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Abstract

We introduce the first open-domain dataset,
called QUARTZ, for reasoning about textual
qualitative relationships. QUARTZ contains
general qualitative statements, e.g., “A sun-
screen with a higher SPF protects the skin
longer.”, twinned with 3864 crowdsourced sit-
uated questions, e.g., “Billy is wearing sun-
screen with a lower SPF than Lucy. Who will
be best protected from the sun?”, plus anno-
tations of the properties being compared. Un-
like previous datasets, the general knowledge
is textual and not tied to a fixed set of relation-
ships, and tests a system’s ability to compre-
hend and apply textual qualitative knowledge
in a novel setting. We find state-of-the-art re-
sults are substantially (20%) below human per-
formance, presenting an open challenge to the
NLP community.

1 Introduction

Understanding and applying qualitative knowl-
edge is a fundamental facet of intelligence. For ex-
ample, we may read that exercise improves health,
and thus decide to spend more time at the gym;
or that larger cars cause more pollution, and thus
decide to buy a smaller car to be environmen-
tally sensitive. These skills require understanding
the underlying qualitative relationships, and being
able to apply them in specific contexts.

To promote research in this direction, we
present the first open-domain dataset of qualitative
relationship questions, called QUARTZ (“Qualita-
tive Relationship Test set”)!. Unlike earlier work
in qualitative reasoning, e.g., (Tafjord et al., 2019),
the dataset is not restricted to a small, fixed set
of relationships. Each question ); (2-way multi-
ple choice) is grounded in a particular situation,
and is paired with a sentence K,; expressing the
general qualitative knowledge needed to answer it.

! Available at http://data.allenai.org/quartz/

Q: If Mona lives in a city that begins producing a greater
amount of pollutants, what happens to the air quality in that

city? (A) increases (B) [correct]
K: More pollutants mean air quality.
Annotations:
Q: [MORE, ~greater”, “amount of pollutants”]
— (A) [MORE, , air quality”]
(B) [LESS, , air quality”]
K: [MORE, "more”, “pollutants’]
< [LESS, , "air quality”]

Figure 1: QUART?Z contains situated qualitative ques-
tions, each paired with a gold background knowledge
sentence and qualitative annotations.

Q; and K; are also annotated with the properties
being compared (Figure 1). The property annota-
tions serve as supervision for a potential semantic
parsing based approach. The overall task is to an-
swer the Q; given the corpus K = {K}.

We test several state-of-the-art (BERT-based)
models and find that they are still substantially
(20%) below human performance. Our con-
tributions are thus (1) the dataset, containing
3864 richly annotated questions plus a background
corpus of 400 qualitative knowledge sentences;
and (2) an analysis of the dataset, performance of
BERT-based models, and a catalog of the chal-
lenges it poses, pointing the way towards solu-
tions.

2 Related Work

Despite rapid progress in general question-
answering (QA), e.g., (Clark and Gardner, 2018),
and formal models for qualitative reasoning (QR),
e.g., (Forbus, 1984; Weld and De Kleer, 2013),
there has been little work on reasoning with fex-
tual qualitative knowledge, and no dataset avail-
able in this area. Although many datasets include a
few qualitative questions, e.g., (Yang et al., 2018;
Clark et al., 2018), the only one directly probing
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Differing Comparatives:

Q1 Jan is comparing stars, specifically a small star and the larger Sun. Given the size of each, Jan can tell that the Sun
puts out heat that is (A) greater (B) lesser

Ki  Bigger stars produce more energy, so their surfaces are hotter.

Discrete Property Values:
Q2  What happens to a light car when it has the same power as a heavy car? (A) accelerates faster (B) accelerates slower
K>  The smaller its mass is, the greater its acceleration for a given amount of force.

Numerical Property Values:

Qs  Will found water from a source 10m from shore. Eric found water from a source 2m from shore. Whose water likely
contains the least nutrients? (A) Will’s (B) Eric’s

K3  Most nutrients are washed into ocean water from land. Therefore, water closer to shore tends to have more nutrients.

Commonsense Knowledge:
Q4  Compared to a box of bricks a box of feathers would be (A) lighter (B) heavier
K4 A given volume of a denser substance is heavier than the same volume of a less dense substance.

Multiple Entities (“‘Worlds™):
Qs Jimbo liked to work out, while James never did. Which person would have weaker muscles? (A) Jimbo (B) James
Ks  Muscles that are exercised are bigger and stronger than muscles that are not exercised.

Complex Stories:

Qs NASA has sent an unmanned probe to survey a distant solar system with four planets. Planet Zorb is farthest from
the sun of this solar system, Planet Krakatoa is second farthest, Planet Beanbag is third, and Krypton is the closest.
The probe visits the planets in order, first Zorb, then Krakatoa, then Beanbag and finally Krypton. Did the probe have

to fly farther in its trip from (A) Zorb to Krakatoa or (B) from Beanbag to Krypton?
K¢ In general, the farther away from the Sun, the greater the distance from one planets orbit to the next.

Table 1: Examples of crowdsourced questions Q and corpus knowledge K in QUART?Z, illustrating phenomena.

QR is QuaRel (Tafjord et al., 2019). However,
although QuaRel contains 2700 qualitative ques-
tions, its underlying qualitative knowledge was
specified formally, using a small, fixed ontology
of 19 properties. As a result, systems trained on
QuaRel are limited to only questions about those
properties. Likewise, although the QR community
has performed some work on extracting qualita-
tive models from text, e.g., (McFate et al., 2014;
McFate and Forbus, 2016), and interpreting ques-
tions about identifying qualitative processes, e.g.,
(Crouse et al., 2018), there is no dataset available
for the NLP community to study textual qualita-
tive reasoning. QUARTZ addresses this need.

3 The Task

Examples of QuaRTz questions (); are shown
in Table 1, along with a sentence K; express-
ing the relevant qualitative relationship. The
QUART?Z task is to answer the questions given a
small (400 sentence) corpus K of general qualita-
tive relationship sentences. Questions are crowd-
sourced, and the sentences K; were collected from
a larger corpus, described shortly.

Note that the task involves substantially more
than matching intensifiers (more/greater/...) be-
tween (); and K;. Answers also require some
qualitative reasoning, e.g., if the intensifiers are

inverted in the question, and entity tracking, to

keep track of which entity an intensifier applies to.

For example, consider the qualitative sentence and

three questions (correct answers bolded):

K,,: People with greater height are stronger.

(@5: Sue is taller than Joe so Sue is (A) stronger
(B) weaker

Q!.: Sue is shorter than Joe so Sue is (A) stronger
(B) weaker

Q! Sue is shorter than Joe so Joe is (A) stronger
(B) weaker

Q!, requires reasoning about intensifers that are
flipped with respect to K (shorter — weaker), and
Q! requires entities be tracked correctly (asking
about Sue or Joe changes the answer).

4 Dataset Collection

QUARTZ was constructed as follows. First, 400
sentences’ expressing general qualitative relations
were manually extracted by the authors from a
large corpus using keyword search (“increase”,
“faster”, etc.). Examples (K;) are in Table 1.
Second, crowdworkers were shown a seed sen-
tence K, and asked to annotate the two properties

% In a few cases, a short paragraph rather than sentence
was selected, where surrounding context was needed to make
sense of the qualitative statement.
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being compared using the template below, illus-
trated using K5 from Table 1:
”The smaller its mass is, the greater its accel-
eration for a given amount of force.”

What is being compared?
Less ¥ mass More v acceleration

They were then asked to author a situated, 2-way
multiple-choice (MC) question that tested this re-
lationship, guided by multiple illustrations. Exam-
ples of their questions (Q);) are in Table 1.

Third, a second set of workers was shown an
authored question, asked to validate its answer and
quality, and asked to annotate how the properties
of K; identified earlier were expressed. To do this,
they filled a second template, illustrated for (J2:

Appears in question as:

Relation: More/Less phrase: Changed property:
MORE mass: heavy
LESS mass: - light

MORE acceleration: faster accelerates

LESS acceleration: slower accelerates

Finally these workers were asked to generate a
new question by “flipping” the original so the an-
swer switched. Flipping means inverting compar-
atives (e.g., “more” — “less”), values, and other
edits as needed to change the answer, e.g.,

K: More rain causes damper surfaces.
Q:More rain causes (A) wetter land (B) drier land
Q-flipped: Less rain causes (A) wetter land (B)
drier land
Flipped questions are created to counteract the ten-
dency of workers to use the same comparison di-
rection (e.g., “more”) in their question as in the
seed sentence [;, potentially answerable by sim-
ply matching @); and K;. Flipped questions are
more challenging as they demand more qualitative
reasoning (Section 7.1).

Questions marked by workers as poor qual-
ity were reviewed by the authors and re-
jected/modified as appropriate. The dataset was
then split into train/dev/test partitions such that
questions from the same seed K; were all in the
same partition. Statistics are in Table 2.

To determine if the questions are correct and an-
swerable given the general knowledge, a human
baseline was computed. Three annotators inde-
pendently answered a random sample of 100 ques-
tions given the supporting sentence K; for each.
The mean score was 95.0%.

# questions Q); 3864
flip/no flip 1932/1932
positive/negative qualitative
influence (QR+/QR-) | 2772/1092
train/dev/test 2696/384/784
av @); length (sents) min/avg/max | 1/1.5/6
av K length (sents) min/avg/max | 1/1.1/4

Table 2: Statistics of QUARTz.

5 Models

The QUART?Z task is to answer the questions given
the corpus K of qualitative background knowl-
edge. We also examine a “no knowledge” (ques-
tions only) task and a “perfect knowledge” task
(each question paired with the qualitative sentence
K; it was based on). We report results using
two baselines and several strong models built with
BERT-large (Devlin et al., 2019) as follows:

1. Random: always 50% (2-way MC).

2. BERT-Sci: BERT fine-tuned on a large, general
set of science questions (Clark et al., 2018).

3. BERT (IR): This model performs the full task.
First, a sentence K; is retrieved from K using Q);
as a search query. This is then supplied to BERT
as [CLS] K; [SEP] question-stem [SEP] answer-
option [SEP] for each option. The [CLS] out-
put token is projected to a single logit and fed
through a softmax layer across answer options, us-
ing cross entropy loss, the highest being selected.
This model is fine-tuned using QUARTZ (only).
4. BERT (IR upper bound): Same, but using the
ideal (annotated) K; rather than retrieved K.

5. BERT-PFT (no knowledge): BERT first fine-
tuned (“pre-fine-tuned”) on the RACE dataset (Lai
et al., 2017; Sun et al., 2019), and then fine-tuned
on QUARTZ (questions only, no K, both train and
test). Questions are supplied as [CLS] question-
stem [SEP] answer-option [SEP].

6. BERT-PFT (IR): Same as BERT (IR), except
starting with the pre-fine-tuned BERT.

All models were implemented using AllenNLP
(Gardner et al., 2018).

6 Results

The results are shown in Table 3, and provide in-
sights into both the data and the models:

1. The dataset is hard. Our best model, BERT-
PFT (IR), scores only 73.7, over 20 points behind
human performance (95.0), suggesting there are
significant linguistic and semantic challenges to
overcome (Section 7).
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Questions— All No-flip Flip
Model | Test only only
Baselines:
Random 50.0 50.0 50.0
BERT-Sci 54.6 76.0 33.2
Models:
BERT (IR) 64.4 66.3 62.5
(BERT IR upper bound) (67.7) | (68.1) (67.3)
BERT-PFT (no knowledge) 68.8 70.4 67.1
BERT-PFT (IR) 737 | 773 70.2
(BERT-PFT IR upper bound) || (79.8) | (82.1) (77.6)
Human 95.0

Table 3: Performance of various models on QUARTZ.

2. A general science-trained QA system has not
learned this style of reasoning. BERT-Sci only
scores 54.6, just a little above random (50.0).

3. Pre-Fine-Tuning is important. Fine-tuning
only on QUARTZ does signficantly worse (64.4)
than pre-fine-tuning on RACE before fine-tuning
on QUARTZ (73.7). Pre-fine-tuning appears to
teach BERT something about multiple choice
questions in general, helping it more effectively
fine-tune on QUARTZ.

4. BERT already ‘“knows” some qualitative
knowledge. Interestingly, BERT-PFT (no knowl-
edge) scores 68.8, significantly above random,
suggesting that BERT already “knows” some kind
of qualitative knowledge. To rule out annotation
artifacts, we we experimented with balancing the
distributions of positive and negative influences,
and different train/test splits to ensure no topical
overlap between train and test, but the scores re-
mained consistent.

5. BERT can apply general qualitative knowl-
edge to QA, but only partially. The model for
the full task, BERT-PFT (IR) outperforms the no
knowledge version (73.7, vs. 68.8), but still over
20 points below human performance. Even given
the ideal knowledge (IR upper bound), it is still
substantially behind (at 79.8) human performance.
This suggests more sophisticated ways of training
and/or reasoning with the knowledge are needed.

7 Discussion and Analysis
7.1 Qualitative Reasoning

Can models learn qualitative reasoning from
QUARTZ? While QUARTZ questions do not re-
quire chaining, 50% involve “flipping” a qualita-
tive relationship (e.g., K: “more X — more Y,
Q: “Does less X — less Y?”). Training on just
the original crowdworkers’ questions, where they
chose to flip the knowledge only 10% of the time,
resulted in poor (less than random) performance

Comparatives:
“warmer” <+ “increase temperature”
“more difficult” <> “slower”

“need more time” <+ “have lesser amount”
“decreased distance” <+ “hugged”
“cost increases” <+ “more costly”

“increase mass” <> “add extra”
“more tightly packed” <+ “add more”

Commonsense Knowledge:

“more land development” <+ “city grow larger”
“not moving” <+ “sits on the sidelines”
“caught early” <+ ‘sooner treated”

“lets more light in” <> “get a better picture”
“stronger electrostatic force” <+ “hairs stand up more”
“less air pressure” <+ “more difficult to breathe”
“more photosynthesis” <> “increase sunlight”

Discrete Values:

“stronger acid” <> “vinegar” vs. “tap water”
“more energy” <> “ripple” vs. “tidal wave”
“closer to Earth” <> “ball on Earth” vs. “ball in space”
“mass” <+ “baseball” vs. “basketball”
“rougher” <> “notebook paper” vs. “sandpaper”
“heavier” <+ “small wagon” vs. “eighteen wheeler”

Table 4: Examples of linguistic and semantic gaps be-
tween knowledge K; (left) and question @; (right). A
system needs to bridge such gaps for high performance.

on all the flipped questions. However, training
on full QUARTZ, where no-flip and flip were bal-
anced, resulted in similar score for both types of
question, suggesting that such a reasoning capa-
bility can indeed be learned.

7.2 Linguistic Phenomena

From a detailed analysis of 100 randomly sampled
questions, the large majority (86%) involved the
(overlapping) linguistic and semantic phenomena
below, and illustrated in Tables 1 and 4:

1. Differing comparative expressions (~68%)
between K; and @; occur in the majority of
questions, e.g.,

“increased altitude” <> “higher”

2. Indirection and Commonsense knowledge
(~35%) is needed for about 1/3 of the ques-
tions to relate K and (), e.g.,

“higher temperatures” <> “A/C unit broken”

3. Multiple Worlds (=26%): 1/4 of the ques-
tions explicitly mention both situations be-
ing compared, e.g., ()1 in Table 1. Such
questions are known to be difficult because
models can easily confuse the two situations
(Tafjord et al., 2019).

4. Numerical property values (=11%) require
numeric comparison to identify the qualita-
tive relationship, e.g., that “60 years” is older
than “30 years”.
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5. Discrete property values (=7%), often re-
quire commonsense to compare, e.g., that a
“melon” is larger than an “orange”.

6. Stories (=15%): 15% of the questions are 3
or more sentences long, making comprehen-
sion more challenging.

This analysis illustrates the richness of linguistic
and semantic phenomena in QUARTZ.

7.3 Use of the Annotations

QUARTZ includes a rich set of annotations on all
the knowledge sentences and questions, marking
the properties being compared, and the linguistic
and semantic comparatives employed (Figure 1).
This provides a laboratory for exploring seman-
tic parsing approaches, e.g., (Berant et al., 2013;
Krishnamurthy et al., 2017), where the underlying
qualitative comparisons are extracted and can be
reasoned about.

8 Conclusion

Understanding and applying textual qualitative
knowledge is an important skill for question-
answering, but has received limited attention, in
part due the lack of a broad-coverage dataset to
study the task. QUARTZ aims to fill this gap by
providing the first open-domain dataset of quali-
tative relationship questions, along with the requi-
site qualitative knowledge and a rich set of annota-
tions. Specifically, QuaRTz removes the require-
ment, present in all previous qualitative reasoning
work, that a fixed set of qualitative relationships
be formally pre-specified. Instead, QuaRTz tests
the ability of a system to find and apply an arbi-
trary relationship on the fly to answer a question,
including when simple reasoning (arguments, po-
larities) is required.

As the QUARTZ task involves using a gen-
eral corpus K of textual qualitative knowledge,
a high-performing system would be close to a
fully general system where K was much larger
(e.g., the Web or a filtered subset), encompass-
ing many more qualitative relationships, and able
to answer arbitrary questions of this kind. Scal-
ing further would thus require more sophisti-
cated retrieval over a larger corpus, and (some-
times) chaining across influences, when a di-
rect connection was not described in the cor-
pus. QUARTZ thus provides a dataset towards
this end, allowing controlled experiments while
still covering a substantial number of textual re-

lations in an open setting. QuaRT?z is available at
http://data.allenai.org/quartz/.
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