of the negative cross-entropy loss is
considered to update the model parameters. The
gradient is given by:

T
VoL(0) = Vo Y y'log Pu,(yilz’) (3)

=1

where L is the loss function and My is the trans-
lation system with parameter 6. 3 is the predicted
sentence. In our setting, where the input is not a
proper sentence, the problem with the above ob-
jective is that it does not strongly enforce the de-
coder to learn and produce sarcastic output. We
speculate that minimizing the token-level cross en-
tropy loss in Eq. 3 may help produce an output that
is grammatically correct but not sarcastic enough.
For instance, the decoder may incur insignificant
cross-entropy loss after generating a sentence like
absolutely loved it, as this sentence has consider-
able overlap with the reference sarcastic text that
provides supervision.

One possible idea to tackle such problems is to
employ a sarcasm scorer that can determine the
sarcasm content in the generated output, and use
the scores given by the sarcasm scorer for bet-
ter training of the generator. However, the sar-
casm scorer may be external to the sequence-to-
sequence pipeline, and the scoring function may
not be differentiable with respect to the model
Mpy. For this, we apply reinforcement learning
which considers sarcasm content score as a form
of reward and use it to fine-tune the learning pro-
cess. For learning, the policy gradient theorem

(Williams, 1992) is used. The system is trained
under a modified learning objective i.e., to maxi-
mize the expected reward score for a set of pro-
duced candidate sentences. The generator, oper-
ating with a policy of Py, (gjz|:1:’), producing an
output yAl with an expected reward score computed
using a scorer, will thus have the following gradi-
ent:

~

gi~Pu, CHED! [R(y")]

= E[R(y)Volog(Pa, (yi]a"))]

VoRL(0) = VoE
4)

where RL is the modified learning objective
which has to be maximized and R is a reward
function that is computed using an external scorer.
In practice, the expected reward is computed by (a)
sampling candidate outputs from the policy Pyy,,
(b) computing the reward score for each candidate
and (c) averaging the rewards so obtained. In typ-
ical RL settings, the learner is typically initialized
to a random policy distribution. However, in our
case, since some supervision is already available
in the form of target sarcastic sentences, we pre-
train the model with the loss minimization objec-
tive given in Eq. 3 and then fine-tune the model
based on the policy gradient scheme following Eq.
4. Thus, the learner gets initialized with a better
policy distribution.

For reward calculation, we consider the confi-
dence score of a sarcasm classifier (probability of
being sarcastic) trained using S as positive exam-
ples and P and N taken as negative examples.
For our setting, the classifier is analogous to the
classifier used for neutralization. The classifier is
based on embedding, LSTM and softmax layers.

Since the input to the system is a list of words, it
may seem that the sarcasm synthesis module may
not require sequence to sequence learning, and a
much simpler approach like bag-of-words to se-
quence generation could have been used. How-
ever, note that the input to the generator is ob-
tained after dropping words during neutralization
and later appending the negative situation phrase.
The sequentiality is, thus, not completely lost.
This makes sequence to sequence model an intu-
itive choice.

We now explain our experimental setup.

6148

4 Experiment Setup

4.1 Datasets

As stated earlier, our system does not rely on any
paired data for training. It requires three corpora
of positive sentences, negative sentences, and sar-
castic sentences collected independently.

For positive and negative sentiment corpora
P and N, we considered short sentences/snippets
from the following well-known sources such as (a)
Stanford Sentiment Treebank Dataset, (b) Ama-
zon Product Reviews, (c) Yelp Reviews (d) Sen-
timent 140 dataset (See Kotzias et al. (2015) for
sources). The above datasets primarily contain
tweets and short snippets. Tweets are normalized
by removing hashtags, usernames, and perform-
ing spell checking and lexical normalization using
NLTK (Loper and Bird, 2002). We then filtered
out sentences with more than 30 words. Approx-
imately 50, 000 sentences from each category are
retained. Then, based on the vocabulary overlap
with our sarcasm corpus S , 47, 827 sentences are
finally retained from each category (total number
of instances is 95654).

For the unlabelled sarcasm corpus & , we re-
lied on popular datasets used for sarcasm detection
tasks such as the ones by Ghosh and Veale (2016),
Riloff et al. (2013), and the Reddit Sarcasm Cor-
pus*. Sentences are denoised, spell corrected and
normalized. Average sentence length is kept as
30 words. A total number of 306,141 sentences
are thus collected. A common vocabulary of size
20,000 is extracted (based on frequency) for all
the modules from the three corpora. Each corpus
is divided into a train-valid-test split of 80%-10%-
10%.

4.1.1 Benchmark Dataset for Evaluation

Since no dataset containing paired examples of
literal and sarcastic utterances are available, we
created a small test-set for evaluating our system.
From the test split of the sarcasm corpus & , 250
sentences on diverse topics are selected and are
manually translated into literal versions by two
linguists. From this, only 203 sentences could
be selected by the linguists who mutually decided
whether the sentences were sarcastic enough to
keep in the test dataset or not.

*https://www.kaggle.com/danofer/sarcasm

4.2 Model Configuration

For the neutralization module, the embedding di-
mension size is set to 128, two layers of LSTMs of
hidden dimension of 200 are used. The classifier
trains for 10 epochs with a batch size of 32, and
achieves a validation accuracy of 96% and train-
ing accuracy of 98%.

For positive sentiment induction module, the
embedding dimensions for both encoder and de-
coder are set to 500. Both the encoder and de-
coder have only one layer of LSTM, with a hid-
den dimension of 500. The module is built on
top of the OpenNMT (Klein et al., 2017) frame-
work. Training happens in 100, 000 iterations and
the batch size is set to 64. The positive sentiment
induction module, at the end of the training, pro-
duces a bigram BLEU (Papineni et al., 2002) score
of 62.25%. For bootstrapping negative situations
and other purposes, the POS tagger from Spacy?
is used. The Lucene-IR framework is set up to re-
trieve negative situations.

The model configuration and training parame-
ters for the sarcasm synthesizer is the same as the
positive sentiment induction module. For the RL
scheme, for each instance, the expected reward is
computed over 100 candidate samples. At the end
of the training, the bigram BLEU score on the val-
idation set turns out to be 59.3%. For reward com-
putation, we use a classifier similar to the one used
for neutralization. The embedding size for this
classifier is 300 and it uses two layers of unidi-
rectional LSTMs with a hidden dimension of 300.
It trains with a batch size of 64 and produces a
validation accuracy of 78.3%. The probability es-
timates given by the classifier for any input text are
taken as reward scores. For optimization, cross en-
tropy loss criterion is used.

4.3 Evaluation Criteria

Absence of automatic evaluation metrics capable
of capturing subtleties of sarcasm makes it diffi-
cult to evaluate sarcasm generators. For evalua-
tion, we still use the popular translation and sum-
marization evaluation metrics METEOR (Baner-
jee and Lavie, 2005) and ROUGE (Lin, 2004).
Additionally, to check the semantic relatedness be-
tween the input and output, we use Skip-thought
sentence similarity metric®. Note that using BLEU
(Papineni et al., 2002) will be futile here as direct

Shttp://spacy.io
®https://github.com/Maluuba/nlg-eval

6149

http://spacy.io

n-gram overlaps between the predicted and gold-
standard sentences are not expected to be signifi-
cantly higher for such a task. We still include it as
an evaluation metric for completion.

We employ an additional metric to judge the
percentage of length increment (abbreviated as
WL) to see the if the length of the output is gener-
ally more than that of the input (for the reference
text it is 67%). The notion behind this metric is
that sarcasm typically requires more context than
its literal version, requiring to have more words
present at the target side.

4.3.1 Human Judgement based Evaluation

We also consider human judgment scores in-
dicating whether the generated output is non-
sarcastic/sarcastic (0/1 labels), how fluent it is (in
a scale of 1-5, 1 being lower), and to what extent
it is related to the input (in a scale of 1-5). The re-
latedness measure is important as the objective of
the task is to produce a sarcastic version of the in-
put text without altering the semantics much. For
human evaluation, we consider only the 30 sen-
tences randomly picked from the benchmark (test)
dataset. Sarcasm is a difficult topic, so we stuck to
only two annotators who had a better understand-
ing of the language and socio-cultural diversities.

4.4 Systems for Comparison

For comparison, we consider the following four
systems:

1. SarcasmBot: This is an open-sourced sar-
casm generation chatbot released by Joshi
et al. (2015a). The system generates a sar-
castic response to an input utterance.

2. UNMT: This system is based on Unsuper-
vised Neural Machine Translation technique
by Artetxe et al. (2017), which can be ex-
tended to any translation task. In our setting,
the source and target side are literal and sar-
castic utterances, i.e. the direction of transla-
tion is non-sarcastic to sarcastic.

3. Monoses: This is similar to UNMT but based
on unsupervised Statistical Machine Transla-
tion (Artetxe et al., 2018).

4. ST: This is based on the cross alignment tech-
nique proposed by Shen et al. (2017), used
for the task of sentiment translation.

5. FLIP: This is based on heuristics for senti-
ment reversal. For this, the input sentence is
first dependency-parsed. The root verb is de-
termined along with its tense and aspects with
the help of its part-of-speech tags’. The sen-
timent of root verb is determined using senti-
ment lexicon®. If the verb has non-zero posi-
tive or negative sentiment score, its antonym
is found using WordNet. Appropriate tense
and aspect form of the antonym is then ob-
tained”. The modified antonym replaces the
original root verb. Similarly, we replace ad-
jective and adverbs with words carrying op-
posite sentiment.

For training the above systems (except FLIP),
we used S at one side and a larger version of com-
bined P and NV containing 558, 235 sentences on
the other side, curated from the same sources as
mentioned earlier. Apart from this system, we also
tested some of our model variants, which are pre-
sumably inferior and can be considered as base-
lines. These are termed as:

1. SGINORMAL: a system with only the sar-
casm synthesizer module which takes the in-
put directly (after removing stopwords from
the input),

2. SG_RL:, same as SG_.NORMAL but also ap-
plies reinforcement learning,

3. ALL.NORMAL:, the complete system,
with sarcasm synthesizer trained without re-
inforcement learning strategy.

4. ALL _RL:, the complete system with rein-
forcement learning.

5 Results and Analysis

Tables 2 and 3 present evaluation results. While it
was expected that the automatic metrics may not
be able to capture the subtleties of sarcasm, the
WL measure indicates that a carefully designed
modular approach like ours often generates longer
sentences with more context. This is also cor-
roborated by the human evaluation where anno-
tators have judged that the output generated from

"For parsing and POS-tagging spaCy (http://spacy.io/) is
used

8https://www.nltk.org/_modules/nltk/sentiment/vader.
html
*https://www.nodebox.net/code/index php/Linguistics

6150

https://www.nltk.org/_modules/nltk/sentiment/vader.html
https://www.nltk.org/_modules/nltk/sentiment/vader.html
https://www.nodebox.net/code/index.php/Linguistics

System BLEU METEOR ROUGE-L SkipT WL
SarcasmBot 0.002 0.012 0.01 0.20 -43%
UNMT 0.17 0.15 0.33 0.45 -1.1%
Monoses 0.12 0.13 0.25 0.42 -3.4%
ST 0.017 0.04 0.11 0.24 -4.3%
FLIP 0.10 0.17 0.34 0.45 0.003%
SG_NORM 0.09 0.13 0.24 0.41 -3.3%
SG_RL 0.09 0.13 0.24 0.40 -4.18
ALL_NORM 0.12 0.13 0.23 0.37 32.3%
ALL_RL 0.11 0.13 0.23 0.37 31.2

Table 2: Evaluation results for our system and various baselines.SkipT — skip thought similarity

System Sarcasm Fluency Adequacy
SarcasmBot 86.6% 4.3 1.2
UNMT 20% 39 3.8
Monoses 33.3% 3.7 3.5
ST 16% 2.8 2.3
FLIP 20% 4.1 3.8
SG_NORM 56.6% 37 32
SG_RL 63.3% 39 3.6
ALL_NORM 63.3% 37 3.9
ALLRL 73.3% 37 3.8

Table 3: Human judgment scores for various systems

our system are more sarcastic than the comparison
systems. SarcasmBot, being a heuristic driven sar-
casm generator produces sarcastic responses but
is not related to the input topic. Moreover, it ends
up generating only 20 different responses for our
entire test dataset making its output redundant and
unrelated to the input. Other existing systems such
as UNMT and Monoses converge to autoencoding
and end up replicating the input as output. FLIP,
performs transformations at lexical level, hence
achieves better fluency but certainly fails to induce
sarcasm in most of the cases.

Table 4 presents example generations from dif-
ferent systems. It is quite interesting to note that
due to the RL, the model tends to produce longer
sentences and brings additional context necessary
for sarcasm. The fluency is however compro-
mised. A close inspection of the outputs from each
module suggests that the overall error committed
by the system is due to accumulation of different
types of errors, mainly (a) error during neutraliza-
tion due to inappropriate assignment of weights
to the words in the input, (b) dropping of words
and/or insertion of spurious words during positive
sentiment induction, and (c) error in scoring the
sarcasm content in the RL setting. These can be
addressed through better hyper-parameter tuning,
gathering more training data for training the in-
dividual modules (especially the sarcasm synthe-

Input: worrying because did not finish my home-
work.

Reference: did not finish any homework & i still need to
shower ! lol ! love stressing out.

SarcasmBot: How exciting! *rolls eyes * .

Monoses: whining because actually finish my home-
work.

UNMT: worrying because i did not finish my homework.
ST: if do not work my mom hurts.

FLIP: reassuring because did not finish my homework.
SG (NORMAL): i am worrying about the worrying of
homework.

SG (RL): worrying about finish homework.

ALL (NORMAL): no worrying , i finish doing home-
work great.

ALL (RL): worrying about finish homework is great.

Input: swimming lessons are very costly in nyc.

Reference: you have to sacrifice your first born child for
swimming lessons in nyc.

SarcasmBot: That is a very useful piece of information!
Yawn!

Monoses: Dry lessons are very costly financially.
UNMT: swimming lessons are very costly in nyc.

ST: a will was in bed.

FLIP: swimming lessons are very costly in nyc.

SG (NORMAL): this is so costly to me swimming
lessons in nyc.

SG (RL): swimming lessons is so costly in nyc.

ALL (NORMAL): loving the swimming lessons in nyc
ch.

ALL (RL): i am loving the swimming lessons . going to
be a very costly in nyc ch.

Table 4: Examples of generated outputs from different
systems. Reference— human written sarcastic text

sizer), and fine-tuning the sarcasm scorer.

6 Related Work

As stated earlier, not many systems for sarcasm
generation exist today. The closest work to ours
is the one by Joshi et al. (2015a) which employs
a heuristic driven approach for generating a sar-
castic response to an input utterance. Since, the
output of the system is a response, the system is
not suitable for translating a literal input text into a
sarcastic version. Unlike sarcasm generation, sar-

6151

casm detection has been a well-known problem
with several available solutions. For this prob-
lem, traditional supervised and deep neural net-
work based solutions have been proposed. The
supervised approaches rely on: (a) Unigrams and
Pragmatic features (Gonzalez-Ibanez et al., 2011;
Barbieri et al., 2014; Joshi et al., 2015b) (b) Stylis-
tic patterns (Davidov et al., 2010) and patterns re-
lated to situational disparity (Riloff et al., 2013)
and (c) Cognitive features extracted from gaze pat-
terns (Mishra et al., 2016, 2017). Recent sys-
tems are based on variants of deep neural networks
built on the top of embeddings. Deep neural net-
works based solutions for sarcasm detection in-
clude (Ghosh and Veale, 2016) who uses a com-
bination of RNNs and CNNs for sarcasm detec-
tion, and (Tay et al., 2018), who propose a variant
of CNN for extracting features related to context
incongruity.

A few works exist in the domains of irony, pun
and humour generation and are summarized by
Wallace (2015), Ritchie (2005) and Strapparava
et al. (2011) respectively. However, most of these
are heuristic driven and, hence, may not be eas-
ily scaled to new domains and languages. From
the perspective of language style transfer. Shen
et al. (2017) propose an unsupervised scheme
to learn latent content distribution across differ-
ent text corpora and use it for sentiment style
transfer. Xu et al. (2018) introduce an unsuper-
vised sentiment translation technique through sen-
timent neutralization and reinforced sequence gen-
eration. Zhang et al. (2018) propose a style trans-
fer technique based on unsupervised MT inspired
by Artetxe et al. (2017). Artetxe et al. (2018) have
recently proposed an unsupervised statistical ma-
chine translation scheme. We adopt some of these
modules for the task of sarcasm generation. As far
as we know, our proposed model is the first of its
kind for end-to-end neural sarcasm generation.

7 Conclusion and Future Work

We proposed a first of its kind approach for textual
sarcasm generation from literal opinionated texts.
We designed a modular framework for extracting
facts from the input, generating incongruous posi-
tive and negative situational phrases related to the
facts, and finally generating sarcastic variations.
For evaluation, we prepared a benchmark dataset
containing literal opinions and their sarcastic ver-
sions. Through qualitative and quantitative anal-

ysis of the system’s performance on the bench-
mark dataset, we observed that our system often
generates better sarcastic sentences compared to
some of our trivial model variants, and unsuper-
vised systems used for machine translation and
sentiment style transfer. In the future, we would
like to extend this framework for cross-lingual and
cross-cultural sarcasm and irony generation.

References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
Unsupervised statistical machine translation. arXiv
preprint arXiv:1809.01272.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv:1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65-72.

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling sarcasm in twitter, a
novel approach. ACL 2014, page 50.

Elisabeth Camp. 2012. Sarcasm, pretense, and the se-
mantics/pragmatics distinction. Noiis, 46(4):587—
634.

John D Campbell and Albert N Katz. 2012. Are there
necessary conditions for inducing a sense of sarcas-
tic irony? Discourse Processes, 49(6):459—480.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 107-116. Association for
Computational Linguistics.

Aniruddha Ghosh and Tony Veale. 2016. Fracking sar-
casm using neural network. In Proceedings of the
7th workshop on computational approaches to sub-

Jjectivity, sentiment and social media analysis, pages
161-169.

Roberto Gonzalez-Ibanez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short
papers-Volume 2, pages 581-586. Association for
Computational Linguistics.

6152

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. arXiv preprint
arXiv:1603.08148.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Eduard Hovy. 1987. Generating natural language un-
der pragmatic constraints. Journal of Pragmatics,
11(6):689-719.

Parag Jain, Abhijit Mishra, Amar Prakash Azad, and
Karthik Sankaranarayanan. 2018. Unsupervised
controllable text formalization. arXiv preprint
arXiv:1809.04556.

Aditya Joshi, Samarth Agrawal, Pushpak Bhat-
tacharyya, and Mark J Carman. 2017a. Expect
the unexpected: Harnessing sentence completion for
sarcasm detection. In International Conference of
the Pacific Association for Computational Linguis-
tics, pages 275-287. Springer.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017b. Automatic sarcasm detection: A sur-
vey. ACM Computing Surveys (CSUR), 50(5):73.

Aditya Joshi, Anoop Kunchukuttan, Pushpak Bhat-
tacharyya, and Mark James Carman. 2015a. Sar-
casmbot: An open-source sarcasm-generation mod-
ule for chatbots. In WISDOM Workshop at KDD.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015b. Harnessing context incongruity
for sarcasm detection. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), volume 2, pages 757-762.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
arXiv preprint arXiv:1701.02810.

Dimitrios Kotzias, Misha Denil, Nando De Freitas, and
Padhraic Smyth. 2015. From group to individual la-
bels using deep features. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 597-606.
ACM.

Juncen Li, Robin Jia, He He, and Percy Liang.
2018. Delete, retrieve, generate: A simple approach
to sentiment and style transfer. arXiv preprint
arXiv:1804.06437.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Edward Loper and Steven Bird. 2002. Nltk: the natural
language toolkit. arXiv preprint cs/0205028.

Abhijit Mishra, Kuntal Dey, and Pushpak Bhat-
tacharyya. 2017. Learning cognitive features from
gaze data for sentiment and sarcasm classification
using convolutional neural network. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 377-387.

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal
Dey, and Pushpak Bhattacharyya. 2016. Harnessing
cognitive features for sarcasm detection. ACL 2016,
page 156.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, 2002.

Paul Piwek. 2003. A flexible pragmatics-driven lan-
guage generator for animated agents. arXiv preprint
¢s/0312050.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 704-714.

Graeme Ritchie. 2005. Computational mechanisms for
pun generation. In Proceedings of the Tenth Eu-
ropean Workshop on Natural Language Generation
(ENLG-05).

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in neural informa-
tion processing systems, pages 6830-6841.

Advaith Siddharthan. 2014. A survey of research on
text simplification. ITL-International Journal of Ap-
plied Linguistics, 165(2):259-298.

Carlo Strapparava, Oliviero Stock, and Rada Mihalcea.
2011. Computational humour. In Emotion-oriented
systems, pages 609—634. Springer.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.
2017. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 3319-3328.
JMLR. org.

Yi Tay, Luu Anh Tuan, Siu Cheung Hui, and Jian
Su. 2018. Reasoning with sarcasm by reading in-
between. arXiv preprint arXiv:1805.02856.

Byron C Wallace. 2015. Computational irony: A sur-
vey and new perspectives. Artificial Intelligence Re-
view, 43(4):467-483.

Robert West and Eric Horvitz. 2019. Reverse-
engineering satire, or” paper on computational hu-
mor accepted despite making serious advances”.
arXiv preprint arXiv:1901.03253.

6153

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229-256.

Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xi-
aodong Zhang, Houfeng Wang, and Wenjie Li.
2018. Unpaired sentiment-to-sentiment translation:
A cycled reinforcement learning approach. arXiv
preprint arXiv:1805.05181.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang,
Peng Chen, Mu Li, Ming Zhou, and Enhong Chen.
2018. Style transfer as unsupervised machine trans-
lation. arXiv preprint arXiv:1808.07894.

6154

