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Abstract

This paper studies keyphrase extraction in
real-world scenarios where documents are
from diverse domains and have variant con-
tent quality. We curate and release OpenKP, a
large scale open domain keyphrase extraction
dataset with near one hundred thousand web
documents and expert keyphrase annotations.
To handle the variations of domain and con-
tent quality, we develop BLING-KPE, a neu-
ral keyphrase extraction model that goes be-
yond language understanding using visual pre-
sentations of documents and weak supervision
from search queries. Experimental results on
OpenKP confirm the effectiveness of BLING-
KPE and the contributions of its neural archi-
tecture, visual features, and search log weak
supervision. Zero-shot evaluations on DUC-
2001 demonstrate the improved generalization
ability of learning from the open domain data
compared to a specific domain.

1 Introduction

Automatically extracting keyphrases that are
salient to the document meanings is an essential
step to semantic document understanding. An
effective keyphrase extraction (KPE) system can
benefit a wide range of natural language process-
ing and information retrieval tasks (Turney, 2001;
Hasan and Ng, 2014). Recent neural methods
formulate the task as a document-to-keyphrase
sequence-to-sequence task. These neural KPE
models have shown promising results compared to
previous systems (Chen et al., 2018; Meng et al.,
2017; Ye and Wang, 2018).

Noticeably, the recent progress in neural KPE
is mostly observed in documents originating from
the scientific domain (Meng et al., 2017; Augen-
stein et al., 2017). Perhaps because the scientific
domain has sufficient training data for these neu-
ral methods: Authors are in the practice of as-

signing keyphrases to their publications. In real-
world scenarios, most potential applications of
KPE deal with diverse documents originating from
sparse sources that are rather different from scien-
tific papers. They often include a much diverse
document structure and reside in various domains
whose contents target much wider audiences than
scientists. It is unclear how well the neural meth-
ods trained in the scientific domain generalize to
other domains and in real-world scenarios.

This paper focuses on the task of open domain
web keyphrase extraction, which targets KPE for
web documents without any restriction of the
domain, quality, nor content of the documents.
We curate and release a large scale open do-
main KPE dataset, OpenKP, which includes about
one hundred thousand web documents with ex-
pert keyphrase annotations.1 The web documents
are randomly sampled from the English fraction
of a large web corpus and reflect the characteris-
tics of typical web pages, with large variation in
their domains and content qualities. To the best of
our knowledge, this will be the first publicly avail-
able open domain manually annotated keyphrase
extraction dataset at this scale.

This paper develops BLING-KPE, Beyond
Language UnderstandING KeyPhrase Extraction,
that tackles the challenges of KPE in docu-
ments from variant domains and content qualities.
BLING-KPE uses a convolutional transformer ar-
chitecture to model the language properties in the
document, while also goes beyond by introduc-
ing the visual representation of the document and
weak supervision from search user clicks.

The visual presentations of the document, in-
cluding the location, size, font, and HTML struc-
ture of each text piece in the document, are inte-
grated as visual features to the word embeddings

1The dataset, resources, and future updates are available
at aka.ms/BLING.

aka.ms/BLING
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in BLING-KPE. BLING-KPE learns to model the
visual representations together with the document
language in its network.

The weak supervision from search clicks is for-
mulated as a pre-training task: Query Prediction.
It trains the model to predict which phrase in the
document has been used as a “click query”, a
query that a user issued to search and click on the
document. The click queries on a document re-
flect the user’s perceptions of the relatedness and
importance when searching the document and can
be considered as pseudo keyphrases. Pre-training
on this weak supervision brings in training signals
available at scale in commercial search systems.

Our experiments on OpenKP demonstrate the
effectiveness of BLING-KPE. It outperforms stan-
dard KPE baselines, recent neural approaches and
a highly optimized commercial KPE system by
large margins. Ablation studies show the contri-
butions of the neural architecture, visual features,
and search weak supervision to BLING-KPE; re-
moving any of them significantly reduces its accu-
racy.

Another advantage of learning from real-world
open domain documents is improved generaliza-
tion ability. We conduct zero-shot evaluations on
the DUC-2001 news KPE datasets (Wan and Xiao,
2008b), where neural KPE systems are evaluated
without seeing any labels from their news articles.
BLING-KPE trained on OpenKP is the only neu-
ral method that outperforms traditional non-neural
KPE methods, while neural KPE systems trained
on the scientific documents do not generalize well
to the news domain due to the domain differences.

2 Related Work

The classic keyphrase extraction systems typically
include two components: candidate keyphrase
extraction and keyphrase importance estima-
tion (Hasan and Ng, 2014). The candidate
keyphrases are often extracted by heuristic rules,
for example, finding phrases following certain
POS tag sequences (Wan and Xiao, 2008b; Liu
et al., 2009a; Mihalcea and Tarau, 2004), pre-
defined lexical patterns (Nguyen and Phan, 2009;
Medelyan et al., 2009), or using entities as candi-
date phrases (Grineva et al., 2009).

The importance of the candidate keyphrases
can be estimated by unsupervised or supervised
methods. The unsupervised methods leverage
the graph structures between phrases in the doc-

ument (Mihalcea and Tarau, 2004; Wan and Xiao,
2008a,b), and topic information from topic mod-
eling (Grineva et al., 2009; Liu et al., 2009b,
2010). The supervised keyphrase selection meth-
ods formulate a classification or ranking task and
combine features from phrase frequencies (Wit-
ten et al., 2005), document structures (Chen et al.,
2005; Yih et al., 2006), and external resources
such as Wikipedia (Medelyan et al., 2009) and
query log (Yih et al., 2006).

Recently, neural techniques have been applied
to keyphrase tasks. Meng et al. formulate a
seq2seq learning task that learns to extract and
generate the keyphrase sequence from the docu-
ment sequence; they incorporate a copy mecha-
nism to the seq2seq RNN to extract phrases in
the generation process (CopyRNN) (Meng et al.,
2017). Improving this seq2seq setup has been the
focus of recent research, for example, adding di-
verse constraints to reduce the duplication of pro-
duced keyphrases (Yuan et al., 2018; Chen et al.,
2018), bringing auxiliary tasks to reduce the needs
of training data (Ye and Wang, 2018), and adding
title information to improve model accuracy (Chen
et al., 2019).

The recent neural KPE methods have shown
strong performances on the scientific domain,
where large scale training data is available from
the author assigned keyphrases on papers (Meng
et al., 2017). Such specific domain training data
limits the model generalization ability. Chen et
al. show the seq2seq keyphrase generation mod-
els trained on scientific papers do not generalize
well to another domain (Chen et al., 2018).

In general, previous research finds automatic
keyphrase extraction a challenging task: its state-
of-the-art accuracy is much lower than other lan-
guage processing tasks, while supervised meth-
ods do not necessarily outperform simple unsuper-
vised ones. Hasan and Ng (2014) pointed out po-
tential ways to improve automatic keyphrase ex-
traction, including better incorporation of back-
ground knowledge, better handling long docu-
ments, and better evaluation schemes. BLING-
KPE aims to address these challenges by incorpo-
rating pre-training as a form of background knowl-
edge, visual information to improve long docu-
ment modeling, and OpenKP as a large scale open
domain evaluation benchmark.
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3 Open Domain Keyphrase Benchmark

This section describes the curation of OpenKP
and its notable characteristics.

3.1 Data Curation
Documents in OpenKP include about seventy
thousand web pages sampled from the index of
Bing search engine.2 The sampling is conducted
on the pool of pages seen by United State users
between Nov 2018 and Feb 2019.

There is no restriction on the domain or type of
documents. They can be content-oriented pages
like news articles, multi-media pages from video
sites, or indexing pages with many hyperlinks.
OpenKP is designed to reflect the diverse prop-
erties of web documents in the internet.

Keyphrase Labels are generated by our ex-
pert annotators. For each document, they exam-
ine the rendered web page and manually label 1-3
keyphrases following these definitions:

• Salience: A keyphrase captures the essential
meaning of the page with no ambiguity.

• Extraction: The keyphrase has to appear in
the document.

• Fine-Grained: The keyphrase cannot be gen-
eral topics, such as “Sports” and “Politics”.

• Correct & Succinct: The keyphrase has to
form a correct English noun phrase, while
also cannot be clauses or sentences.

We use the extraction setting to ensure label-
ing consistency and to increase annotation speed,
which is around 42 pages per hour.

Expert Agreements. Our annotation experts
are trained employees dedicated to providing high-
quality annotations on web documents. We fol-
low standard practice in generating annotations for
production systems, which included regular touch-
points to understand the confusion, as well as up-
dates on the judgment guidelines to resolve ambi-
guities.

To study the task difficulty, we had five judges
each annotate the same 50 random URLs. We
measure the pairwise agreements between experts
at different depths by Exact Match on the whole
keyphrase, as well as the overlap between select
keyphrases’ unigrams. The agreement between
judges is listed in Table 1.

2A new OpenKP version with 150K documents is avail-
able at msmarco.org.

Table 1: The agreements between pairs of expert
judges at different annotation depth. Exact and
Unigram show the percentage of judge agreement
on exact keyphrases and overlapped unigrams.

Judge Depth Exact Match Unigram Match
Keyphrase@1 64.74% 64.74%
Keyphrase@2 48.30% 63.12%
Keyphrase@3 43.51% 57.66%

The results confirm that open domain keyphrase
extraction is not an easy task. When measur-
ing agreement for the top 3 keyphrases, our ex-
pert judges completely agree on about 43% of
keyphrase pairs. Compared to the previous small
scale annotations, for example, on DUC-2001’s
news articles (Wan and Xiao, 2008b), annotating
web pages with diverse contents and domains are
harder.

We manually examined these annotations and
found two sources of disagreement: Chunking
Variances and KP Choices.

Chunking Variances we define as two judges
pick different boundaries of the same concept. For
example, one judge may select “Protein Synthe-
sis” as the keyphrase, and others may select “Pro-
tein” and “Synthesis” as two separate keyphrases.
We found Chunking Variances consist of about
20% of disagreements. As shown in Table 1, the
judge agreements is substantially higher on Uni-
gram overlaps than on Exact matches, indicating
that they may select chunks that overlap with each
other but not exactly the same.

KP Choices we define as two judges pick dif-
ferent keyphrases. The judges agree mostly (64%)
on the first entered keyphrase, as shown in Table 1.
The variations on the second and third keyphrases
are larger. However, we found the variations are
more about which keyphrases they choose to en-
ter, not about whether a phrase is a keyphrase
or not. The variations on judge labels mostly re-
flect the missing positives in OpenKP; most of the
keyphrases annotated by judges are correct. We
can reduce the missing positives by a deeper an-
notation, i.e. ten keyphrases per document, or by
labeling all candidate phrases with classification
labels (Liu et al., 2018). However, that will sig-
nificantly reduce the number of total documents in
OpenKP, as each document costs much more to
annotate. We chose the current design choice of
OpenKP to favor a larger amount of training la-
bels, which, in our experience, is more effective in

msmarco.org
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Figure 1: The most popular topics in OpenKP .

Table 2: Statistics of OpenKP used in our experi-
ments. The new version on MSMARCO include
150K documents.

Statistics Mean STD
Doc Length 900.4 1494.4
# of KPs per Doc 1.8 0.8
Keyphrase Length 2.0 0.96
Doc Vocabulary Size 1.5M n.a.
KP Vocabulary Size 62K n.a.
# of Documents 68K n.a.
# of Unique KPs 99.6K n.a.

training deep neural models.

3.2 Data Characteristics

Table 2 lists the statistics of OpenKP. The docu-
ment length is the length of the text parsed from
the HTML of the web page, using a production
HTML parser. The parsed texts will be released
with the dataset. These statistics reflect the large
variations in the document contents; their length
varies a lot and share little common keyphrases,
as shown by a large number of unique keyphrases.

We also leverage a production classifier to clas-
sify OpenKP documents into 5K predefined do-
mains. The top 15 most popular classes and their
distributions are shown in Figure 1. As expected,
these documents have a large variation in their
topic domains. The most popular domain, “health-
care”, only covers 3.7% documents; the tenth
most popular topic only covers 1% of documents.
Moreover, the top 15 classes make up less than
25% of the entire dataset which showcases what a
domain diverse dataset OpenKP is.

4 Keyphrase Extraction Model

This section describes the architecture, visual fea-
tures, and weak supervision of BLING-KPE.
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Figure 2: The BLING-KPE model architecture

4.1 Network Architecture
As shown in Figure 2, BLING-KPE is a keyphrase
extraction model. It takes the word sequence of
the document, d = {w1, ...wi, ...wn}, and assigns
keyphrase scores to its n-gram: f(wi:i+k, d). This
process includes two main components: Hybrid
Word Embedding and Convolutional Transformer.

Hybrid Word Embedding. BLING-KPE rep-
resents each word by its ELMo embedding, posi-
tion embedding, and visual features.

The ELMo embedding brings the local contex-
tual information:

~hi = ELMo(wi). (1)

The standard pre-trained ELMo is used (Peters
et al., 2018).

The position embedding models the location
the word in the document content. It uses the
standard sinusoidal position embedding (Vaswani
et al., 2017):

~posi(2p) = sin(i/100002p/P ), (2)

~posi(2p+ 1) = cos(i/100002p/P ). (3)

The p-th dimension of the position embedding is a
function of its position (i) and dimension (p).

The visual features represent the visual presen-
tation of each word. We denote the visual feature
as ~vi and will describe its details in §4.2.

The hybrid word embedding is the concatena-
tion of the three:

~wi = ~hi _ ~posi _ ~vi. (4)
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Convolutional Transformer. BLING-KPE
uses a convolutional transformer architecture to
model n-grams and their interactions.

It first composes the hybrid word embeddings to
n-gram embeddings using CNNs. The embedding
of i-th k-gram is calculated as

~gki = CNNk(~wi:i+k), (5)

where k is the length of the n-gram, 1 ≤ k ≤ K.
K is the maximum length of allowed candidate n-
grams. Each k-gram has its own set of convolution
filters CNNk with window size k and stride 1.

It then models the interactions between k-grams
using Transformer (Vaswani et al., 2017).

~tki = Transformeri(~Gk), (6)
~Gk = ~gk1 _ ... _ ~gki ... _ ~gkn−k+1. (7)

The sequence ~Gk is the concatenations of all k-
gram embeddings. The Transformer models the
self-attentions between k-grams and fuses them to
global contextualized embeddings.

The Transformer is convolutional on all length
k of n-grams; the same parameters are used model
the interactions between n-grams at each length, to
reduce the parameter size. The intuition is that the
interactions between bi-grams and that between
tri-grams are not significantly different.

The final score of an n-gram is calculated by
a feedforward layer upon the Transformer. Like
the Transformer, the same feedforward layer is ap-
plied (convolutional) on all n-grams.

f(wi:i+k, d) = softmaxi,k(ski ), (8)

ski = Feedforward(~tki ). (9)

The softmax is taken over all possible n-grams at
each position i and each length k. The model de-
cides the span location and length jointly.

Learning. The whole model is trained as a clas-
sification problem using cross-entropy loss:

l = Cross-Entropy(yki , f(wi:i+k, d)), (10)

where yki is the label of whether the phrase wi:i+k

is a keyphrase of the document.

4.2 Visual Features
We extract four groups of visual features for each
word in the document.

• Size features include the height and width of
the text block a word appears in.

Table 3: Visual Features. All features are extracted
at per word level and the parent block level (the
parent node of the word in the HTML DOM tree).

Name Dimension
Font Size 1×2
Text Block Size 2×2
Location in Rendered Page 2×2
Is Bold Font 1×2
Appear In Inline 1×2
Appear In Block 1×2
Appear In DOM Tree Leaf 1×2

• Location features include the 2-d location of
the word in the rendered web page.

• Font feature includes the font size and
whether the word is in Bold.

• DOM features include whether the word ap-
pears in “inline” or “block” HTML tags, also
whether it is in a leaf node of the DOM tree.

The full feature set is listed in Table 3. We double
the features by including the same features from
the word’s parent block in the DOM tree. The vi-
sual features are included in the OpenKP releases.

4.3 Weak Supervisions from Search

An application of keyphrases is information re-
trieval. The extracted keyphrases are expected
to capture the main topic of the document,
thus can provide high quality document index-
ing terms (Gutwin et al., 1999) or new semantic
ranking features (Xiong et al., 2018). Reversely,
user clicks bring the user’s perception of the doc-
ument during the search and provide a large num-
ber of feedback signals for document understand-
ing (Croft et al., 2010).

BLING-KPE leverages the user feedback sig-
nals as weak supervision, in the task of Query
Prediction. Given the document d, BLING-
KPE learns to predict its click queries Q =
{q1, ..., qm}.

This pre-training step uses the same cross en-
tropy loss:

lpre = Cross-Entropy(y′i, f(qi, d)), (11)

where y′i indicates whether the query qi is a click
query and also appears as an n-gram in the docu-
ment d. The Query Prediction labels exist at scale
in commercial search logs and provide a large
number of pre-training signals.
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Table 4: Statistics of Query Prediction Dataset.
The data is from a sample of Bing search log in
on week.

Statistics Mean STD
Doc Length 1211.8 1872.6
# of Query per Doc 1.32 0.76
Query Length 2.4 1.07
Doc Vocabulary Size 15M n.a
Query Vocabulary Size 383K n.a
# of Documents 1.6M n.a.
# of Unique Queries 1.5M n.a.

5 Experimental Methodology

Datasets used in our experiments include
OpenKP, as described in §3, Query Prediction,
and DUC-2001 (Wan and Xiao, 2008b).

The Query Prediction data is sampled from the
Bing search log with navigational and offensive
queries filtered out. We keep only the click queries
that are included as an n-gram in the document
to be consistent with OpenKP’s extractive setting.
The statistics of the sample is listed in Table 4.

DUC-2001 is the KPE extraction dataset on
DUC news articles (Wan and Xiao, 2008b). It
includes 309 news articles and on average 8
keyphrase per article.

We use random 80%-20% train-test splits on
OpenKP and Query Prediction. On OpenKP,
BLING-KPE is first pre-trained on Query Predic-
tion and then further trained on its manual labels.
There is no overlap between the documents in
Query Prediction and OpenKP.

DUC-2001 uses the zero-shot evaluation setting
from prior research (Meng et al., 2017; Chen et al.,
2018); no labels in DUC-2001 are used to train nor
validate the neural models. It tests neural models’
generalization ability from the training domain to
a different testing domain.

Evaluation Metrics. OpenKP and Query Pre-
diction use Precision and Recall@{1, 3, 5}.
DUC-2001 uses F1@10, the same as prior re-
search (Meng et al., 2017; Chen et al., 2018).

Statistically, significant improvements are eval-
uated by permutation test with p<0.05 on OpenKP
and Query Prediction. The baselines on DUC-
2001 reuse scores from previous results; the sta-
tistical significant test is not applicable as per doc-
ument results are not shared.

Baselines. OpenKP and Query Prediction ex-
periments compare BLING-KPE with: traditional
KPE methods, production systems, and a neural

Table 5: Parameters to learn in BLING-KPE.

Component Dimensions
ELMo pre-trained and frozen
Position Embedding 256
Visual Feature 18
N-gram CNN 512 filter, 1-5 window size (ngram)
Transformer 8 head, 512 hidden dimension
Feedforward 512-relu-512-relu-1

baseline.
Traditional KPE baselines include the follows.

• TFIDF is the unsupervised frequency based
KPE system. The IDF scores are calculated
on the corresponding corpus.

• TextRank is the popular graph-based unsu-
pervised KPE model (Mihalcea and Tarau,
2004). Our in-house implementation is used.

• LeToR is the feature-based KPE model. It
use LambdaMart (Burges, 2010) and stan-
dard KPE features, i.e. those in KEA (Witten
et al., 2005).

The production baselines include two versions.

• PROD is our current feature-based produc-
tion KPE system. It uses many carefully en-
gineered features and LambdaMart.

• PROD (Body) is the same system but only
uses the body text, i.e. the title is not used.

All these unsupervised and feature-based meth-
ods use the same keyphrase candidate selection
system with PROD.

The neural baseline is CopyRNN (Meng et al.,
2017). We use their open-source implementation
and focus on the OpenKP dataset which is publicly
available.

Implementation Details. Table 5 lists BLING-
KPE parameters. The training uses Adam opti-
mizer, learning rate 0.3 with logarithmic decreas-
ing to 0.001, batch size 16, and 0.2 dropout proba-
bility in n-gram CNN, Transformer and feedfor-
ward layers. Learning takes about 2.5 hours (2
epochs) to converge on OpenKPE and about 13
hours (3 epochs) on Query Prediction, based on
validation loss. In BLING-KPE, the maximum
document length is 256 and documents are zero-
padded or truncated to this length. Baselines use
the original documents, except CopyRNN which
works better with 256. The maximum n-gram
length is set to five (K=5).
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Table 6: Keyphrase Extraction Accuracy. Bold marks statistically significant improvements over all
baselines.

OpenKP Query Prediction
Method P@1 R@1 P@3 R@3 P@5 R@5 P@1 R@1 P@3 R@3 P@5 R@5
TFIDF 0.283 0.150 0.184 0.284 0.137 0.347 0.403 0.332 0.204 0.491 0.133 0.526
TextRank 0.077 0.041 0.062 0.098 0.055 0.142 0.132 0.111 0.089 0.218 0.073 0.295
LeToR 0.301 0.158 0.173 0.268 0.127 0.324 0.328 0.271 0.169 0.406 0.119 0.471
PROD 0.353 0.188 0.195 0.299 0.131 0.331 0.376 0.308 0.197 0.468 0.129 0.505
PROD (Body) 0.214 0.094 0.130 0.196 0.094 0.234 0.353 0.287 0.191 0.454 0.125 0.492
CopyRNN 0.288 0.174 0.185 0.331 0.141 0.413 – – – – – –
BLING-KPE 0.404 0.220 0.248 0.390 0.188 0.481 0.540 0.449 0.275 0.654 0.188 0.729

Table 7: Performance of BLING-KPE ablations. Italic marks statistically significant worse performances
than Full Model.

OpenKP Query Prediction
Method P@1 R@1 P@3 R@3 P@5 R@5 P@1 R@1 P@3 R@3 P@5 R@5
No ELMo 0.270 0.145 0.172 0.271 0.132 0.347 0.323 0.274 0.189 0.450 0.136 0.527
No Transformer 0.389 0.211 0.247 0.385 0.189 0.481 0.489 0.407 0.258 0.618 0.178 0.698
No Position 0.394 0.213 0.247 0.386 0.187 0.475 0.543 0.452 0.281 0.666 0.191 0.742
No Visual 0.370 0.201 0.230 0.362 0.176 0.450 0.492 0.409 0.258 0.615 0.178 0.695
No Pretraining 0.369 0.198 0.236 0.367 0.181 0.460 – – – – – –
Full Model 0.404 0.220 0.248 0.390 0.188 0.481 0.540 0.449 0.275 0.654 0.188 0.729

6 Evaluation Results

Three experiments are conducted to evaluate the
accuracy of BLING-KPE, the source of its effec-
tiveness, and its generalization ability.

6.1 Overall Accuracy

The overall extraction accuracy on OpenKP and
Query Prediction is shown in Table 6.

TFIDF works well on both tasks. Frequency-
based methods are often strong baselines in doc-
ument representation tasks. LeToR performs bet-
ter than its frequency feature TFIDF in OpenKP
but worse on Query Prediction. Supervised meth-
ods are not necessarily stronger than unsupervised
ones in KPE (Hasan and Ng, 2014). TextRank
does not work well in our dataset; its word graph
is likely misguided by the noisy contents.

PROD, our feature-based production system,
outperforms all other baselines by large margins
on OpenKP. It is expected as it is highly optimized
with a lot of engineering efforts. Nonetheless,
adapting a complex feature-based system to a new
task/domain requires extra engineering work; di-
rectly applying it to the Query Prediction task does
not work well. The feature-based Production sys-
tem also needs the title information; PROD (Body)
performs much worse than PROD.

CopyRNN performs relatively well on OpenKP,
especially on later keyphases. The main challenge
for CopyRNN is the low-quality and highly vari-

ant contents on the web. Real-world web pages are
not cohesive nor well-written articles but include
various structures such as lists, media captions,
and text fragments. Modeling them as a word
sequence is not ideal. The other differences are
not as significant: The vocabulary size and train-
ing data size on Query Prediction are similar to
CopyRNN’s KP 40K dataset; CopyRNN performs
better on keyphrase extraction than generation in
KP20k (Meng et al., 2017).

BLING-KPE outperforms all other methods by
large margins. The improvements are robust and
significant on both tasks, both metrics, and on all
depths. It achieves 0.404 P@1 on OpenKP and re-
covers 72% of clicked queries at depth 5 on Query
Prediction. The sources of this effectiveness is
studied in the next experiment.

6.2 Ablation Study

Table 7 shows ablation results on BLING-KPE’s
variations. Each variation removes a component
and keeps all others unchanged.

ELMo Embedding. We first verify the effec-
tiveness of using ELMo embedding by replacing
ELMo with the WordPiece token embedding (Wu
et al., 2016). The accuracy of this variation is
much lower than the accuracy of the full model
and others. The result is shown in the first row of
Table 7. The context-aware word embedding is a
necessary component of BLING-KPE.

Network Architecture. The second part of



5182

Table 8: Performance on DUC-2001. Neural mod-
els are evaluated directly on DUC-2001 without
fine-tuning on DUC labels. Results better than
TFIDF are marked Bold.

Method F1@10 Method F1@10
TFIDF 0.270 TopicRank 0.154

TextRank 0.097 KeyCluster 0.140
SingleRank 0.256 ExpandRank 0.269

Trained by Scientific Papers
CopyRNN 0.164 CorrRNN 0.173
BLING-KPE (No Visual, No Pretraining) 0.267

Trained by Open Domain Documents
BLING-KPE (No Visual, No Pretraining) 0.282

Table 7 studies the contribution of Transformer
and position embedding. Transformer contributes
significantly to Query Prediction; with a lot of
training data, the self-attention layers capture the
global contexts between n-grams. But on OpenKP,
its effectiveness is mostly observed on the first po-
sition. The position embedding barely helps, since
real-world web pages are often not one text se-
quence.

Beyond Language Understanding. As shown
in the second part of Table 7, both visual features
and search pretraining contribute significantly to
BLING-KPE’s effectiveness. Without either of
them, the accuracy drops significantly. Visual fea-
tures even help on Query Prediction, though users
issued the click queries and clicked on the docu-
ments before seeing its full page.

The crucial role of ELMo embeddings confirm
the benefits of bringing background knowledge
and general language understanding, in the format
of pre-trained contextual embedding, in keyphrase
extraction. The importance of visual features and
search weak supervisions confirms the benefits of
going beyond language understanding in modeling
real-world web documents.

6.3 Generalization Ability

This experiment studies the generalization ability
of BLING-KPE using the zero-shot evaluation on
DUC-2001 (Meng et al., 2017; Chen et al., 2018).
For fair comparisons, we use KP20K or OpenKP,
the two public datasets, to train the No Visual &
No Pretraining version of BLING-KPE, and eval-
uate on DUC-2001 directly. No labels in DUC are
used to fine-tune the neural models.

To adjust to DUC’s larger number of
keyphrases, we apply the trained BLING-
KPE on the 256-length chunks of DUC articles

Figure 3: An example of visual feature contribu-
tions in BLING-KPE. The big green blocks are
the keyphrases extracted with visual features. The
small read blocks are those extracted without vi-
sual information.

and merge the extracted keyphrases using simple
heuristics:

• Weighted Sum: Scores of the same keyphrase
from different chunks are summed with
weights 0.9p. P is the index of the chunk.

• Deduplication: A keyphrase is discarded if it
is a sub-string of a top 1/4 ranked keyphrase.

The results are shown in Table 8. BLING-KPE,
when trained with OpenKP, is the only neu-
ral method that outperforms TFIDF in this zero-
shot evaluation. It outperforms previous neu-
ral methods by more than 60%, and itself when
trained on KP20k, confirming the strong gener-
alization ability of BLING-KPE and the training
with OpenKP.

6.4 Discussion

Our manual case studies found many interesting
examples that illustrate the advantage of modeling
documents with visual information.

For example, in Figure 3, the page is anno-
tated with “Bostitch 651S5”, the product name,
and “Stapler”, the product type. Their salience
is highlighted by larger and bold fonts, which are
picked up by BLING-KPE. However, without the
visual information, the product ontology names
are extracted as keyphrases: they are meaningful
concepts, correlated with the page content, and po-
sitioned at the beginning of the document—only
that they appear less important in the web page by
design.
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7 Conclusion

This paper curates OpenKP, the first public large
scale open domain keyphrase extraction bench-
mark to facilitate future research keyphrase extrac-
tion research in real-world scenarios. It also de-
velops BLING-KPE, which leverages visual rep-
resentation and search-based weak supervision to
model real-world documents with variant con-
tents, appearances, and diverse domains.

Our experiments demonstrate the robust im-
provements of BLING-KPE compared to previous
approaches. Our studies showcase how BLING-
KPE’s language understanding, visual features
and search weak supervision jointly deliver this ef-
fective performance, as well as its generalization
ability to an unseen domain in zero-shot setting.

In the future, we plan to extend OpenKP with
more annotated documents and connect it with
downstream applications.
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