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Abstract

Cross-domain sentiment classification has
drawn much attention in recent years. Most
existing approaches focus on learning domain-
invariant representations in both the source
and target domains, while few of them pay
attention to the domain-specific information.
Despite the non-transferability of the domain-
specific information, simultaneously learning
domain-dependent representations can facili-
tate the learning of domain-invariant represen-
tations. In this paper, we focus on aspect-
level cross-domain sentiment classification,
and propose to distill the domain-invariant
sentiment features with the help of an orthog-
onal domain-dependent task, i.e. aspect de-
tection, which is built on the aspects varying
widely in different domains. We conduct ex-
tensive experiments on three public datasets
and the experimental results demonstrate the
effectiveness of our method.

1 Introduction

Sentiment classification based on deep learning
methods has developed rapidly in recent years.
While achieving outstanding performance, these
methods always need large-scale datasets with
sentiment polarity labels to train a robust senti-
ment classifier. However, in most cases, large-
scale labeled datasets are not available in prac-
tice and manual annotation costs much. One of
the solutions to this problem is cross-domain sen-
timent classification, which aims to exploit the
rich labeled data in one domain, i.e. source do-
main, to help the sentiment analysis task in an-
other domain lacking for or even without labeled
data, i.e. target domain. The rationality of this so-
lution is that the source domain and target domain
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China.
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Source Domain: The fried rice is amazing here.

Target Domain:

Figure 1: Example sentences from the source domain
(restaurant) and the target domain (twitter) respec-
tively. The sentiment expressions marked by solid lines
are domain-invariant, while the aspect terms marked by
dashed lines are domain-specific.

share some domain-invariant knowledge that can
be transferred across domains.

Previous works on cross-domain sentiment
classification mainly focus on learning the
domain-invariant representations in both source
and target domains, either based on manual fea-
ture selection (Blitzer et al., 2006; Pan et al.,
2010) or automatic representation learning (Glorot
et al., 2011; Chen et al., 2012; Ganin and Lempit-
sky, 2015; Li et al., 2017). The sentiment classi-
fier, which makes decisions based on the domain-
invariant features and receives the supervisory sig-
nals from the source domain, can be also applied
to the target domain. We can draw an empiri-
cal conclusion: the better domain-invariant fea-
tures the method obtains, the better performance
it gains. However, few studies explore the usage
of the domain-specific information, which is also
helpful to the cross-domain sentiment classifica-
tion. Peng et al. (2018) propose to extract the
domain-invariant and domain-dependent features
of the target domain data and train two classifiers
accordingly, but they require a few sentiment po-
larity labels in the target domain, which limits the
practical application of the method.

In this paper, we exploit the domain-specific
information by adding an orthogonal domain-
dependent task to “distill” the domain-invariant
features for cross-domain sentiment classification.
The proposed method domain-invariant feature
distillation (DIFD) does not need any sentiment
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polarity labels in the target domain, which is more
consistent with the practical settings. Specifically,
we focus on the aspect-level cross-domain senti-
ment classification, and train a shared sentiment
classifier and two respective aspect detectors in the
source and target domains. We argue that aspect
detection is an orthogonal domain-dependent task
with respect to the sentiment classification. As
shown in Figure 1, given an input sentence, the
sentiment classifier predicts its sentiment polarity
based on the opinion words shared by different
domains, while the aspect detector identifies the
aspect terms which vary significantly across do-
mains. The information on which the two tasks
depend is mutually exclusive in the sentence, i.e.
orthogonal. Therefore, by training these two tasks
simultaneously, the aspect detectors will try to
strip the domain-specific features from the input
sentence and make the domain-invariant features
purer, which is helpful to the cross-domain senti-
ment classification.

Moreover, we design two effective modules to
boost the distillation process. One is the word-
level context allocation mechanism. It modulates
the importance of the words in the input sentence
according to the property of different tasks. The
other is the domain classifier. It tries to cor-
rectly judge which domain the domain-invariant
feature comes from, while the other modules in
the proposed method try to “fool” it, and the whole
framework is trained in an adversarial way.

To summarize, the main contributions of our pa-
per are as follows:

e We distill the domain-invariant sentiment
features to improve the cross-domain senti-
ment classification by simultaneously train-
ing an aspect detection task that striping the
domain-specific aspect features from the in-
put sentence.

e We boost the separation process of the
domain-invariant and domain-specific fea-
tures by two effective modules which are the
context allocation mechanism and domain
classifier respectively.

e Experimental results demonstrate the effec-
tiveness of the proposed method, and we fur-
ther verify the rationality of the context allo-
cation mechanism by visualization.

2 Related Work

Cross-domain sentiment analysis: Many do-
main adaptation methods have been proposed for
sentiment analysis. SCL (Blitzer et al., 2006)
learns correspondences among features from dif-
ferent domains. SFA (Pan et al., 2010) aims at
reducing the gap between domains by construct-
ing a bipartite graph to model the co-occurrence
relationship between domain-specific words and
domain-independent words. SDA (Glorot et al.,
2011) learns to extract a meaningful representa-
tion for each review in an unsupervised fashion.
mSDA (Chen et al., 2012) is an efficient method to
marginalize noise and learn features. Gradient Re-
versal Layer (GRL) (Ganin and Lempitsky, 2015;
Ganin et al., 2016; Li et al., 2017) is employed to
learn domain-invariant representations by fooling
the domain classifier. The replacement of gradient
reversal with alternating minimization (Shu et al.,
2018) stabilizes domain adversarial training, and
we employ this method as the adversarial training.
Aspect-level sentiment domain adaptation: To
the best of our knowledge, there are two works
about aspect-related cross-domain sentiment clas-
sification. Li et al. (2019) propose a method to
employ abundant aspect-category data to assist
the scarce aspect-term level sentiment prediction.
Zhang et al. (2019) propose IATN to address that
aspects have different effects in different domains.
Their method predicts sentiment polarity for the
whole sentence rather than a specific aspect.

Our method concentrates on aspect-term level
sentiment domain adaptation by separating the
domain-specific aspect features. Bousmalis et al.
(2016) and Liu et al. (2017) separate features into
two subspaces by introducing constraints on the
learned features. The difference is that our method
is more fine-grained and utilizes the explicit aspect
knowledge.

Auxiliary task for sentiment domain adap-
tation: Auxiliary task has been employed to
improve cross-domain sentiment analysis. Yu
and Jiang (2016) use two pivot-prediction aux-
iliary tasks to help induce a sentence embed-
ding, which works well across domains for sen-
timent classification. Yu and Jiang (2017) pro-
pose to jointly learn domain-independent sentence
embeddings by auxiliary tasks to predict senti-
ment scores of domain-independent words. Chen
et al. (2018) design auxiliary domain discrimina-
tors for better transferring knowledge between do-
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Figure 2: Network Architecture. The dashed line indicates that the parameters are shared by source and target
domains. The context from the sentence encoder is divided into task-oriented contexts for ASC and AD tasks.

mains. These auxiliary tasks focus on directly
enhancing domain-invariant features, while ours
strips domain-specific features to distill domain-
invariant features.

3 Methodology

3.1 Formulation and Overview

Suppose the source domain contains labeled data
Dy = {(aF,a),y*}Y:,, and the target domain
contains unlabeled data D, = {(zf,af)}2,,
where z is a sentence, a is one of the aspects in
x, and y is the sentiment polarity label of a. The
proposed method handles two kinds of tasks. One
is the main task Aspect-level Sentiment Classi-
fication (ASC). It learns a mapping F: {z} —
{f} — {y} shared by source and target do-
mains, where f is the domain-invariant feature of
z. The other is the orthogonal domain-dependent
task Aspect Detection (AD). It learns a mapping
Gs: {zs} — {zs} — {as} in the source domain,
and the other one G;: {x;} — {z¢} — {a;} inthe
target domain, where z; and z; are both domain-
dependent features of x, and x; respectively. The
domain-invariant and domain-dependent features
are orthogonal, i.e. f 1 zsand f | z;. We facil-
itate the distillation of f by simultaneously learn-
ing G5 and G; which try to strip z5 and z; from
x, and the purer f leads to the better F for the
cross-domain sentiment classification.

Figure 2 illustrates the architecture overview
of our method. Given an input sentence either
from the source or target domain, we first feed
it into the sentence encoder to obtain its dis-

tributed representation. Then, the context alloca-
tion mechanism divides the distributed represen-
tation into two orthogonal parts: domain-invariant
and domain-dependent features. Finally, the two
orthogonal features are fed into their correspond-
ing downstream tasks. Specifically, we input the
domain-invariant feature into the sentiment clas-
sifier to predict the sentiment polarity, and input
the domain-dependent feature into the aspect de-
tector of the specific domain to identify the aspect
terms. In addition, we add a domain classifier to
the architecture. It tries to correctly judge which
domain the domain-invariant feature comes from.
The whole framework is trained in an adversarial
way. Next, we will introduce the components of
our method in detail.

3.2 Sentence Encoder

Given an input sentence x = {wi,ws, ..., w,},
we first map it into an embedding sequence £ =
{e1,€3,...,e,} € R"¥%_ Then we inject the po-
sitional information of each token in z into E to
obtain the final embedded representation E, fol-
lowing the Position Encoding (PE) method in the
work (Vaswani et al., 2017):

PE(pos, 2i) = sin(pos /100007 %)
PE(pos, 2i + 1) = cos(pos/10000%/%) (1)
E=E+PE
where pos is the word position in the sentence and
1 18 the ¢-th dimension of d.. We consider that the

injected positional information can facilitate the
aspect-level sentiment classification, based on the
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observation that sentiment words tend to be close
to its related aspect terms (Tang et al., 2016; Chen
etal., 2017).

Next we employ a Bi-directional LSTM (BiL-
STM) (Graves et al., 2013) to encode F into
the contextualized sequence representation H =
[h1,ha,...hy] € R™24 which preserves the
contextual information of each token in the input
sentence.

We unify the embedding layer and BiLSTM as
the sentence encoder in which different tasks or
domains all share the same weights. The advan-
tages of sharing the weights are two-fold: first, dif-
ferent tasks in the same domain can benefit from
each other in a multi-task manner; second, distill-
ing the domain-invariant feature from a common
transformation is more simple.

3.3 Context Allocation (CA)

In an input sentence, some words have a strong
bias towards domain-specific information, such
as the aspect terms, e.g. “pizza” in Restau-
rant domain, while others focus on the domain-
invariant knowledge, such as the opinion words,
e.g. “amazing”. Meanwhile, the ASC task and
AD task exactly require orthogonal information as
discussed before. Therefore, we argue that differ-
ent words contribute differently according to the
property of the downstream task. To facilitate
the distillation of the domain invariant features,
we propose a Context Allocation (CA) mecha-
nism to allocate different weights on the same
word in different downstream tasks. The values of
the weights depend on how the information con-
tained in the word matches the need of the specific
task. Concretely, at each time step ¢, the mod-
ule divides the contextualized representation h; of
word wj; into the sentiment-dominant context hy
and aspect-dominant context hf as follows:

h§ = B¢h;, )
h¢ = Blh;, 3)
Bi+Bl=1, i€{l,2,.,n}). @

The two-dimensional vector 3; = (ff, ﬁf) is
normalized considering that the domain-specific
information and domain-invariant knowledge are
mutually exclusive. It reflects the importance of
w; on the ASC task and AD task respectively, and
is calculated on h; as follows:

Bi = softmaX(WbtaHh(WahiT)) ) ®)

where W, € R2dnx2dn gnd W), € R2%29n, The
whole division process at all time steps can be for-
mulated in the following form:

= s o

where 8 = [51,02,...,n). The sentiment-
dominant context H¢ € R"*2% and aspect-
dominant context H? € R™*24x of the input sen-
tence are then fed into the ASC task and AD task
for downstream processing respectively.

3.4 Aspect-level Sentiment Classification
(ASC) Task

Aspect-Opinion Attention In the ASC task, we
design an attention mechanism to model the rela-
tionship between the position of the aspect terms
and their corresponding opinion words. For a
specific aspect term, the domain-invariant fea-
ture based on the aspect-opinion attention con-
tains more information of its corresponding opin-
ion words, which is beneficial to the final aspect-
level sentiment classification. Specifically, we first
calculate the position representation of a specific
aspect term with its position z® and the sentiment-
dominant context H*“:

h® = Hx* ()

where z¢ = {01, ey 1i+17 ceey 1i+m7 On} rep-
resents the word positions of an aspect sub-
sequence in the input sentence x with non-zero
values and m is the length of the aspect. Then
the representation h® € R2? is further utilized to
calculate the sentiment-dominant feature f, which
is domain-invariant and should be aligned across
source and target domains.

vi = tanh(hg - W, - h® 4+ b)
- 8
£ =Y ih o
i=1

where ~; reflects how much the word w; corre-
sponds with the opinion on the aspect term, and
W, € R2dn>2dn and b, € R are weight matrix
and bias respectively.

Sentiment Classification Loss The sentiment-
dominant features fs; and f; generated from the
source and target domains respectively share the
same sentiment classifier. Note that the source do-
main data has sentiment polarity label, while the
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target domain is unlabeled. Thus we train the sen-
timent classifier only with the labeled data in the
source domain, while utilizing it for inference in
both source and target domains. The training ob-
jective of the sentiment classifier is to minimize
the following loss on the source domain dataset,
which is marked as L¢:

N
1 S
LS = A Zlogp(lﬂfs) 9)

where y is the ground-truth sentiment polarity
label. For simplicity, we omit the enumerated
number of the instance in the loss equation.

Domain Adversarial Loss The domain classi-
fier maps the sentiment-dominant feature f into a
two-dimensional normalized value y = (ys, yt),
which indicates the probability that f comes from
the source and target domains respectively. The
ground-truth domain label is gs = (1,0) for in-
stances in the source domain, and g; = (0,1) in
the target domain. The training objective of the
domain classifier is to minimize the following loss
on both source and target domain datasets, which
is marked as LIP:

1 & 1 &
o _
L =—x > " gslogy — w > " gilogy. (10)

The part in our architecture which joins the gen-
erating process of f (including Sentence Encoder,
Context Allocation and Aspect-Opinion Alloca-
tion in Figure 2) can be regarded as a domain-
invariant feature extractor, which works with the
domain classifier in an adversarial way. To further
accelerate the distillation process of the domain-
invariant features, we also introduce an adversarial
loss of the domain classifier for the feature extrac-
tor. Specifically, we calculate the loss in Equation
10 with the flipped domain labels inspired by the
work (Shu et al., 2018):

1 Ns 1 Nt
or _
L =+ > " gilogy — w > " gslogy. (11)

3.5 Aspect Detection (AD) Task

We model the AD task as a sequence labeling
problem, and each word in the sentence is marked
as a tag in {B, I, O}, which means the word is at
the beginning (B) or the inside (I) of an aspect
term or other word (O). In this way, we can detect

Algorithm 1 Adversarial Training

Input: labeled D, and unlabeled Dy

1: repeat

2: Train All parameters except Domain
Classifier with L;

3: Train Domain Classifier with A*L/P;

4: until performance on the validation set does
not improve in 10 epochs.

all the aspect terms of an input sentence in one for-
ward pass. Specifically, we first linearly transform
the aspect-dominant hidden state h< into a three-
dimensional vector. Then we calculate the aspect
detection loss of the source domain as follows:

N, n
1 1
Ld:——E f§ \logP(y% h® 12

where 3¢ is the ground-truth aspect label, n is
the sentence length and )\, is the weight of differ-
ent labels. The weight \; aims to solve the class
imbalance problem because the words labeled by
O usually make up the majority of one sentence.
It is dynamically calculated in the training phase
according to the ratio of the words with a specific
label in each batch. Henceforth we denote the loss
of the AD task in the target domain as L{.

3.6 Training

We combine each component loss into an overall
object function:

L=L¢+ XL0F £ XYL + LY (13)

where A% and \¢ balance the effect of the do-
main classifier and the auxiliary task (i.e. aspect
detection). L and A\*LYP are alternatively opti-
mized. The aspect-level sentiment analysis in the
unlabeled target domain is predicted by the ASC
task.

4 Experiments

4.1 Datasets

To make an extensive evaluation, we employ three
different datasets: Restaurants (R) and Laptops
(L) from SemEval 2014 task 4 (Pontiki et al.,
2014), and Twitters (T) from the work (Dong et al.,
2014). The statistics of these three datasets are
shown in Table 1. Specifically, we collect the
aspect-term level sentences and corresponding la-
bels from these datasets. Comparing aspect terms
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Dataset #Pos #Neg #Neu | Total
Restaurants (R) Train 2164 805 633 |3502
Test | 728 196 196 | 1120

Train| 987 866 460 2313

Laptops (L) | 1 1341 128 169 | 638

Train| 1561 1560 3127|6248
Test | 173 173 346 | 692

Twitters (T)

Table 1: Datasets statistics. #Pos, #Neg, #Neu rep-
resent the number of instances with positive, negative
and neutral polarities.

in these three datasets, we find more than 98% as-
pect terms are different between Restaurants and
Laptops domains, and there exists no same as-
pect between Restaurants and Twitters, also only
0.09% same aspects between Laptops and Twit-
ters. This indicates that the aspect terms vary vio-
lently in different domains.

4.2 Experimental Settings

To evaluate our proposed method, we construct
six aspect-level sentiment transfer tasks: R—L,
L—R, R—T, TR, L—T, T—L. The arrow in-
dicates the transfer direction from the source do-
main to the target domain. For each transfer pair
Ds — D, the training set is composed of two
parts: one is the labeled training set in D,, and
the other is all unlabeled data which only contain
the aspect term information in D;. The test set in
D; is employed as the validation set. The reported
results are evaluated on all the data of D;.

The word embeddings are initialized with 100-
dimension Glove vectors (Pennington et al., 2014)
and fine-tuned during the training. The model hid-
den size dj, is set to be 64. The model is optimized
by the SGD method with the learning rate of 0.01.
The batch size is 32. We employ ReL.U as the ac-
tivation function.

We adopt an early stop strategy during training
if the performance on the validation set does not
improve in 10 epochs, and the best model is cho-
sen for evaluation.

4.3 Compared Methods

We compare with extensive baselines to validate
the effectiveness of the proposed method. Some
variants of our approach are also compared for an-
alyzing the impacts of individual components.

Transfer Baseline: The aspect-level cross-
domain sentiment classification has been rarely

explored. We choose the state-of-the-art method
IATN (Zhang et al., 2019) which has the most sim-
ilar settings with our method as the transfer base-
line. It proposes to incorporate the information
of both sentences and aspect terms in the cross-
domain sentiment classification.

Non-Transfer Baselines: The non-transfer base-
lines are all representative methods in recent years
for the aspect-level sentiment classification in a
single domain. We train the models on the training
set of the source domain, and directly test them in
the target domain without domain adaptation.

o AT-LSTM (Wang et al., 2016): It utilizes the
attention mechanism to generate an aspect-
specific sentence representation.

o ATAE-LSTM (Wang et al., 2016): It also
employs attention. The difference with AT-
LSTM is that the aspect embedding is as in-
put to LSTM.

e MemNet (Tang et al., 2016): It employs a
memory network with multi-hops attentions
and predicts the sentiment based on the top-
most context representations.

o IAN (Ma et al., 2017): It adopts interactive
attention mechanism to learn the represen-
tations of the context and the aspect respec-
tively.

e RAM (Chen et al., 2017): It employs multi-
ple attentions with a GRU cell to non-linearly
combine the aggregation of word features in
each layer.

e GACE (Xue and Li, 2018): It is based on
the convolutional neural network with gating
mechanisms.

Variants of Our Method:

o ASC+AT (ASC with adversarial training): A
single task that handles the ASC task with ad-
versarial training.

e DIFD: The proposed method in this work.

e DIFD(S): It contains components of the
source domain from DIFD and is trained only
by the source domain data.

e DIFD-CA: DIFD without context allocation.

e DIFD-AT: DIFD without adversarial train-
ing.

o DIFD-AT+MMD: Replace the adversarial
training with Maximum Mean Discrepancy
(MMD) (Tzeng et al., 2014).

o DIFD-AT+CORAL: Replace the adversarial
training with CORAL (Sun et al., 2016).
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R—L L—R

Models

R—T

T—R L—-T T—L

Acc F1 Acc F1 Acc

F1 Acc F1 Acc F1 Acc F1

ATAE-LSTM
MemNet
RAM
GACE
AT-LSTM
IAN

56.56 47.71
57.17 47.79
58.32 43.98
61.74 50.39
60.62 45.38
60.39 50.69

63.21 46.01
65.97 49.28
54.68 26.81
66.60 49.07
66.75 46.99
66.50 47.97

34.97
34.47
33.18
32.87
32.98
35.09

33.82
32.37
29.96
29.34
28.98
33.02

50.78 44.06
50.36 42.68
48.18 43.23
45.62 37.52
50.64 43.64
51.14 44.46

40.43 39.82
4494 4437
44 .87 44.06
4493 45.18
38.47 36.78
44.16 44.34

42.39 40.73
36.36 34.96
4273 42.51
4798 42.39
4734 42.87
43.88 40.16

IATN 62.05 46.37|67.13 51.64|34.14

30.55(40.13 37.79|44.80 44.69 |46.12 4291

63.81 57.74
64.86 60.51

68.30 53.66
68.53 57.31

36.89
40.13

DIFD(S)
DIFD

33.74
38.85

55.63 44.10
57.60 46.59

45.73 46.17
47.32 47.31

44.53 43.76
48.97 47.56

Table 2: Evaluation results of baselines in terms of accuracy (%) and macro-f1 (%).

Models

R—L

L—R

R—T

T—R

L—->T

T—L

Acc Fl

Acc Fl

Acc Fl

Acc Fl

Acc Fl

Acc Fl

ASC+AT
DIFD-CA
DIFD-AT

62.86 56.47
64.18 57.59
63.47 60.09

67.66 49.84
68.17 53.42
68.15 57.27

35.86 33.43
34.27 31.52
40.76 38.66

52.33 4441
44.39 41.79
59.76 45.08

44.15 44.31
44.14 44.25
45.73 4591

42.46 37.94
43.54 43.60
47.68 40.20

DIFD-AT+MMD
DIFD-AT+CORAL

64.25 58.79
63.77 58.61

63.13 56.49
68.30 53.46

39.44 38.69
44.65 42.83

46.93 44.44
57.54 46.41

47.81 4791
46.96 46.96

42.87 38.69
38.80 35.97

DIFD

64.86 60.51

68.53 57.31

40.13 38.85

57.60 46.59

47.32 47.31

48.97 47.56

Table 3: Evaluation results of variants of our model in terms of accuracy(%) and macro-f1(%). The minus sign (-)
means to remove the module, and the addition (+) means to add the module.

4.4 Experimental Analysis

We report the classification accuracy and macro-f1
of various methods in Table 2 and Table 3, and the
best scores on each metric are marked in bold. To
validate the effectiveness of our method, we ana-
lyze the results from the following perspectives.

Compare with the baselines: We display the
comparison results with baselines in Table 2.
Comparing with the transfer baseline IATN, we
observe that DIFD significantly outperforms IATN
on all metrics by +5.51% accuracy and +7.36%
macro-fl on average. This shows that the dis-
tillation of domain-invariant features really facil-
itates the transfer of sentiment information across
domains. In addition, for a fair comparison with
the non-transfer methods which only exploit the
source domain data, we also train our DIFD model
without the target domain data and denote this
variant as DIFD(S). We observe that DIFD(S) out-
performs all the non-transfer baselines on most
metrics. It is worth noting that, compared to a
strong baseline IAN, DIFD(S) achieves significant
improvement by +4.49% accuracy on T—R and
+7.05% macro-f1 on R—L. This verifies that the
orthogonal task is helpful in striping the domain-

specific features from the source domain and ef-
fective for accelerating the domain adaptation.

Compare the variants of our method: The re-
sults of the variants of our method are reported in
Table 3. We first observe that DIFD outperforms
ASC+AT on all metrics significantly. This vali-
dates that the orthogonality really helps to distill
the domain-invariant features and improve the per-
formance of the cross-domain sentiment classifi-
cation.

Then we can see that DIFD-CA performs much
worse than DIFD, which reveals that the context
allocation mechanism plays an important role in
our method. We further visualize the allocation
scores in Figure 3 and the result also indicates
that the reasonability of the CA module. The
gray tokens and red tokens have a bias towards
ASC task and AD task respectively. The alloca-
tion scores are consistent with the bias of words:
red tokens get larger scores for the aspect detec-
tion task, while gray tokens get larger scores for
opinion expressions. This shows that our model
generates task-oriented contexts successfully.

Finally, DIFD also achieves improvement over
DIFD-AT on most metrics. This indicates that
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adversarial training with the domain classifier
promotes the distillation process of the domain-
invariant features. To further validate the effec-
tiveness of adversarial training, we also try to di-
rectly minimize the divergence between domain-
invariant features from source and target domains
based on MMD and CORAL. Comparing with
DIFD-AT+MMD and DIFD-AT+CORAL, DIFD
is more robust considering that DIFD outperforms
the two methods in most experimental settings.

4.5 Transfer Distance Analysis

In this section, we analyze the similarity of fea-
tures between domains. We exploit the A-distance
(Ben-David et al., 2007) to measure the similar-
ity between two probability distributions. The
proxy A-distance is 2(1-2¢), where € is the gen-
eralization error of a classifier (a linear SVM)
trained on the binary classification problem to dis-
tinguish inputs between the two domains. We
focus on the methods ASC+AT and DIFD, and
first compare the similarity of domain-invariant
features fs and f;. Figure 4 reports the re-
sults for each pair of domains. The proxy .A-
distance on DIFD is generally smaller than its cor-
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Figure 5: Proxy A Distance between domain-specific
features for the 6 different pairs.

responding value on ASC+AT. This indicates that
DIFD can learn purer domain-invariant features
than ASC+AT. Secondly, we compare the domain-
specific features learned by ASC+AT and DIFD,
which are represented by the average hidden state
of BILSTM in ASC+AT and the average aspect-
context H¢ in DIFD respectively. Figure 5 reports
the results for each pair of domains. The proxy .A-
distance on DIFD is generally larger than its corre-
sponding value on ASC+AT, which demonstrates
that DIFD can strip more domain-specific infor-
mation by the aspect detection task than ASC+AT.

There are exceptions in both Figures, i.e., TR
in Figure 4, TL and LR in Figure 5. A possible
explanation is that the balance between ASC and
AD losses causes some domain-specific informa-
tion to remain in the domain-invariant space, and
vice versa.

5 Conclusion

In this work, we study the problem of aspect-
level cross-domain sentiment analysis and propose
a domain-invariant feature distillation method
that simultaneously learns domain-invariant and
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domain-specific features. With the help of the or-
thogonal domain-dependent task (i.e., aspect de-
tection), the aspect sentiment classification task
can learn better domain-invariant features and im-
prove transfer performance. Experimental results
clearly verify the effectiveness of our method.
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