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Abstract

This paper studies the problem of non-factoid
question answering, where the answer may
span over multiple sentences. Existing solu-
tions can be categorized into representation-
and interaction-focused approaches. We com-
bine their complementary strength, by a hy-
brid approach allowing multi-granular interac-
tions, but represented at word level, enabling
an easy integration with strong word-level sig-
nals. Specifically, we propose MICRON:
Multigranular Interaction for Contextualiz-
ing RepresentatiON, a novel approach which
derives contextualized uni-gram representation
from n-grams. Our contributions are as fol-
lows: First, we enable multi-granular matches
between question and answer n-grams. Sec-
ond, by contextualizing word representation
with surrounding n-grams, MICRON can natu-
rally utilize word-based signals for query term
weighting, known to be effective in information
retrieval. We validate MICRON in two pub-
lic non-factoid question answering datasets:
WikiPassageQA and InsuranceQA, showing
our model achieves the state of the art among
baselines with reported performances on both
datasets.

1 Introduction

Non-factoid questions, unlike factoid questions an-
swered by short facts like a word or a phrase, may
get answered by a long answer spanning across
multiple sentences. Following the definition in
(Guo et al., 2019), neural approaches for this task
can be roughly categorized into representation-
and interaction-focused approaches.
First, representation-focused approaches

(Rücklé and Gurevych, 2017; Shao et al., 2019)
encode query and answer into vectors of the same
size, and match the two by computing vector simi-
larity. Models in this category have advantages of

∗The authors contribute equally to this paper.

efficiency, as representations can be pre-computed
and indexed for efficient retrieval. However,
structural information, such as some question
word matching another in answer, is missing
in this representation. In addition, structural
information can be diluted when squeezing a long
text into a single vector. This weakness is often
complemented by auxiliary information such as
attention (Tan et al., 2016; Santos et al., 2016;
Wang and Jiang, 2016). Figure 1a illustrates a
representative architecture in this category (Shao
et al., 2019).
Second, interaction-focused approaches aim to

preserve structural information above. A naive
structural information is a matrix storing pairwise
word interaction, or 1:1. However, due to a typical
length difference between a question and a long
answer in our problem setting, most answer words
are left unmatched, except a few uni-gram in the
answer. Later work relaxes 1:1 constraint, to 1:N
and M:N, by allowing a match to n-gram (1:N)
or a match between query and answer bi-grams
(2:2). A state-of-the-art in this category (Rücklé
et al., 2019), shown in Figure 1b, uses bi-gram
Convolutional Neural Network (CNN) to represent
query/answer bi-grams and their interactions. Sim-
ilar architecture was generalized for N:N or N:M
matches (Song et al., 2019; Chen et al., 2018),
which may introduce a new challenge of multi-
granular interaction we discuss later.
Ourwork is of combining the strength of the two,

as shown in Figure 1c. We illustrate our technical
contributions using the following running example:

Example 1 Consider a running example of match-
ing a question, “Who is in charge of this education
process”, with a matching passage on “the insti-
tution of higher learning”. Interaction between
a query bi-gram “education process” and the 5-
gram “the institution of higher learning” is a key
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Figure 1: Comparative illustration of three approaches.

indicator explaining this match. In addition, ex-
ternal word-level importance signals, such as In-
verse Document Frequency (IDF), are observed to
be simple yet most powerful (Guo et al., 2016),
in matching a short query (or, question) with a
long document, as in information retrieval or non-
factoid question answering scenarios. For our ex-
ample question with eight words, the IDF weight
is highest for education, appearing rarely in other
questions, while that is lower for common words.

Below are our two key contributions, inspired
by the above running example.

1) Multigranular interaction: Figure 1c shows
a dotted area, where interaction between m- and
n-grams are represented. This enables matching
between different sized n-grams: η25 enables the
interaction between the bi-gram “education pro-
cess” and the 5-gram “the institution of higher
learning” in our running example. However, ex-
isting multigranular interaction (Chen et al., 2018)
cannot combine word-level signal, such as a high
IDF score of word “education”.

2) N-gram contextualized word representa-
tion: Our next step is to combine this matching
signal into a contextualized word representation
For example, we represent word higher as an ag-
gregation of its participating consecutive 5-grams,
where “... the institution of higher” and “the in-
stitution of higher ...” disambiguate that the term
should not bematched a question on“high school”.
Similarly, question word education is represented
by surrounding 2-grams: “education process” and
“of education”. Contextualizing into word-level
representation makes it natural to combine with

word-level IDF scores in the model, and also en-
ables indexing (Hwang and Chang, 2005). This
shares the spirit of contextualized embedding, such
as BERT (Devlin et al., 2018) and ELMo (Peters
et al., 2018), but specialized for short-distance
phrase context localized within question and pas-
sage.
We summarize the main contributions of this

paper as follows. First, we utilize multigranular
interaction to extract important information from
the question/passage matching by proposing MI-
CRON: Multigranular Interaction for Contex-
tualizing RepresentatiON. Second, we leverage
strong word-level signals, which we will discuss
later.
We evaluate our method in two public non-

factoid QA datasets: WikiPassageQA (Cohen
et al., 2018) and InsuranceQA (Feng et al., 2015).
The results show that our model achieves the state
of the art among baselines with reported perfor-
mances on both datasets. Our source code is freely-
available at https://github.com/stovecat/
MICRON for further study.

2 Our approach

In this section, we introduce our method in de-
tail. MICRON mainly consists of three modules:
encoding module, matching module, and scoring
module. We use a Siamese architecture for en-
coding module, which is a common setting in our
target problem (Rücklé and Gurevych, 2017; Shao
et al., 2019; Rücklé et al., 2019).
Encoding Module For a word vector sequence
W ∈ R |W |×d with dimensionality d, we encode

https://github.com/stovecat/MICRON
https://github.com/stovecat/MICRON


5892

it by n-gram CNN as the following:

Γn(W) = n-gramCNN(W) (1)

where n is the window size of n-gram CNN. Each
Γn(W) ∈ R |W |×d represents n-gram semantics.
As a distinction from other interaction-focused

approaches, we introduce an additional Contex-
tualization Layer Φ, which returns a word rep-
resentation, contextualized by surrounding n-gram
phrases of the word belongs to. In our work, we
define Φ as the arithmetic mean of n-gram repre-
sentations, formalized as follows1:

[Φn(W)]k =
∑n

i=1[Γn(W)]k−i+1

n
(2)

where [Γn(W)]k is k-th row vector of Γn(W), and
each row of Φn(W) ∈ R |W |×d is the contextual-
ized n-gram representation, corresponding to each
word.
Matching Module Query and candidate answer
Q ∈ R |Q |×d and P ∈ R |P |×d can be encoded into
Φn(Q) and Ψm(P). We build an interaction matrix
ηnm by computing dot product betweenΦn(Q) and
Ψm(P):

ηnm = Φn(Q)Ψm(P)T (3)

Output matrix ηnm ∈ R |Q |× |P | contains the rele-
vance scores of all pairs between n-grams in query
and m-grams in answer.
From ηnm, we conduct a row-wise max-pooling

to obtain Anm, relaxing the length constraint in
interactions (Rücklé et al., 2019).

[Anm]i = max
j
([ηnm]i j) (4)

Scoring Module We then aggregate the best
matching scores Anm across all combinations of
question n-grams and answer m-grams from F =
{1, 2, 3, 5} following the convention of (Shao et al.,
2019), yielding the cumulative score for each ques-
tion word γ ∈ R |Q |:

γ =
∑
n∈F

∑
m∈F

Anm (5)

Finally, we obtain the relevance score Ω from
γ vector. Note that we could adopt any effective
word-based signals τ ∈ R |Q |, known a priori. By

1We omit Ψ for simplicity. Φ and Ψ are the same in our
architecture.

applying dot product between γ and τ, we can con-
trast matching scores by word importance. Specif-
ically,

Ω =

{
γ · τ, if τ exists∑ |γ |

i=1 γi, otherwise
(6)

A widely adopted example of τ is IDF, com-
puted either globally (treating all passages in the
dataset as a corpus) or locally (treating only candi-
date passages of given question as a corpus) (Blair-
Goldensohn et al., 2003). Note that effective word-
level signals may depend on the characteristic of
dataset. We will further show empirically which
measure is more effective for each dataset and ex-
plain why in later section.
Loss function Our model is trained by the loss
function studied in (Cohen and Croft, 2016):

L =
∑
q∈Q

(1 − (µqr −max qnr ))BCEq (7)

where BCEq is the standard binary cross entropy
for the question, µqr is the mean score of all rele-
vant answers and max qnr is the max score of all
irrelevant answers for q.

3 Experiments
3.1 Dataset
We evaluateMICRONon two non-factoid question
answering datasets: 1) WikiPassageQA (Cohen
et al., 2018) is a recent Wikipedia based collec-
tion. There are high contextual similarity between
answers and non-answers since all candidate an-
swers are from the same document. 2) Insur-
anceQA (Feng et al., 2015) is another well-known
large-scale non-factoid QA dataset from insurance
domain constructed by putting the ground truth
answers into the pool and randomly sampling neg-
ative answers2. Table 2 shows the statistics of two
datasets.

3.2 Baselines
We divide the models into following four cate-
gories: 1) IR scores, 2) Representation-focused, 3)
Interaction-focused, and 4) MICRON in Table 1.
As state of the art in one dataset is not likely to
be that in another, we focused on baselines either
open source or reported results on both datasets.
We implement two interaction-focused and one

representation-focused baselines: N-gram CNN
2Among two test sets available, V1 and V2, we used the

latter.
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Model InsuranceQA WikiPassageQA
Accuracy MAP MRR P@5 P@10 nDCG R@5 R@10 R@20

IR Based
BM251 24.9 53.73 62.58 19.47 11.51 66.59 63.34 73.11 83.09
Representation-focused
CNN1 24.4 27.33 31.48 - - - - - -
BiLSTM1 32.4 46.16 52.89 - - - - - -
Att-BiLSTM (Tan et al., 2016)1 37.9 47.04 54.36 - - - - - -
AP-BiLSTM (Santos et al., 2016)1 31.9 46.98 55.20 - - - - - -
LW-BiLSTM (Rücklé and Gurevych, 2017)1 36.9 47.56 54.33 - - - - - -
Interaction-focused
CA-Wang (Wang and Jiang, 2016)1 37.0 48.71 56.11 - - - - - -
COALA (Rücklé et al., 2019)1 38.0 60.58 69.40 - - - - - -
COALA p-means (Rücklé et al., 2019)1 39.9 59.29 68.48 - - - - - -
COALA syntax-aware (Rücklé et al., 2019)1 39.5 60.48 68.75 - - - - - -
N-gram CNN 45.8 56.81 64.53 21.63 13.20 69.29 69.52 81.85 91.35
Unigram CNN 36.5 55.45 64.93 20.53 12.64 68.57 65.54 78.49 89.13
Unigram CNN w/ global IDF 35.4 56.68 68.52 20.91 12.72 69.86 66.94 79.27 89.68
Unigram CNN w/ local IDF 29.7 58.66 68.96 22.50 13.17 71.23 71.43 81.91 91.97
Ours
MICRON 49.8 59.38 67.17 22.21 13.13 71.31 71.09 81.73 91.46
MICRON w/ global IDF 46.7 59.44 67.87 22.07 13.13 71.40 70.82 81.27 90.75
MICRON w/ local IDF 48.0 63.00 71.03 23.17 13.82 74.14 73.77 85.30 93.07

Table 1: Results of the different models on the InsuranceQA and WikiPassageQA. 1 are reported in (Rücklé
et al., 2019) . COALA syntax-aware (Rücklé and Gurevych, 2017) is a variant of COALA using dependency parse
trees (Schuster and Manning, 2016).

Dataset # of Questions Answer
Train Valid Test Length

WikipassageQA 3332 417 416 153
InsuranceQA 10391 1592 1625 112

Table 2: Statistics of datasets

builds N:N matching matrices respectively. The
size of N is the same with our method for fair com-
parison. Unigram CNN uses 1:1 word matching,
and is able to utilize word-based signals as query
term weighting value.

3.3 Implementation Details

For word embeddings, we use 300d pre-trained
Glove (Pennington et al., 2014). The sequence
length of the passage are all different for each
dataset: 400 tokens for WikiPassageQA, 200 to-
kens for InsuranceQA. The dropout is applied after
every layers with a keep rate of 0.7. All weights
except embedding matrices are constrained by L2
regularization with constant values of 10−7 and
10−5 respectively for WikiPassageQA and Insur-
anceQA. We use Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of 10−6 and
10−4 for each dataset. The learning parameters
were chosen by the best performance on the dev
set.

3.4 Results

Table 1 shows the results on WikiPassageQA
and InsuranceQA datasets. We observe that
our proposed approach, named MICRON, signif-
icantly outperforms both representation-focused
and interaction-focused baselines in various eval-
uation metrics, achieving the best performance in
both datasets.
Our finding could be summarized as below:

First, we manifest the effectiveness of multigran-
ular interaction. Compared to N-gram CNN, MI-
CRON allows matching between different n-grams
(e.g., 2:3, 3:5) and achieves the improvement on
both datasets by 4.0% point accuracy, 2.57% point
MAP respectively.
Second, we relax length constraint in n-gram

from COALA and achieve relative gain in Insur-
anceQA dataset. However, this gain is marginal
when the phrase is short as in WikiPassageQA
dataset, considering the better performance of
COALA over N-gram CNN.
Third, word-based signals may help consider-

ably in WikiPassageQA, where both global and
local IDF scores of words are vary significantly
(high variance). This variance is especially high
for local IDF, which serves as a strong signal as
consistently observed in (Blair-Goldensohn et al.,
2003). In contrast, in InsuranceQA, the variance
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Figure 2: Qualitative examples of MICRON in the
WikiPassageQA dataset.

of word signals are low. Consequently, the use
of IDF cannot contribute to performance, or even
contributes negatively.

3.5 Qualitative Examples

We illustrate several qualitative examples of MI-
CRON in Figure 2. In Figure 2a, multigranu-
lar interaction (2:1) between the bi-gram “United
States” and the uni-gram “USA” allows the match-
ing. Figure 2b shows the case of where the contex-
tualized representation enables to lower the match-
ing score between “red ocean” and “ocean view”.
From Figure 2c, we can see the word based sig-
nals can control the impact of each contextualized

word scores: amplifying the matching of “Swe-
den”-“Sweden” and reducing the“is”-“is”match-
ing.

4 Conclusion

In this paper, we study non-factoid question an-
swering. Specifically, our approach is inspired
by the complementary strength of representation-
and interaction-focused approaches. We combine
the strength of the two, by allowing multigran-
ular interactions, but represented per-word basis,
contextualized by participating n-grams. For this
purpose, we propose MICRON, allowing to match
flexible n-grams and to combine with word-based
query term weighting, achieving the state of the
art among baselines with reported performances
on both datasets3.
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