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Abstract

Reading comprehension models have been
successfully applied to extractive text answers,
but it is unclear how best to generalize these
models to abstractive numerical answers. We
enable a BERT-based reading comprehension
model to perform lightweight numerical rea-
soning. We augment the model with a prede-
fined set of executable ‘programs’ which en-
compass simple arithmetic as well as extrac-
tion. Rather than having to learn to manip-
ulate numbers directly, the model can pick a
program and execute it. On the recent Discrete
Reasoning Over Passages (DROP) dataset, de-
signed to challenge reading comprehension
models, we show a 33% absolute improvement
by adding shallow programs. The model can
learn to predict new operations when appropri-
ate in a math word problem setting (Roy and
Roth, 2015) with very few training examples.

1 Introduction

End-to-end reading comprehension models have
been increasingly successful at extractive ques-
tion answering. For example, performance on the
SQuAD 2.0 (Rajpurkar et al., 2018) benchmark
has improved from 66.3 F1 to 89.51 in a single
year. However, the Discrete Reasoning Over Pas-
sages (DROP) (Dua et al., 2019) dataset demon-
strates that as long as there is quantitative reason-
ing involved, there are plenty of relatively straight-
forward questions that current extractive QA sys-
tems find difficult to answer. Other recent work
has shown that even state-of-the-art neural models
struggle with numerical operations and quantita-
tive reasoning when trained in an end-to-end man-
ner (Saxton et al., 2019; Ravichander et al., 2019).
In other words, even BERT (Devlin et al., 2019) is
not very good at doing simple calculations.

1https://rajpurkar.github.io/SQuAD-explorer/

How many more Chinese nationals are there than Euro-
pean nationals?

The city of Bangkok has a population of 8,280,925 ...the
census showed that it is home to 81,570 Japanese and
55,893 Chinese nationals, as well as 117,071 expatriates
from other Asian countries, 48,341 from Europe, 23,418
from the Americas,...

NAQANet: −55893
Ours: Diff(55893, 48341) = 7552

Table 1: Example from the DROP development set.
The correct answer is not explicitly stated in the pas-
sage and instead must be computed. The NAQANet
model2(Dua et al., 2019) predicts a negative number of
people, whereas our model predicts that an operation
Diff should be taken and identifies the two arguments.

In this work, we extend an extractive QA
system with numerical reasoning abilities. We
do so by asking the neural network to synthe-
size small programs that can be executed. The
model picks among simple programs of the form
Operation(args, ...), where the possible oper-
ations include span extraction, answering yes or
no, and arithmetic. For math operations, the argu-
ments are pointers to numbers in the text and, in
the case of composition, other operations. In this
way, the burden of actually doing the computation
is offloaded from the neural network to a calcula-
tor tool. The program additionally provides a thin
layer of interpretability that mirrors some of the
reasoning required for the answer. For example,
in Table 1, the model predicts subtraction (Diff)
over two numbers in the passage, and executes it
to produce the final answer.

We start with a simple extractive question an-
swering model based on BERT (Devlin et al.,
2019), and show the following:

1. Predicting unary and binary math operations

2https://demo.allennlp.org/reading-comprehension/
NzQwNjg1

https://rajpurkar.github.io/SQuAD-explorer/
https://demo.allennlp.org/reading-comprehension/NzQwNjg1
https://demo.allennlp.org/reading-comprehension/NzQwNjg1
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with arguments resulted in significant im-
provements on the DROP dataset.

2. Our model can smoothly handle more tradi-
tional reading comprehension inputs as well
as math problems with new operations. Co-
training with the CoQA (Reddy et al., 2018)
dataset improved performance on DROP. The
DROP+CoQA trained model had never seen
multiplication or division examples, but can
learn to predict these two ops when appropri-
ate in a math word problem setting (Roy and
Roth, 2015) with very few training examples.

2 Background and Related Work

Discrete Reasoning over Paragraphs (DROP)
(Dua et al., 2019) is a reading comprehension task
that requires discrete reasoning. Inspired by se-
mantic parsing tasks where models need to pro-
duce executable ‘programs’, it keeps the open-
domain nature of reading comprehension tasks
such as SQuAD 2.0 (Rajpurkar et al., 2018). As
shown in Table 1, the system needs to perform
fuzzy matching between “from Europe” and “Eu-
ropean nationals” in order to identify the argu-
ments.

Numerically-aware QANet (NAQANet) (Dua
et al., 2019) is the current state-of-the-art3 sys-
tem for DROP. It extends the QANet model (Yu
et al., 2018) with predictions for numbers (0–9)
and summation operations. For the latter, it per-
forms a 3-way classification (plus, minus, and
zero) on all the numbers in the passage.

While certain binary operations are expressible
efficiently with flat sign prediction, it is difficult
to generalize the architecture. Moreover, each
number is tagged independently, which can cause
global inconsistencies; for instance, in Table 1 it
assigns a single minus label and no plus labels,
leading to a prediction of negative people.

Mathematical Word Problems have been ad-
dressed with a wide variety of datasets and ap-
proaches; see Zhang et al. (2018) for an overview.
One such dataset of arithmetic problems is the Illi-
nois dataset (Roy and Roth, 2015). The problems
are posed in simple natural language that has a
specific, narrow domain, For example: “If there
are 7 bottle caps in a box and Linda puts 7 more
bottle caps inside, how many bottle caps are in

3https://leaderboard.allenai.org/drop/submissions/public

the box?”. Unlike DROP, the problems are typi-
cally 1–3 sentences long and do not require read-
ing complex passages. Instead, the main challenge
is mathematical reasoning. According to Zhang
et al. (2018), the current state of the art uses syn-
tactic parses and deterministic rules to convert the
input to logical forms (Liang et al., 2016).

3 Model

We extend a BERT-based extractive reading com-
prehension model with a lightweight extraction
and composition layer. For details of the BERT
architecture see Devlin et al. (2019). We only rely
on the representation of individual tokens that are
jointly conditioned on the given question Q and
passage P . Our model predicts an answer by se-
lecting the top-scoring derivation (i.e. program)
and executing it.

Derivations We define the space of possible
derivations D as follows:
• Literals: {YES,NO,UNKNOWN, 0, . . . 9}.
• Numerical operations: including various

types of numerical compositions of num-
bers4, such as Sum or Diff.
• Text spans: composition of tokens into text

spans up to a pre-specified length.
• Composition of compositions: we only con-

sider two-step compositions, including merg-
ing text spans and nested summations.

The full set of operations are listed in Table 2.
For example, Sum is a numerical operation that
adds two numbers and produces a new number.
While we could recursively search for composi-
tions with deep derivations, here we are guided by
what is required in the DROP data and simplify
inference by heavily restricting multi-step compo-
sition. Specifically, spans can be composed into
a pair of merged spans (Merge), and the sum of
two numbers (Sum) can subsequently be summed
with a third (Sum3). The results in Table 3 show
the dev set oracle performance using these shallow
derivations, by answer type.

Representation and Scoring For each deriva-
tion d ∈ D, we compute a vector representation
hd and a scalar score ρ(d, P,Q) using the BERT
output vectors. The scores ρ are used for com-
puting the probability P (d | P,Q) as well as for
pruning. For brevity, we will drop the dependence
on P and Q in this section.

4Numbers are heuristically extracted from the text.

https://leaderboard.allenai.org/drop/submissions/public


5949

Derivations Example Question Answer Derivation

Literals YES, NO, UNKNOWN, 0, 1 ..., 9 How many field goals did Stover kick? 4

Numerical Diff100 : n0 → 100− n1 How many percent of the national population
does not live in Bangkok?

100− 12.6 = 87.4

Sum : n0, n1 → n0 + n1

as well as: Diff, Mul, Div
How many from the census were in Ungheni and
Cahul?

32, 828+28, 763 =
61591

Text spans Span : i, j → s Does Bangkok have more Japanese or Chinese
nationals?

“Japanese”

Compositions Merge : s0, s1 → {s0, s1} What languages are spoken by more than 1%, but
fewer than 2% of Richmond’s residents?

“Hmong-Mien lan-
guages”, “Laotian”

Sum3 : n0, n1, n2 → (n0 +
n1) + n2

How many residents, in terms of percentage,
speak either English, Spanish, or Tagalog?

Sum(64.56, 23.13)+
2.11 = 89.8

Table 2: Operations supported by the model. s, n refer to arguments of type span and number, respectively. i, j
are the start and end indices of span s. The omitted definitions of Diff, Mul, and Div are analogous to Sum.

Literals are scored as ρ(d) = wᵀ
dMLPlit(hCLS),

where hCLS is the output vector at the [CLS] to-
ken of the BERT model (Devlin et al., 2019).

Numeric operations use the vector representa-
tions hi of the first token of each numeric argu-
ment. Binary operations are represented as

hd = MLPbinary(hi,hj ,hi ◦ hj) (1)

and scored as ρ(d) = wᵀ
ophd, where hd represents

the binary arguments and op is the operation type.
◦ is the Hadamard product. Unary operations such
as Diff100 are scored as wᵀ

opMLPunary(hi).
Text spans are scored as if they were another

binary operation taking as arguments the start and
end indices i and j of the span (Lee et al., 2017):

hd = MLPspan(hi,hj) (2)

and scored as ρ(d) = wᵀ
spanhd.

Compositions of compositions are scored with
the vector representations of its children. For ex-
ample, the ternary Sum3, comprising a Sum and a
number, is scored with wᵀ

Sum3MLPSum3(hd0,hk),
where hd0 corresponds to the representation from
the first Sum, and hk is the representation of the
third number. The composition of two spans is
scored as wᵀ

MergeMLPMerge(hd0,hd1,hd0◦hd1),
where hd0 and hd1 are span representations from
(2). The intuition for including hd0 ◦ hd1 is that
it encodes span similarity, and spans with similar
types are more likely to be merged.

This strategy differs from the NAQANet base-
line in a few ways. One straightforward difference
is that we use BERT as the base encoder rather
than QANet. A more meaningful difference is that
we model all derivations in the unified op scoring

framework described above, which allows gen-
eralizing to new operations, whereas NAQANet
would require more large-scale changes to go be-
yond addition and subtraction. Generalizing the
model to new ops is a case of extending the
derivations and scoring functions. In Section 4,
we will show the impact of incrementally adding
Diff100, Sum3, and Merge.

3.1 Training

We used exhaustive pre-computed oracle deriva-
tions D∗ following Dua et al. (2019). We
marginalized out all derivations d∗ that lead to the
answer5 and minimized:

J (P,Q,D∗) = − log
∑

d∗∈D∗
P (d∗ | P,Q)

P (d | P,Q) =
exp ρ(d, P,Q)∑
d′ exp ρ(d

′, P,Q)

If no derivation lead to the gold answer (D∗ is
empty), we skipped the example.

Pruning During inference, the Merge and
Sum3 operations are composed from the results
of Span and Sum operations, respectively. The
space of possible results of Merge is quadratic in
the number |S| of possible spans. With |S| ∼ 104,
the complete set of Merge instances becomes
overwhelming. Similarly, with |N | ∼ 100 num-
bers in each passage, there are millions of possible
Sum3 derivations. To do training and inference ef-
ficiently, we kept only the top 128 Span and Sum
results when computing Merge and Sum3.6

5In practice we capped the number of derivations at 64,
which covers 98.7% of the training examples.

6During training, the pruned arguments had recall of 80–
90% after 1 epoch and plateaued at 95–98%.
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Oracle Overall Dev Overall Test Date (1.6%) Number (62%) Span (32%) Spans (4.4%)

Dev EM EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

NAQANet 46.75 50.39 44.24 47.77 32.0 39.6 44.9 45.0 58.2 64.8 0.0 27.3

Our basic7 80.03 66.50 69.91 - - 57.0 65.1 65.8 66.1 78.0 82.6 0.0 35.7
+Diff100 88.75 75.52 78.82 - - 53.6 61.3 80.3 80.5 78.4 82.8 0.0 35.8
+Sum3 90.16 76.70 80.06 - - 58.0 64.6 81.9 82.1 78.9 83.4 0.0 36.0
+Merge 93.01 76.95 80.48 - - 58.1 61.8 82.0 82.1 78.8 83.4 5.1 45.0
+CoQA 93.01 78.00 81.56 76.93 80.47 59.5 66.4 83.0 83.2 79.8 84.2 5.8 46.8

+Ensemble 93.01 78.95 82.54 78.15 81.78 59.7 67.7 83.9 84.1 81.2 85.5 5.4 46.5

Oracle 93.01 71.6 94.5 95.8 60.5

Table 3: Accuracies on the DROP dev and test set in terms of exact match (EM) and token-level F1. The right-
hand columns show the performance breakdown with different answer types on the development set. The largest
improvements come from Date, Number, and Spans (answers with multiple spans). Oracle rows and columns
indicate the performance that could be achieved by perfect selections of derivations. The ensemble used 6 models.

Spurious ambiguities Of the answers for which
we could find at least one oracle derivation, 36%
had two or more alternatives. During training,
the model became effective at resolving many of
these ambiguities. We monitored the entropy of
P (d∗ | P,Q) for the ambiguous examples as train-
ing progressed. At the start, the entropy was 2.5
bits, which matches the average ambiguous ora-
cle length of ∼ 6 alternatives. By the end of 4
epochs, the average entropy had dropped to < 0.2
bits, comparable to a typical certainty of 95–99%
that one of the derivations is the correct one.

4 Experiments

Our main experiments pertain to DROP (Dua
et al., 2019), using DROP and, optionally, CoQA
(Reddy et al., 2018) data for training. Pre-
processing and hyperparameter details are given
in the supplementary material. In addition to full
DROP results, we performed ablation experiments
for the incremental addition of the Diff100,
Sum3, and Merge operations, and finally the
CoQA training data. We ran on the CoQA dev set,
to show that the model co-trained on CoQA can
still perform traditional reading comprehension.
To investigate our model’s ability to do symbolic
reasoning at the other extreme, we performed few-
shot learning experiments on the Illinois dataset of
math problems (Roy and Roth, 2015).

4.1 DROP Results
As shown in Table 3, our model achieves over
50% relative improvement (over 33% absolute)
over the previous state-of-the-art NAQANet sys-
tem. The ablations indicate that the improvements
due to the addition of extra ops (Diff100, Sum3,

Merge) are roughly consistent with their propor-
tion in the data. Specifically, the Diff100 and
Sum3 derivations increase the oracle performance
by 8.7% and 1.4% respectively, corresponding to
model improvements of roughly 9% and 1.1%, re-
spectively. Answers requiring two spans occur
about 2.8% of the time, which is a 60.4% propor-
tion of the Spans answer type. Merge only im-
proves the Spans answer type by 9%, which we
think is due to the significant 11:1 class imbalance
between competing single and multiple spans. As
a result, multiple spans are under-predicted, leav-
ing considerable headroom there.

Pre-training on CoQA then fine-tuning on
DROP lead to our best results on DROP, reported
in Table 3. After fine-tuning on DROP, the model
forgot how to do CoQA, with an overall F1 score
of 52.2 on the CoQA dev set. If one prefers a
model competent in both types of input, then the
forgetting can be prevented by fine-tuning on both
CoQA and DROP datasets simultaneously. This
resulted in dev set F1 scores of 82.2 on CoQA and
81.1 on DROP. The CoQA performance is decent
and compares well with the pre-trained model per-
formance of 82.5. The 0.5% drop in DROP perfor-
mance is likely attributable to the difference be-
tween pre-training versus fine-tuning on CoQA.

We ensembled 6 models (3 seeds × 2 learning
rates) for an additional 1% improvement.

4.2 Results on Math Word Problems

We trained our model on the Illinois math word
problems dataset (Roy and Roth, 2015), which
contains answers requiring multiplication and

7The “basic” model includes allDdirect, all S, and the sim-
ple binary operations Sum and Diff.
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Roy et al. (2015) 73.9
Liang et al. (2016) 80.1
Wang et al. (2018) 73.3

Our basic: IL data 48.6 ± 5.3
+ Mul and Div 74.0 ± 6.0
+ DROP data 83.2 ± 6.0

Table 4: Accuracy on the Illinois (IL) dataset8of
562 single-step word problems, using the five cross-
validation folds of Roy and Roth (2015). Standard de-
viations were computed from the five folds. Roughly
half the questions require the use of Sum and Diff,
and half require Mul and Div.

division—operations not present in DROP—as
well as addition and subtraction, in roughly equal
proportion. Given the small (N = 562) dataset
size, training and evaluation is done with five-fold
cross-validation on a standardized set of splits.
As shown in Table 4, when we added Mul and
Div to our basic DROP operations, the model
was able to learn to use them. Transferring from
the DROP dataset further improved performance
beyond that of Liang et al. (2016), a model spe-
cific to math word problems that uses rules over
dependency trees. Compared to other more gen-
eral systems, our model outperforms the deep rein-
forcement learning based approach of Wang et al.
(2018).

5 Conclusions and Future Work

We proposed using BERT for reading compre-
hension combined with lightweight neural mod-
ules for computation in order to smoothly han-
dle both traditional factoid question answering and
questions requiring symbolic reasoning in a sin-
gle unified model. On the DROP dataset, which
includes a mix of reading comprehension and nu-
merical reasoning, our model achieves a 33% ab-
solute improvement over the previous best. The
same model can also do standard reading compre-
hension on CoQA, and focused numerical reason-
ing on math word problems. We plan to generalize
this model to more complex and compositional an-
swers, with better searching and pruning strategies
of the derivations.
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