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Abstract

We propose SUM-QE, a novel Quality Es-
timation model for summarization based on
BERT. The model addresses linguistic qual-
ity aspects that are only indirectly captured by
content-based approaches to summary evalu-
ation, without involving comparison with hu-
man references. SUM-QE achieves very high
correlations with human ratings, outperform-
ing simpler models addressing these linguis-
tic aspects. Predictions of the SUM-QE model
can be used for system development, and to in-
form users of the quality of automatically pro-
duced summaries and other types of generated
text.

1 Introduction

Quality Estimation (QE) is a term used in machine
translation (MT) to refer to methods that measure
the quality of automatically translated text without
relying on human references (Bojar et al., 2016,
2017). In this study, we address QE for summa-
rization. Our proposed model, SUM-QE, success-
fully predicts linguistic qualities of summaries that
traditional evaluation metrics fail to capture (Lin,
2004; Lin and Hovy, 2003; Papineni et al., 2002;
Nenkova and Passonneau, 2004). SUM-QE pre-
dictions can be used for system development, to
inform users of the quality of automatically pro-
duced summaries and other types of generated
text, and to select the best among summaries out-
put by multiple systems.

SUM-QE relies on the BERT language repre-
sentation model (Devlin et al., 2019). We use
a pre-trained BERT model adding just a task-
specific layer, and fine-tune the entire model on
the task of predicting linguistic quality scores
manually assigned to summaries. The five cri-
teria addressed are given in Figure 1. We pro-
vide a thorough evaluation on three publicly avail-
able summarization datasets from NIST shared

Q1 – Grammaticality: The summary should have no
datelines, system-internal formatting, capitalization errors
or obviously ungrammatical sentences (e.g., fragments,
missing components) that make the text difficult to read.
Q2 – Non redundancy: There should be no unnecessary
repetition in the summary.
Q3 – Referential Clarity: It should be easy to identify
who or what the pronouns and noun phrases in the sum-
mary are referring to.
Q4 – Focus: The summary should have a focus; sentences
should only contain information that is related to the rest
of the summary.
Q5 – Structure & Coherence: The summary should be
well-structured and well-organized. The summary should
not just be a heap of related information, but should build
from sentence to sentence to a coherent body of informa-
tion about a topic.

Figure 1: SUM-QE rates summaries with respect to
five linguistic qualities (Dang, 2006a). The datasets we
use for tuning and evaluation contain human assigned
scores (from 1 to 5) for each of these categories.

tasks, and compare the performance of our model
to a wide variety of baseline methods capturing
different aspects of linguistic quality. SUM-QE
achieves very high correlations with human rat-
ings, showing the ability of BERT to model lin-
guistic qualities that relate to both text content and
form.1

2 Related Work

Summarization evaluation metrics like Pyramid
(Nenkova and Passonneau, 2004) and ROUGE
(Lin and Hovy, 2003; Lin, 2004) are recall-
oriented; they basically measure the content from
a model (reference) summary that is preserved
in peer (system generated) summaries. Pyra-
mid requires substantial human effort, even in
its more recent versions that involve the use of
word embeddings (Passonneau et al., 2013) and a
lightweight crowdsourcing scheme (Shapira et al.,

1Our code is available at https://github.com/
nlpaueb/SumQE

https://github.com/nlpaueb/SumQE
https://github.com/nlpaueb/SumQE
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2019). ROUGE is the most commonly used eval-
uation metric (Nenkova and McKeown, 2012; Al-
lahyari et al., 2017; Gambhir and Gupta, 2017).
Inspired by BLEU (Papineni et al., 2002), it re-
lies on common n-grams or subsequences be-
tween peer and model summaries. Many ROUGE
versions are available, but it remains hard to de-
cide which one to use (Graham, 2015). Being
recall-based, ROUGE correlates well with Pyra-
mid but poorly with linguistic qualities of sum-
maries. Louis and Nenkova (2013) proposed a
regression model for measuring summary quality
without references. The scores of their model cor-
relate well with Pyramid and Responsiveness, but
text quality is only addressed indirectly.2

Quality Estimation is well established in MT
(Callison-Burch et al., 2012; Bojar et al., 2016,
2017; Martins et al., 2017; Specia et al., 2018). QE
methods provide a quality indicator for translation
output at run-time without relying on human ref-
erences, typically needed by MT evaluation met-
rics (Papineni et al., 2002; Denkowski and Lavie,
2014). QE models for MT make use of large post-
edited datasets, and apply machine learning meth-
ods to predict post-editing effort scores and quality
(good/bad) labels.

We apply QE to summarization, focusing on
linguistic qualities that reflect the readability and
fluency of the generated texts. Since no post-
edited datasets – like the ones used in MT – are
available for summarization, we use instead the
ratings assigned by human annotators with respect
to a set of linguistic quality criteria. Our proposed
models achieve high correlation with human judg-
ments, showing that it is possible to estimate sum-
mary quality without human references.

3 Datasets

We use datasets from the NIST DUC-05, DUC-
06 and DUC-07 shared tasks (Dang, 2006a,b;
Over et al., 2007). Given a question and a clus-
ter of newswire documents, the contestants were
asked to generate a 250-word summary answer-
ing the question. DUC-05 contains 1,600 sum-
maries (50 questions x 32 systems); in DUC-06,
1,750 summaries are included (50 questions x 35

2In the Responsiveness annotation instructions, anno-
tators were asked to assess the linguistic quality of the
summary only if it interfered with the expression of in-
formation and reduced the amount of conveyed infor-
mation. See https://duc.nist.gov/duc2005/
responsiveness.assessment.instructions

Figure 2: Illustration of different flavors of the investi-
gated neural QE methods. An encoder (E) converts the
summary to a dense vector representation h. A regres-
sor Ri predicts a quality score SQi using h. E is ei-
ther a BiGRU with attention (BiGRU-ATT) or BERT
(SUM-QE).R has three flavors, one single-task (a) and
two multi-task (b, c).

systems); and DUC-07 has 1,440 summaries (45
questions x 32 systems).

The submitted summaries were manually eval-
uated in terms of content preservation using the
Pyramid score, and according to five linguistic
quality criteria (Q1, . . . ,Q5), described in Fig-
ure 1, that do not involve comparison with a model
summary. Annotators assigned scores on a five-
point scale, with 1 and 5 indicating that the sum-
mary is bad or good with respect to a specific Q.
The overall score for a contestant with respect to
a specific Q is the average of the manual scores
assigned to the summaries generated by the con-
testant. Note that the DUC-04 shared task in-
volved seven Qs, but some of them were found to
be highly overlapping and were grouped into five
in subsequent years (Over et al., 2007).3 We ad-
dress these five criteria and use DUC data from
2005 onwards in our experiments.

4 Methods

4.1 The SUM-QE Model
In SUM-QE, each peer summary is converted into
a sequence of token embeddings, consumed by an
encoder E to produce a (dense vector) summary
representation h. Then, a regressor R predicts a
quality score SQ as an affine transformation of h:

SQ = R(h) =WRh+ bR (1)

Non-linear regression could also be used, but a
3The complete guidelines given to annotators for DUC

2005 and subsequent years can be found at https://duc.
nist.gov/duc2005/quality-questions.txt

https://duc.nist.gov/duc2005/responsiveness.assessment.instructions
https://duc.nist.gov/duc2005/responsiveness.assessment.instructions
https://duc.nist.gov/duc2005/quality-questions.txt
https://duc.nist.gov/duc2005/quality-questions.txt
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linear (affine) R already performs well. We use
BERT as our main encoder and fine-tune it in three
ways, which leads to three versions of SUM-QE.

Single-task (BERT-FT-S-1): The first version
of SUM-QE uses five separate estimators, one per
quality score, each having its own encoder Ei (a
separate BERT instance generating hi) and re-
gressor Ri (a separate linear regression layer on
top of the corresponding BERT instance):

SQi = Ri(hi), i = 1 . . . 5 (2)

Multi-task with one regressor (BERT-FT-M-1):
The second version of SUM-QE uses one estima-
tor to predict all five quality scores at once, from a
single encoding h of the summary, produced by a
single BERT instance. The intuition is that E will
learn to create richer representations so thatR (an
affine transformation of h with 5 outputs) will be
able to predict all quality scores:

SQi = R(h)[i], i = 1 . . . 5 (3)

where R(h)[i] is the i-th element of the vector re-
turned byR.

Multi-task with 5 regressors (BERT-FT-M-5):
The third version of SUM-QE is similar to BERT-
FT-M-1, but we now use five different linear
(affine) regressors, one per quality score:

SQi = Ri(h), i = 1 . . . 5 (4)

Although BERT-FT-M-5 is mathematically equiv-
alent to BERT-FT-M-1, in practice these two ver-
sions of SUM-QE produce different results be-
cause of implementation details related to how the
losses of the regressors (five or one) are combined.

4.2 Baselines
BiGRUs with attention: This is very similar to
SUM-QE but now E is a stack of BiGRUs with
self-attention (Xu et al., 2015), instead of a BERT
instance. The final summary representation (h) is
the sum of the resulting context-aware token em-
beddings (h =

∑
i aihi) weighted by their self-

attention scores (ai). We again have three flavors:
one single-task (BiGRU-ATT-S-1) and two multi-
task (BiGRU-ATT-M-1 and BiGRU-ATT-M-5).

ROUGE: This baseline is the ROUGE ver-
sion that performs best on each dataset, among
the versions considered by Graham (2015). Al-
though ROUGE focuses on surface similarities

between peer and reference summaries, we would
expect properties like grammaticality, referential
clarity and coherence to be captured to some ex-
tent by ROUGE versions based on long n-grams
or longest common subsequences.

Language model (LM): For a peer summary,
a reasonable estimate of Q1 (Grammaticality) is
the perplexity returned by a pre-trained language
model. We experiment with the pre-trained GPT-2
model (Radford et al., 2019), and with the prob-
ability estimates that BERT can produce for each
token when the token is treated as masked (BERT-
FR-LM).4 Given that the grammaticality of a sum-
mary can be corrupted by just a few bad tokens, we
compute the perplexity by considering only the k
worst (lowest LM probability) tokens of the peer
summary, where k is a tuned hyper-parameter.5

Next sentence prediction: BERT training re-
lies on two tasks: predicting masked tokens and
next sentence prediction. The latter seems to be
aligned with the definitions of Q3 (Referential
Clarity), Q4 (Focus) and Q5 (Structure & Coher-
ence). Intuitively, when a sentence follows another
with high probability, it should involve clear refer-
ential expressions and preserve the focus and local
coherence of the text.6 We, therefore, use a pre-
trained BERT model (BERT-FR-NS) to calculate
the sentence-level perplexity of each summary:

H = 2
− 1

n

n∑
i=2

log2 p(si|si−1)

(5)

where p(si|si−1) is the probability that BERT as-
signs to the sequence of sentences 〈si−1, s〉, and n
is the number of sentences in the peer summary.

5 Experiments

To evaluate our methods for a particular Q, we
calculate the average of the predicted scores for
the summaries of each particular contestant, and
the average of the corresponding manual scores
assigned to the contestant’s summaries. We mea-
sure the correlation between the two (predicted vs.

4Here BERT parameters are frozen (not fine-tuned). We
use the pre-trained masked LM model to obtain probability
estimates for the tokens, which are then used to calculate the
perplexity.

5Consult the supplementary material for details.
6We also found the three quality scores to be highly cor-

related. The reader may refer to the supplementary material
for correlation heatmaps between the five quality scores.
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DUC-05 DUC-06 DUC-07
ρ τ r ρ τ r ρ τ r

Q
1

G
ra

m
m

at
ic

al
ity

BEST-ROUGE 0.213 0.128 0.033 -0.049 -0.044 0.331 0.387 0.283 0.506
GPT-2 0.678 0.511 0.637 0.391 0.280 0.593 0.780 0.586 0.675
BERT-FR-LM 0.437 0.319 0.025 0.524 0.354 0.667 0.598 0.453 0.566
BiGRU-ATT-S-1 0.119 0.079 0.116 0.263 0.182 0.459 0.119 0.085 0.494
BiGRU-ATT-M-1 0.190 0.144 0.091 0.619 0.462 0.757 0.332 0.235 0.662
BiGRU-ATT-M-5 0.156 0.160 0.040 0.613 0.466 0.771 0.315 0.215 0.584
BERT-FT-S-1 0.681 0.543 0.817 0.907 0.760 0.929 0.845 0.672 0.930
BERT-FT-M-1 0.675 0.543 0.805 0.889 0.749 0.902 0.851 0.684 0.896
BERT-FT-M-5 0.712 0.564 0.802 0.883 0.732 0.925 0.840 0.680 0.902

Q
2

N
on

re
du

nd
an

cy

BEST-ROUGE -0.121 -0.081 0.064 -0.401 -0.301 -0.408 -0.299 -0.222 -0.486
BiGRU-ATT-S-1 -0.063 -0.049 -0.101 0.511 0.358 0.514 0.468 0.352 0.457
BiGRU-ATT-M-1 -0.197 -0.143 -0.094 0.478 0.478 0.524 0.478 0.340 0.565
BiGRU-ATT-M-5 -0.226 -0.167 -0.124 0.414 0.304 0.399 0.283 0.201 0.238
BERT-FT-S-1 0.330 0.232 0.499 0.677 0.517 0.679 0.756 0.576 0.689
BERT-FT-M-1 0.333 0.232 0.494 0.791 0.615 0.789 0.761 0.596 0.799
BERT-FT-M-5 0.377 0.310 0.471 0.632 0.460 0.674 0.754 0.572 0.740

Q
3

R
ef

er
en

tia
lc

la
ri

ty

BEST-ROUGE 0.381 0.284 0.166 0.411 0.329 0.372 0.449 0.347 0.407
BERT-FR-NS 0.185 0.130 -0.138 0.462 0.315 0.494 0.478 0.322 0.085
BiGRU-ATT-S-1 0.662 0.479 0.468 0.493 0.342 0.647 0.664 0.476 0.677
BiGRU-ATT-M-1 0.702 0.540 0.492 0.527 0.396 0.681 0.732 0.533 0.681
BiGRU-ATT-M-5 0.694 0.519 0.492 0.579 0.427 0.719 0.659 0.472 0.655
BERT-FT-S-1 0.913 0.759 0.796 0.872 0.732 0.901 0.934 0.796 0.936
BERT-FT-M-1 0.889 0.714 0.761 0.881 0.735 0.882 0.879 0.699 0.891
BERT-FT-M-5 0.810 0.617 0.732 0.860 0.718 0.919 0.889 0.723 0.895

Q
4

Fo
cu

s

BEST-ROUGE 0.440 0.373 0.270 0.440 0.331 0.475 0.495 0.360 0.563
BERT-FR-NS 0.458 0.337 -0.106 0.522 0.354 0.508 0.547 0.364 0.089
BiGRU-ATT-S-1 0.150 0.110 0.153 0.355 0.242 0.644 0.433 0.321 0.533
BiGRU-ATT-M-1 0.199 0.118 0.194 0.366 0.259 0.653 0.533 0.372 0.553
BiGRU-ATT-M-5 0.154 0.097 0.160 0.493 0.371 0.691 0.645 0.462 0.657
BERT-FT-S-1 0.645 0.471 0.578 0.814 0.636 0.853 0.873 0.704 0.902
BERT-FT-M-1 0.664 0.491 0.642 0.776 0.608 0.842 0.893 0.745 0.905
BERT-FT-M-5 0.791 0.621 0.739 0.875 0.710 0.911 0.818 0.636 0.867

Q
5

St
ru

ct
ur

e
&

C
oh

er
en

ce

BEST-ROUGE 0.391 0.300 0.039 0.080 0.056 0.023 0.370 0.292 0.293
BERT-FR-NS 0.200 0.153 -0.140 0.171 0.120 0.285 0.418 0.280 0.015
BiGRU-ATT-S-1 0.223 0.153 0.040 0.458 0.326 0.526 0.606 0.442 0.534
BiGRU-ATT-M-1 0.404 0.264 0.067 0.479 0.350 0.599 0.664 0.499 0.576
BiGRU-ATT-M-5 0.244 0.157 -0.113 0.435 0.296 0.540 0.522 0.389 0.506
BERT-FT-S-1 0.536 0.415 0.477 0.681 0.522 0.810 0.862 0.690 0.857
BERT-FT-M-1 0.566 0.419 0.512 0.684 0.515 0.726 0.864 0.690 0.803
BERT-FT-M-5 0.634 0.472 0.586 0.796 0.620 0.892 0.921 0.787 0.843

Table 1: Spearman’s ρ, Kendall’s τ and Pearson’s r correlations on DUC-05, DUC-06 and DUC-07 for Q1–Q5.
BEST-ROUGE refers to the version that achieved best correlations and is different across years.

manual) across all contestants using Spearman’s ρ,
Kendall’s τ and Pearson’s r.

We train and test the SUM-QE and BiGRU-
ATT versions using a 3-fold procedure. In each
fold, we train on two datasets (e.g., DUC-05,
DUC-06) and test on the third (e.g., DUC-
07). We follow the same procedure with the
three BiGRU-based models. Hyper-perameters
are tuned on a held out subset from the training
set of each fold.

6 Results

Table 1 shows Spearman’s ρ, Kendall’s τ and
Pearson’s r for all datasets and models. The three
fine-tuned BERT versions clearly outperform all
other methods. Multi-task versions seem to per-

form better than single-task ones in most cases.
Especially for Q4 and Q5, which are highly cor-
related, the multi-task BERT versions achieve the
best overall results. BiGRU-ATT also benefits
from multi-task learning.

The correlation of SUM-QE with human judg-
ments is high or very high (Hinkle et al., 2003)
for all Qs in all datasets, apart from Q2 in DUC-
05 where it is only moderate. Manual scores for
Q2 in DUC-05 are the highest among all Qs and
years (between 4 and 5) and with the smallest stan-
dard deviation, as shown in Table 2. Differences
among systems are thus small in this respect, and
although SUM-QE predicts scores in this range, it
struggles to put them in the correct order, as illus-
trated in Figure 3.
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DUC-05 DUC-06 DUC-07
Q1 3.77 (± 0.42) 3.58 (± 0.60) 3.54 (± 0.78)
Q2 4.41 (± 0.20) 4.23 (± 0.26) 3.71 (± 0.31)
Q3 2.99 (± 0.50) 3.11 (± 0.52) 3.20 (± 0.66)
Q4 3.15 (± 0.41) 3.60 (± 0.39) 3.30 (± 0.47)
Q5 2.18 (± 0.46) 2.39 (± 0.51) 2.42 (± 0.59)

Table 2: Mean manual scores (± standard deviation)
for each Q across datasets. Q2 is the hardest to predict
because it has the highest scores and the lowest stan-
dard deviation.

BEST-ROUGE has a negative correlation with
the ground-truth scores for Q2 since it does not
account for repetitions. The BiGRU-based mod-
els also reach their lowest performance on Q2
in DUC-05. A possible reason for the higher
relative performance of the BERT-based models,
which achieve a moderate positive correlation, is
that BiGRU captures long-distance relations less
effectively than BERT, which utilizes Transform-
ers (Vaswani et al., 2017) and has a larger recep-
tive field. A possible improvement would be a
stacked BiGRU, since the states of higher stack
layers have a larger receptive field as well.7

The BERT multi-task versions perform better
with highly correlated qualities like Q4 and Q5
(as illustrated in Figures 2 to 4 in the supplemen-
tary material). However, there is not a clear win-
ner among them. Mathematical equivalence does
not lead to deterministic results, especially when
random initialization and stochastic learning al-
gorithms are involved. An in-depth exploration
of this point would involve further investigation,
which will be part of future work.

7 Conclusion and Future Work

We propose a novel Quality Estimation model
for summarization which does not require hu-
man references to estimate the quality of auto-
matically produced summaries. SUM-QE suc-
cessfully predicts qualitative aspects of summaries
that recall-oriented evaluation metrics fail to ap-
proximate. Leveraging powerful BERT represen-
tations, it achieves high correlations with human
scores for most linguistic qualities rated, on three
different datasets. Future work involves extend-
ing the SUM-QE model to capture content-related
aspects, either in combination with existing eval-

7As we move up the stack, the states are affected directly
by their neighbors and indirectly by the neighbors of their
neighbors, and so on.

Figure 3: Comparison of the mean gold scores assigned
for Q2 and Q3 to each of the 32 systems in the DUC-
05 dataset, and the corresponding scores predicted by
SUM-QE. Scores range from 1 to 5. The systems are
sorted in descending order according to the gold scores.
SUM-QE makes more accurate predictions forQ2 than
for Q3, but struggles to put the systems in the correct
order.

uation metrics (like Pyramid and ROUGE) or,
preferably, by identifying important information
in the original text and modelling its preservation
in the proposed summaries. This would preserve
SUM-QE’s independence from human references,
a property of central importance in real-life usage
scenarios and system development settings.

The datasets used in our experiments come
from the NIST DUC shared tasks which com-
prise newswire articles. We believe that SUM-QE
could be easily applied to other domains. A small
amount of annotated data would be needed for
fine-tuning – especially in domains with special-
ized vocabulary (e.g., biomedical) – but the model
could also be used out of the box. A concrete esti-
mation of performance in this setting will be part
of future work. Also, the model could serve to es-
timate linguistic qualities other than the ones in the
DUC dataset with mininum effort.

Finally, SUM-QE could serve to assess the qual-
ity of other types of texts, not only summaries.
It could thus be applied to other text generation
tasks, such as natural language generation and sen-
tence compression.
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