Split or Merge: Which is Better for Unsupervised RST Parsing?

Naoki Kobayashi’, Tsutomu Hirao*, Kengo Nakamura®,
Hidetaka Kamigaito’, Manabu Okumura’, Masaaki Nagata®
T Institute of Innovative Research, Tokyo Institute of Technology,
! NTT Communication Science Laboratories, NTT Corporation
{kobayasi, kamigaito}@lr.pi.titech.ac.jp, oku@pi.titech.ac.jp

{tsutomu.hirao.kp, kengo.nakamura.dx, masaaki.nagata.et}@hco.ntt.co.jp

Abstract

Rhetorical Structure Theory (RST) parsing is
crucial for many downstream NLP tasks that
require a discourse structure for a text. Most of
the previous RST parsers have been based on
supervised learning approaches. That is, they
require an annotated corpus of sufficient size
and quality, and heavily rely on the language
and domain dependent corpus. In this paper,
we present two language-independent unsu-
pervised RST parsing methods based on dy-
namic programming. The first one builds the
optimal tree in terms of a dissimilarity score
function that is defined for splitting a text span
into smaller ones. The second builds the opti-
mal tree in terms of a similarity score function
that is defined for merging two adjacent spans
into a large one. Experimental results on En-
glish and German RST treebanks showed that
our parser based on span merging achieved
the best score, around 0.8 F; score, which is
close to the scores of the previous supervised
parsers.

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) is one of the theories that are
most widely utilized for representing a discourse
structure of a text in downstream NLP applica-
tions, such as automatic summarization (Marcu,
1998; Hirao et al., 2013), sentiment analysis (Bha-
tia et al., 2015), and text categorization (Ji and
Smith, 2017). RST represents a text as a kind of
constituent tree, whose leaves are Elementary Dis-
course Units (EDUs), clause-like units, and whose
non-terminal nodes cover text spans consisting of
a sequence of EDUs or a singleton EDU. The label
of a non-terminal node represents the attribution
of a text span, nucleus or satellite. A discourse re-
lation is also assigned between two adjacent non-
terminal nodes.

Since the RST tree can be regarded as a stan-
dard constituent (phrase structure) tree, syntactic
parsing models for constituency parsing can also
be successfully applied to RST parsing. In most
cases, RST parsers have been developed on the
basis of supervised learning algorithms, which re-
quire a high quality annotated corpus of sufficient
size. As a result, research on RST parsing has fo-
cused on English, with the largest annotated cor-
pus being the RST Discourse Treebank (RST-DT)
(Carlson et al., 2001). These supervised RST pars-
ing methods might not be applied to languages
with only a small-size corpus.

This paper presents two types of language inde-
pendent unsupervised RST parsing methods based
on the CKY-like dynamic programming-based ap-
proach. One method builds the most likely parse
tree in terms of a dissimilarity score defined for
splitting a text span into two smaller ones. The
other builds the optimal tree in terms of a simi-
larity score defined for merging two adjacent text
spans into a larger one. The similarity and dis-
similarity scores between text spans are calculated
on the basis of their distributional representations.
Note that since our method is fully unsupervised,
the parser predicts only the skeleton of an RST
tree.

Moreover, we exploit multiple granularity lev-
els of a document: (1) we first independently build
three types of trees, a tree whose leaves corre-
spond to a paragraph, a tree whose leaves corre-
spond to a sentence, and a tree whose leaves cor-
respond to an EDU, and then (2) merge them to
obtain the whole RST tree.

We conducted experimental evaluation on En-
glish and German datasets, RST-DT and the Pots-
dam Commentary Corpus (PCC) (Stede and Neu-
mann, 2014), respectively. The results demon-
strated that our method with span merging out-
performed our method with span splitting and ob-

5797

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 5797-5802,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics

tained .811 and .784 span scores for RST-DT and
PCC, respectively. The scores are close to the
scores of early supervised RST parsers.

2 Unsupervised RST Parsing

2.1 Motivation

Generally, RST trees with multinulcear relations
are transformed into binary trees by applying
right-heavy binarization as in syntactic parsing.
As the result, we can easily imagine the follow-
ing two simple parsing methods. First, when a
split score for splitting a text span into two smaller
spans is given for each candidate splitting point
in the text span, we can build an RST tree by re-
cursively splitting a text span with the best can-
didate points. Second, when a merge score for
merging two adjacent spans into a larger one is
given for each candidate pair of the spans, we
can build an RST tree by recursively merging the
best candidate pairs. Here, we can regard dissim-
ilarity between two text spans as the split score
and similarity between them as the merge score.
Note that the dissimilarity score can be defined
as 1 — similarity score. We propose the similar-
ity score that is based on distributional representa-
tions of text spans in Section 2.2.

In general, while a parse tree can be obtained ei-
ther by splitting or merging with a greedy parsing
method, as mentioned above, it cannot be always
optimal in terms of the total split or merge score.
Thus, we propose our dynamic programming-
based approach to obtain the optimal tree in Sec-
tion 2.3.

Of course, it would be possible to utilize both
similarity and dissimilarity scores. However, in
this paper, we investigate which one is suitable for
unsupervised RST parsing as the first step.

2.2 Similarity and Dissimilarity Scores
between Text Spans

When two adjacent text spans, the left span £ from
i-th to k-th atomic text unit' and the right span 7
from k41 to j-th atomic text unit are given, we de-
fine the similarity score between them as follows:

% —)

s UG B B N A RN

Slm(g';k,’l"k_t,_l;'):* T +1 .
Z A T4 [e

'A paragraph, a sentence or an Elementary Discourse
Unit (EDU).

Here, EZ—;Z and m indicate the vector represen-
tations of the left and right spans, which are de-
fined as a concatenation of two vectors for the left
most atomic unit and the right most atomic unit as
follows:
. = (@),
' 2)
Trty = (W1 0],
The definition is inspired by that of (Ji and Eisen-
stein, 2014), which employs words at the begin-
ning and end of a text span as important features
to build an RST tree.
u; is the vector representation of a ¢-th atomic
unit u;, which is defined on the basis of SIF (Arora
etal., 2017)? as follows:

u=y (wLw. 3)

weWy) ta

p(w) is the occurrence probability for word w,
is the vector representation of the word and W,
is a set of words in u;. We use a concatenation
of two word vectors obtained from ELMo (Peters
et al., 2018) and Glove (Pennington et al., 2014)
as a vector representation of a word. a is a param-
eter to decay the score of frequent words and is
defined as a = (1 —) /(aZ), where « is a hyper
parameter and Z is the total number of words.

2.3 Dynamic Programming-Based Approach
for Building Optimal Trees

We propose a dynamic programming-based ap-
proach to obtain the optimal tree in terms of either
the total split or merge score from all the possible
trees.

We first illustrate the algorithm with a merge
(similarity) score. We define V'[b][e], which stores
the maximum merge score for a span uy.. consist-
ing from b-th unit to e-th unit, as follows:

1, b=e
max V[b][k] x
Vibe) = { pekee T
sim(lp.f, Tht1,6) X
V[k + 1][e], otherwise
“)

where V' [b][k] stores the maximum merge score
for a sub-span u,.j, and V[k-+1][e] stores the max-
imum merge score for a sub-span g 1.e.

2 As for the representation for sentences and paragraphs,
(Arora et al., 2017) compared SIF with the following three:
avg-GloVe, tfidf-GloVe, skip-thought vectors (Kiros et al.,
2015).

5798

Algorithm 1 Dynamic Programming-Based RST
Parsing

1 VP[1][d] <-Dp(uf)

2: BACKTRACE(VP[1][d])

3: fori =1tomdo

4: bi < start(u?), e; < end(u?)

5: VZ»S [bz][ez} <—DP(ugi:ei)

6: BACKTRACE(V;*[b;][e;])

7: for j = bs toes do

8: bj < start(u3), e; < end(uj)

9: Vi [bjlle;] «Dr(ug ..)

10: BACKTRACE(VS [bj][e;])

11: function DP(SPAN)

12: Vo

13: B « start(SPAN),E < end(SPAN)
14: for: =0to £ — Bdo

15: forj=0to E — B —1ido

16: b B+j,e<B+j+1
17: if b = e then

18: Viblle] =1

19: else
20: VY] [e]—> brélgge V[b][k] x
21: sim(lp., Thr1,6) XV [k+1] €]

return V [B][E]
22: procedure BACKTRACE(V[b][e])
23: k= argmax V[b][k]xsim(y.k, rpr1.c) %
ke{b,...,.e—1}

24: Vik +1][e]
25: Cg(ub:e) & Up.p
26: C’r(ub:e) ULy,
27: BACKTRACE(V[b][k])
28: BACKTRACE(V [k + 1][e])

Algorithm 1 shows a dynamic programming-
based RST parsing algorithm to build the optimal
RST tree in terms of the total merge score. In the
algorithm, DP is a function that fills out the tri-
angular matrix V' as in the CKY algorithm, and
BACKTRACE is a procedure to build a tree by re-
cursively determining the left and right children
for a span. Figure 1 shows an example of table
V. The parse tree is obtained by recursively trac-
ing back the path with the maximum score from
V'[1]]6]. For example, the left child of span u;.¢ is
span u1.4 and the right child is span us.g.

Furthermore, we regard a document as a text
span consisting of three different granularity lev-
els: (1) a span from 1st to d-th paragraphs, assum-
ing that the document consists of d paragraphs, de-
noted as uﬁ’: 4 (2) a span from b;-th to e;-th sen-
tences for the i-th paragraph u!, which we denote
as up ..., and (3) a span from bj-th to e;-th EDUs
for the j-th sentence u3, which we denote as uj ., .

e

1 1 2

t

[
2 1 ==
3
4

u,. Us.

/ul'S\ u, Us; Ug Tl
u; U

Figure 1: DP table and the RST tree-building.

RST-DT PCC
of Docs. 385 174
#of EDUs/Doc. 56.6 16.1
of Sents./Doc. 22.5 114
of Para./Doc. 999 2.10
of EDUs/Sent. 2.51 1.41
of EDUs/Para. 5.67 7.66

Table 1: Statistics of the datasets.

First, the algorithm builds a document tree
(lines 1-2). Then, it builds paragraph trees for each
paragraph (lines 3-6) and builds sentence trees for
each sentence (lines 7-10). Finally, we obtain an
RST tree for the whole document by connecting
the trees.

By replacing the similarity score, sim(,) with
the dissimilarity score, 1—sim(,), we can obtain
the optimal tree in terms of the split score. When
we use the split score, the span consisting of only
two atomic units can be divided into two uniquely,
without calculating the split score for the span.
Therefore, we compute V[b][e] = 1 whene — b <
2, instead of when b = e, in Equation (4). In ad-
dition, Algorithm 1, from lines 17 to 18, must be
modified.

3 Experiments

3.1 Experimental Setting

We evaluated our methods on two datasets, the En-
glish RST treebank, RST-DT and the German RST
treebank, PCC. RST-DT has 347 training docu-

5799

D1
A

b2

s \
Document: €1 €2 €3 €4 €5 €6 €7 €8 €9 €19
H4

51

1 €2 €3 €4 €5 €p €7 €8 €9 €]

(@)

52

1 €2 €3 €4 €§ €g €7 €8 €9 619
g1 S9 S3 S4

(b)

53

S4

1 €2 €364 €5 €6 €7 €8 €9 €]

R "
AN 1 2 3) 4
D1 hs

(©)

Figure 2: Right branching-trees of a document consists of ten EDUs, four sentences and two paragraphs. A right
branching-tree with D2E setting (a), that with D2S2E setting (b) and that with D2P2S2E setting.

ments and 38 test documents. PCC? is smaller
than RST-DT, and the number of documents is
174. We used the whole dataset as the test set on
both datasets. Table 1 shows the statistics of the
datasets. The numbers of paragraphs, sentences
and EDUs per document for PCC are quite smaller
than those for RST-DT.

We evaluated three variants of our methods,
D2P2S2E, which is described in Algorithm 1,
D2S2E, which employs two different granularity
levels, i.e., it regards a document as a span con-
sisting of sentences and a sentence as a span con-
sisting of EDUs, and D2E, which employs a sin-
gle granularity level, i.e., it regards a document
as a span consisting of EDUs. To the best of
our knowledge, there are no recent researches on
unsupervised RST parsing, while we could find
many on supervised RST parsing. As the result,
we employed right-branching trees by merging the
right most two spans, at each granularity level as
baselines and compare those with ours. Figure
2 shows right branching trees at each granularity
level. From the figure, we can see that the right-
branching tree with two or three granularity, (b)
and (c), have more complex structure than that
with single granularity (a).

Since our unsupervised RST parsers can only
construct unlabeled RST parse trees, we used only
micro F; span score (Marcu, 2000) as an evalu-
ation metric. Following previous studies, we con-
ducted all the experiments on manually segmented
EDUs.

3Since PCC contains two invalid RST trees, maz-12666
and maz-8838, we excluded them.

Dataset Gran. Split Merge RB

D2E 602 .656 .545
RST-DT D2S2E .755 .788 .751
D2P2S2E 793 .811 .803

D2E .656 .669 .626

PCC D2S2E 757 .760 .749
D2P2S2E 787 .784 .789

Table 2: Micro Span F; scores for RST-DT and PCC.

3.2 Results

Table 2 shows the evaluation results. Merge
outperformed Split in most cases, and D2P2S2E
achieved the best scores among our variants on
both RST-DT and PCC. To clearly show the differ-
ences between our proposed method and RB, we
performed significance tests, using paired boot-
strap resampling (Koehn, 2004) at significance
level=0.05. The results showed that there were
significant differences between our method and
RB at all the settings (D2E, D2S2E, D2P2S2E)
for English, and at D2E and D2S2E for Ger-
man, while there were no significant differences
at D2P2S2E for German. The results imply
that merging two adjacent spans and dividing
with three granularity levels is suitable for un-
supervised RST parsing. Comparing our meth-
ods with the baseline, right-branching (RB), we
could find larger differences without considering
the granularity levels of a document, whereas the
differences became smaller by considering three
granularity levels. In particular, right-branching

5800

Method Span F; score

Merge .808
HHN16 .826
WLW17 .856

Table 3: Micro Span F; scores on the test set of RST-
DT.

was slightly better than our method on PCC. We
think the result was related to the right-heavy bi-
nary conversion of RST trees: RST trees with
multi-nuclear relations were transformed into bi-
nary trees beforehand by applying the right-heavy
branching procedure. As a result, RB obtains bet-
ter scores when the number of documents whose
RST trees contain the multi-nuclear relations is
larger. In fact, the ratio of the documents whose
RST trees contain multi-nuclear relations in PCC
is 0.712, while that in RST-DT is 0.464. We can
obtain the information of sentences boundaries in
most cases, however, sometimes we cannot obtain
the information of paragraph boundaries. Thus, it
is significant that our method outperformed base-
lines on D2S2E settings.

Moreover, we compared our method with some
supervised RST parsers on the test set of RST-
DT. Table 3 shows the results. In the table,
HHN16 denotes a simple transition-based RST
parser (Hayashi et al., 2016), and WLW17 de-
notes a current state-of-the-art transition-based
RST parser (Wang et al., 2017). Although the
score of our method is lower than the scores of
the supervised parsers, the score is close to that
of HHN16. The results demonstrated the effec-
tiveness of our unsupervised RST parsing method.
For reference, (Braud et al., 2017) reported that
their supervised RST parser obtained .802 span Fy
score on PCC. However, we cannot compare the
score with our score because the test set differs
from ours.

4 Conclusion

This paper proposed two kinds of unsupervised
RST parsing methods based on dynamic program-
ming that can build the optimal RST tree in terms
of either a span splitting score or a span merg-
ing score. We regarded a document as a text span
consisting of three different granularity levels and
built trees at each level, a document tree, para-
graph trees for each paragraph, and sentence trees

for each sentence. Then, we obtained an RST tree
by connecting all trees together. To the best of our
knowledge, this is the first study on unsupervised
RST parsing. The evaluation results on RST-DT
and PCC showed the effectiveness of our proposal;
the dynamic programming-based approach with
the span merging score, exploiting three granular-
ity levels in a document, achieved .811 and .784
span F; scores on RST-DT and PCC, respectively.
The results are close to the traditional transition-
based supervised parser.

References

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In Proceedings of the 5th International
Conference on Learning Representations.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis
from rst discourse parsing. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2212-2218.

Chloé Braud, Maximin Coavoux, and Anders Sggaard.
2017. Cross-lingual rst discourse parsing. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 292-304.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2001. Building a discourse-tagged cor-
pus in the framework of rhetorical structure theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue.

Katsuhiko Hayashi, Tsutomu Hirao, and Masaaki Na-
gata. 2016. Empirical comparison of dependency
conversions for rst discourse trees. In Proceedings
of the 17th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 128—136.

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013.
Single-document summarization as a tree knapsack
problem. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1515-1520.

Yangfeng Ji and Jacob Eisenstein. 2014. Represen-
tation learning for text-level discourse parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics, pages 13—
24.

Yangfeng Ji and Noah A. Smith. 2017. Neural dis-
course structure for text categorization. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, pages 996—1005.

5801

Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
In NIPS.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243-281.

Daniel Marcu. 1998. Improving summarization
through rhetorical parsing tuning. In Processing of
the Sixth Workshop on Very Large Corpora, pages
206-215.

Daniel Marcu. 2000. The Theory and Practice of Dis-
course Parsing and Summarization. MIT Press,
Cambridge, MA, USA.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1532—1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2227-2237.

Manfred Stede and Arne Neumann. 2014. Potsdam
commentary corpus 2.0: Annotation for discourse
research. In Proceedings of the Ninth International

Conference on Language Resources and Evaluation,
pages 925-929.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017.
A two-stage parsing method for text-level discourse
analysis. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 184—188.

5802

