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Abstract

Everyone makes mistakes. So do human an-
notators when curating labels for named entity
recognition (NER). Such label mistakes might
hurt model training and interfere model com-
parison. In this study, we dive deep into one of
the widely-adopted NER benchmark datasets,
CoNLLO03 NER. We are able to identify la-
bel mistakes in about 5.38% test sentences,
which is a significant ratio considering that the
state-of-the-art test F; score is already around
93%. Therefore, we manually correct these la-
bel mistakes and form a cleaner test set. Our
re-evaluation of popular models on this cor-
rected test set leads to more accurate assess-
ments, compared to those on the original test
set. More importantly, we propose a simple
yet effective framework, CrossWeigh, to han-
dle label mistakes during NER model training.
Specifically, it partitions the training data into
several folds and train independent NER mod-
els to identify potential mistakes in each fold.
Then it adjusts the weights of training data ac-
cordingly to train the final NER model. Exten-
sive experiments demonstrate significant im-
provements of plugging various NER models
into our proposed framework on three datasets.
All implementations and corrected test set are
available at our Github repo !

1 Introduction

Named entity recognition (NER), identifying both
spans and types of named entities in text, is a
fundamental task in the natural language process-
ing pipeline. On one of the widely-adopted NER
benchmarks, the CoNLL0O3 NER dataset (Sang
and Meulder, 2003), the state-of-the-art NER per-
formance has been pushed to a F; score around
93% (Akbik et al., 2019), through building end-to-
end neural models (Lample et al., 2016; Ma and
*Equal Contributions.

'https://github.com/ZihanWangKi/
CrossWeigh

Hovy, 2016) and introducing language models for
contextualized representations (Peters et al., 2017,
2018; Akbik et al., 2018; Liu et al., 2018a). Such
high performance makes the label mistakes in man-
ually curated “gold standard” data non-negligible.
For example, given a sentence “Chicago won
game [ with Derrick Rose scoring 25 points.”, this
“Chicago”, representing the NBA team Chicago
Bulls, should be annotated as an organization.
However, when annotators are not careful or lack
background knowledge, this “Chicago” might be
annotated as a location, thus being a label mistake.

These label mistakes bring up two challenges to
NER: (1) mistakes in the test set can interfere the
evaluation results and even lead to an inaccurate
assessment of model performance; and (2) mis-
takes in the training set can hurt NER model train-
ing. Therefore, in this paper, we conduct empirical
studies to understand these mistakes, correct the
mistakes in the test set to form a cleaner bench-
mark, and develop a novel framework to handle the
mistakes in the training set.

We dive deep into the CoONLLO03 NER dataset,
and find label mistakes in about 5.38% test sen-
tences. Considering that the state-of-the-art Fy
score on this test set is already around 93%, these
5.38% mistakes should be considered as signifi-
cant. So we hire human experts to correct these
label mistakes in the test set. We then re-evaluate
recent state-of-the-art NER models on this new,
cleaner test set. Compared to the results on the
original test set, the re-evaluation results are more
accurate and stable. Therefore, we believe this new
test set can better reflect the performance of NER
models.

We further propose a novel, general framework,
CrossWeigh, to handle the label mistakes during
the NER model training stage. Figure 1 presents
an overview of our proposed framework. It con-
tains two modules: (1) mistake estimation: it iden-
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Figure 1: An overview of our proposed CrossWeigh framework. It can better handle label mistakes, identify low
quality annotations and conduct learning from a weighted training set.

tifies the potential label mistakes in training data
through a cross checking process and (2) mistake
re-weighing: it lowers the weights of these in-
stances during the training of the final NER model.
The cross checking process is inspired by the k-fold
cross validation; differently, in each fold’s training
data, it removes the data containing any of entities
that appeared in this fold. In this way, each sen-
tence will be scored by a NER model trained on
a subset of training data not containing any entity
in this sentence. Once we know where the poten-
tial mistakes are, we lower the weights of these
sentences and train the final NER model based on
this weighted training set. The final NER model is
trained in a mistake-aware way, thus being more
accurate. Note that, our proposed framework is
general and fits most of, if not all, NER models
that accept weighted training data.

To the best of our knowledge, we are the first to
handle the label mistake issues systematically in the
NER problem. We conduct extensive experiments
on both the original CoONLL03 NER dataset and
our corrected dataset. CrossWeigh is able to con-
sistently improve performance when plugging with
different NER models. In addition, we verify the
effectiveness of CrossWeigh on emerging-entity
and low-resource NER datasets. In summary, our
major contributions are the following:

e We correct label mistakes in the test set of the
CoNLLO3 NER dataset and re-evaluate popular
NER models. This establishes a more accurate
NER benchmark.

e We propose a novel framework CrossWeigh
to accommodate the mistakes during the model
training stage. The proposed framework fits most

of, if not all, NER models.

e Extensive experiments demonstrate the signifi-
cant, robust test F; score improvements of plug-
ging NER models into our proposed framework
on three datasets, not only CoNLLO03 but also
emerging-entity and low-resource datasets.

Reproducibility. We release both the corrected

test set and the implementation of CrossWeigh

framework?.

2 CoNLLO03 NER Re-Examination

The CoNLLO3 NER dataset is one of the widely-
adopted NER benchmark datasets. Its annotation
guideline is based on MUC Conventions® (Sang
and Meulder, 2003). Following this guideline,
the annotators are asked to mark entities of per-
son (PER), location (LOC), and organization (ORG),
while using an extra miscellaneous (MISC) type to
deal with entities that do not fall in these categories.
This dataset has been split into training, develop-
ment, and test sets, with 14041, 3250, and 3453
sentences, respectively.

2.1 Test Set Correction

In order to understand and correct the label mis-
takes, we have hired 5 human experts as annotators.
Before looking at the data, we first train the an-
notators by carefully going through the aforemen-
tioned guideline. During the correction process, we
strongly encourage the annotators to use search en-
gines for suspicious token spans. This helps them

https://github.com/ZihanWangKi/
CrossWeigh

*https://www-nlpir.nist.gov/related_
projects/muc/proceedings/ne_task.html
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Sentence Original labels

Corrected labels

Sporting Gijon 15447 1522 16 [Sporting] { ORG}

[Sporting Gijon]{ ORG}

SOCCER - JAPAN GET LUCKY WIN ,
CHINA IN SURPRISE DEFEAT .

[JAPAN ]{LOC}, [China]{PER}

[JAPAN]{LOC}, [China]{LOC}

NZ ’s Bolger says Nats to meet
NZ First on Sunday .

[NZ]{LOC}, [Bolger]{PER},
[Nats]{PER}, [NZ]{LOC}

[NZ]{LOC}, [Bolger]{PER},
[Nats]{ORG}, [NZ First]{ ORG}

Seagramd ace 20/11/96 5,000 Japan

[Seagramd] {MISC}, [Japan]{LOC}

[Seagramd ace]{MISC}, [Japan] {LOC}

Table 1: Typical Examples of Our Corrections on the CoNLLO0O3 NER dataset.

have more background knowledge. We also allow
annotators to look at the original paragraph con-
taining the sentence. This helps them have a better
understanding of the context.

For the whole test set, we randomly split the test
sentences between each pair combination of 5 an-
notators. In this way, each sentence in the test set
is checked by exactly two annotators. The inter-
annotator agreement is 95.66%. This is a reason-
able score, given that the inter-annotator agreement
in POS tagging annotations is about 97% (Man-
ning, 2011). After we collected all annotations, we
run a final round of verification on each sentence,
where the original annotation and the two anno-
tators’ are not all the same. In the end, we have
corrected label mistakes in 186 sentences, which is
about 5.38% of the test set.

Table 1 presents some typical examples of our
corrections. In the first sentence, as a sport team,
“Sporting Gijon” was not annotated completely. In
the second sentence, while “JAPAN” is correctly
marked as LOC, “China” is wrongly identified as
PER instead of LOC. One may notice that they both
represent sport teams. However, according to the
aforementioned guideline, country names should
be marked as LOC even when they are sports teams.
More details about this type of labels are discussed
in Section 5. In the third sentence, “NZ” is the
abbreviation of New Zealand. However, “Nat” and
“NZ First” in fact refer to political parties (i.e., New
Zealand Young Nationals and New Zealand First).
So they should be labelled as ORG. In the forth
sentence, looking at its paragraph, our annotators
figure out that this is a table about ships and vessels
loading items at different locations. Through com-
paring with other sentences in the context, such as
“Algoa Day 21/11/96 6,000 Africa”, our annotators
identified “Seagramd ace” as a vessel, thus marking
it as MISC. We have verified that there is indeed
a vessel called “Seagrand Ace” (‘“Seagramd ace”
might be a typo).

2.2 CoNLLO03 Re-Evaluation
NER Algorithms. We re-evaluate following popu-

Method Original Corrected

LSTM-CRF 90.64 (£0.23) 91.47 (£0.15)
LSTM-CNNs-CRF  90.65 (£0.57) 91.87 (£0.50)
VanillaNER 91.44 (£0.16) 92.32 (£0.16)
Elmo 92.28 (£0.19) 93.42 (£0.15)
Flair 92.87 (£0.08) 93.89 (£0.06)
Pooled Flair 93.14 (£0.14) 94.13 (£0.11)

Table 2: CoNLLO3 Re-Evaluation: Test F; scores
and standard deviations on both original and corrected
datasets. The results are based on 5 different runs.

lar NER algorithms:

e LSTM-CRF (Lample et al., 2016) incorporates
long short term memory (LSTM) neural network
with conditional random field (CRF). It also uses
a word-wise character LSTM.

e LSTM-CNNs-CRF (Ma and Hovy, 2016) has
a similar structure as LSTM-CREF, but captures
character-level information through a convolu-
tional neural network (CNN) over the character
embedding.

e VanillaNER (Liu et al., 2018a) also extends
LSTM-CRF and LSTM-CNNs-CRF by using
a sentence-wise character LSTM.

e ELMo (Peters et al., 2018) extends LSTM-CRF
and leverages pre-trained word-level language
models for better contextualized representations.

o Flair (Akbik et al., 2018) also aims for contextu-
alized representations, utilizing pretrained char-
acter level language models.

e Pooled-Flair (Akbik et al., 2018) extends Flair
and maintains an embedding pool for each word
to bring in dataset-level word embedding.

We use the implementation released by the authors
for each algorithm and report the performance on
original test set and corrected test set averaging 5
runs.

Results & Discussions. We re-evaluate the perfor-
mance of the NER algorithms on the corrected test
set. Their performance on the original test set is
also listed for the reference. From the results in Ta-
ble 2, one can observe that all models have higher
F; scores as well as smaller standard deviations on
the corrected test set, compared to those on the orig-

5156



inal test set. Moreover, LSTM-CREF has a similar
performance as LSTM-CNNs-CRF on the original
test set, but on average lower performance on the
corrected test set. This indicates that the corrected
test set may be more discriminative. Therefore, we
believe this corrected test set can better reflect the
accuracy of NER algorithms in a stable way.

3  Our Framework: CrossWeigh

In this section, we introduce our framework. It is
worth mentioning that our framework is designed to
be general and fits most of, if not all, NER models.
The only requirement is the capability to consume
weighted training set.

3.1 Overview

As we have seen in the Section 2, human curated
NER datasets are by no means perfect. Label
mistakes in the training set can directly hurt the
model’s performance. As shown in Figure 1, if
there are many similar mistakes like wrongly an-
notating “Chicago” in “Chicago won ...” as LOC
instead of ORG, the NER model will likely capture
the wrong pattern “LOC won” and make wrong
predictions in future.

Our proposed CrossWeigh framework auto-
mates this process. Figure 1 presents an overview.
It contains two modules: (1) mistake estimation:
it identifies the potential label mistakes in training
data through a cross checking process and (2) mis-
take re-weighing: it lowers the weights of these
instances for the NER model training. The work-
flow is summarized in Algorithm 1.

3.2 Preliminary

We denote the training sentences as
{z1,29,...,2,} where n is the number of
sentences. Each sentence z; is formed up of

a sequence of words. Correspondingly, the
label sequence for each sentence is denoted as
{y1,y2,...,yn}. Weuse D to denote the training
set, including both sentences and their labels. We
use w; to represent the weight of the ¢-th sentence.
In most NER papers, the weights are uniform, i.e.,
w; = 1.

We use f(D,w) to describe the training process
of an NER model using the training set D weighted
by w. This training process will return an NER
model M = f(D,w). During this training, the

Algorithm 1: Our CrossWeigh Framework
Input: A NER model f, the training set D =
{x1,...,zn}, {y1,- -, yn}), and
hyper-parameters k, ¢, and e.
Output: A final NER model
fori=1..ndo
\ ci+— 0,w; 1
for iter=1...tdo
Randomly partition D into & folds.
for Each fold D; do
Obtain test_entities;. (Eq. 2)
Build train_set;. (Eq. 3).
Train a NER model
M; = f(train_set;, w).
for Each z; € D; do
; < M;’s prediction on x;.
if Yj 75 Qj then
| ¢ +c+1
fori=1...ndo
| Compute w; (Eq. 4).
Return f(D, w).

weighted loss function is as below.
n
J = wi- UM (z:), i) (D
i=1

where [(M (x;),y;) is the loss function of predic-
tion M (z;) against its label sequence y;. Typically,
it is the negative log-likelihood of the model’s pre-
diction M (x;) compared to labeling sequence y;.

3.3 Mistake Estimation

Our mistake estimation module is designed to let
an NER model itself decide which sentences con-
tain mistake and which do not. We would like to
find sentences with label mistakes as many as pos-
sible (i.e. high recall), while keeping away from
wrongly identified non-mistake sentences (i.e. high
precision).

The basic idea of our mistake estimation module
is similar to k-fold cross validation, however, in
each fold’s training data, it further removes the
data containing any of entities appearing in this
fold. The details are presented as follows.

We first randomly partition the training data into
k folds: Dl, DQ, ey Dk

We then train £ NER models separately based on
these k folds. The ¢-th (1 < ¢ < k) NER model M;
will be evaluated on the sentences in the hold-out
fold D;.

During its training, we avoid any sentence that
may lead to “easy prediction” on this hold-out set.
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Original CoNLL03 Corrected CoNLL03
w/o CrossWeigh w/ CrossWeigh w/o CrossWeigh w/ CrossWeigh
VanillaNER 91.44 (+0.16) 91.78 (+0.06) 92.32 (4+0.16) 92.64 (+0.08)
Flair 92.87 (£0.08) 93.19 (£0.09) 93.89 (£0.06) 94.18 (£0.06)

Pooled-Flair 93.14 (£0.14)

93.43 (£0.06)

94.13 (£0.11) 94.28 (£0.05)

Table 3: Test F; scores and its standard deviations of models trained without or with CrossWeigh.

Therefore, we inspect every sentence in D; and get
the set of entities as follows.

test_entities; = U e; 2
ijDi

where e; is the set of named entities in sentence ;.
We only consider the surface name in this entity
set. That is, no matter “Chicago” is LOC or ORG, it
only counts as its surface name “Chicago”.

All training sentences that have entities included
in test_entities; will be excluded in training process
of the model M;. Specifically,

train_set; = {z;|e;Ntest_entities; = 0,1 < j < n}
3)
We call this step as entity disjoint filtering. The
intuition behind this step is that we want the model
to make prediction of an entity without prior infor-
mation of the entity itself from training. This will
be helpful to detect sentences that are inconsistent.

We train k models M; by feeding each train_set;
into f(-,-) with default uniform weight, and we
use each M; to make predictions for D; and check
for each sentence, whether the original label is the
same as the model output. In this way, if the trained
model M; makes correct predictions on some sen-
tences in D;, they are more likely mistake-free.
For those sentences that have labels disagreeing
with the model output, we mark them as potentially
mistake.

We run this mistake estimation module multiple
iterations (i.e. ¢ iterations) using different random
partitions. Then, for each sentence in the train-
ing set, we get ¢ estimations for it. We denote c;
(0 < ¢; < t) as the confidence that sentence x;
contains label mistakes. c¢; is defined as the the
number of potentially mistake indications among
all ¢ estimations.

The number of folds & plays the role of a trade-
off between the efficiency of the mistake estima-
tion process and the number of training examples
that can be used in each M;. When k becomes
larger, each fold D; will be smaller, thus leading
to a smaller size of test_entities;; correspondingly,
a larger train_set; will be picked. The model can

therefore be trained with more examples. However,
it also slows down the whole mistake estimation
process. On the CoNLLO3 NER dataset, we ob-
serve that £ = 10 leads to effective results, while
having a reasonable running time.

34

In the mistake reweighing module, we adjust
weight w; for each sentence z; that is marked
as potentially mistake in the mistake estimation
step. Here, we assign a weight w; to all sentences
marked, while the weights of other sentences re-
main 1. Specifically, we set Vi(1 < i < n),

Mistake Reweighing

w; = € (4)

where € is a parameter. In practice, it can be chosen
according to the quality of mistake estimation mod-
ule. Particularly, we first estimate the precision of
the detected mistakes of a single iteration. Let p
be the ratio of the number of true detected label
mistakes over the number of detected label mis-
takes. p can be roughly estimated through a manual
check of a random sample from the detected label
mistakes. Then, we choose ¢ = 1 — p, because
1 — p represents the fraction of these detected la-
bel mistakes that might be still useful during the
model training. Therefore, for the sentences that
are marked as potentially mistake in that iteration,
€ of them are actually correct. With more itera-
tions, the confidence of being correct lowers like a
binomial distribution, which is the reason that we
chose an exponential decaying weight function in
Equation 4.

4 Experiments

In this section, we conduct several experiments
to show effectiveness of our CrossWeigh frame-
work. We first evaluate the overall performance
of CrossWeigh on benchmark NER datasets, by
plugging it into three base NER models. Since we
have two modules in CrossWeigh, we then dive
into each module and explore different variants
and ablations. In addition, we further verify the ef-
fectiveness of CrossWeigh on two more datasets:
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an emerging-entity NER dataset from WNUT’17
and a low-resource language NER dataset of the
Sinhalese language.

4.1 Experimental Settings

Dataset. We use both the original and cor-
rected CoNLLO3 datasets. We follow the standard
train/dev/test splits and use both the train set and
dev set for training (Peters et al., 2017; Akbik et al.,
2018). Entity-wise F; score on the test set is the
evaluation metric.

Base NER Algorithm. We mainly choose Flair as
our base NER algorithm. Flair is a strong NER
algorithm using external resources (large corpus
to train a language model). While Pooled-Flair
has even better performance, its computational cost
refrains us from doing extensive experiments.
Default Parameters in CrossWeigh. For all
NER algorithms we experiment with, their default
parameters are used. For CrossWeigh parameters,
by default, we set £ = 10,¢ = 3, and e = 0.7. We
decide € = (.7 because among 100 randomly sam-
pled sentences with potentially mistake, we find
that 27 of them really contain label mistakes (i.e.,
the probability of one annotation to be correct is
roughly 70%). We use both train and development
set to train the models, and report average F; and
its standard deviation on both original test set and
our corrected test set across 5 different runs (Peters
etal., 2017).

4.2 Overall Performance

We pair CrossWeigh with our base algorithm (i.e.
Flair) and two best-performing NER algorithms
with or without language models in Table 2 (i.e.
Pooled-Flair and VanillaNER), and evaluate their
performance. As shown in Table 3, compared
with the three algorithms, applying CrossWeigh
always leads to a higher F; score and a compa-
rable, sometimes even smaller, standard deviation.
Therefore, it is clear that CrossWeigh can improve
the performance of NER models. The smaller
standard deviations also imply that the models
trained with CrossWeigh are more stable. All
these results illustrate the superiority of training
with CrossWeigh.

4.3 Ablations and Variants

We pick Flair as the base algorithm to conduct
ablation study.

Entity Disjoint Filtering. There is an entity dis-
joint filtering step, when we are collecting training

Method Original Corrected

w/o CrossWeigh 92.87 (£0.08)  93.89 (£0.06)

w/ CrossWeigh 93.19 (£0.09)  94.18 (£0.06)
— Entity Disjoint 92.88 (£0.11)  93.84 (£0.08)
+ Random Discard ~ 93.01 (£0.10)  93.94 (£0.10)

Table 4: Importance of Entity Disjoint Filtering.

data train_set; for the NER model M; during the

mistake estimation step. To study its importance,

we have done a few ablation experiments.

We have evaluated the following variants:

e Flair w/ CrossWeigh — Entity Disjoint: Skip
the entity disjoint filtering step.

e Flair w/ CrossWeigh + Random Discard: In-
stead of entity disjoint filtering, randomly dis-
card the same number of sentences from each
train_set; as it would do.

The results are listed in Table 4. One can easily
observe that without the entity disjoint filtering,
the F; scores are very close to the raw Flair model.
This demonstrates that the entity disjoint filtering is
critical to reduce the over-fitting risk in the mistake
estimation step. Also, our proposed entity disjoint
filtering strategy works more effective than random
discard. This further confirms the effectiveness of
entity disjoint filtering.

Variants in Computing ¢;. There is definitely

more than one way to determine ¢;. Let § be the

number of “potentially mistake”s among the ¢ esti-
mations, we can apply any of the following heuris-
tics:

e Ratio: c; is the number of “potentially mistake
(i.e. ¢; = 6). This is the method mentioned in
Section 3, and used by default.

e At Least One: ¢; is the indicator of at least one
estimation being “potentially mistake” (i.e. ¢; =
t <= §>=1).

e Majority: ¢; is the indicator of at least [t/2] +
1 estimations being “potentially mistake” (i.e.
i =t < 6 >=[t/2] +1).

o All: ¢; is the indicator of all ¢ estimations being
“potentially mistake” (i.e. ¢; =t <= § =1t).
We evaluate the performance of these heuristics
when used in CrossWeigh, as shown in Table 5.
There is not much difference across these heuristics,
while our default choice “Ratio” is the most stable.

E3]

4.4 Label Mistake Identification Results

Another usage of CrossWeigh is to identify poten-
tial label mistakes during label annotation process,
thus improving the annotation quality. This could
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Heuristic Original Corrected k Original Corrected
At Least One 93.10 (£0.10) 94.16 (£0.07) 2 92.11 (£0.24) 92.88 (£0.11)
Majority 93.20 (£0.09) 94.12 (£0.07) 5 93.12 (£0.08) 94.12 (£0.08)
All 93.16 (£0.09) 94.11 (£0.09) 10 93.19 (1:0.09) 94.18 (+0.06)
Ratio 93.19 (+0.09) 94.18 (£0.06)

Table 5: Different ¢; Estimation Heuristics.

Table 7: Different Numbers of Folds k.

t Original Corrected

1 93.09 (£0.14) 94.07 (£0.09)
5 93.23 (£0.10) 94.14 (£0.08)
3 93.19 (£0.09) 94.18 (£0.06)

Table 6: Different Numbers of Iterations t.

be also helpful to active learning.

Specifically in this experiment, we apply our
noise estimation module to the concatenation of
training and testing data. As we have manually cor-
rected the label mistakes in the testing set, we are
able to report the number of true mistakes among
the potential mistakes discovered in the test set.

The results are presented in Table 9. The po-
tential mistakes are the total number of mistakes
identified by CrossWeigh, and actual mistakes is
the true positives among all identifications. From
the results, we can see that when the base model is
Flair, CrossWeigh is able to spot more than 75%
of label mistakes, while maintaining a precision
about 25%. It is worth noting that 25% is a rea-
sonably high precision, given that the label mistake
ratio is only 5.38%. The 75% recall indicates that
CrossWeigh is able to identify most of the label
mistakes, which are extremely valuable to improve
the annotation quality.

4.5 Parameter Study

We study how CrossWeigh performs with dif-
ferent hyper-parameters, i.e., ¢ (the number of it-
erations that we run mistake estimation), k (the
number of folds in mistake estimation), and ¢ (the
weight scaling factor of identified potential mis-
takes).

In principle, a larger ¢ usually gives us a more
stable mistake estimation. However, a larger ¢ also
requires more computation resources. In our exper-
iments (see Table 6), we find that ¢ = 3 provides a
good enough result.

Specifically, during mistake estimation, we have
to choose the number of folds to partition the data.
The more partitions made, the smaller each D; is
and the fewer sentences will be filtered, leading
to more training data train_set; and better trained

€ Original Corrected

0.3 92.79 (£0.14) 93.68 (£0.15)
0.5 93.21 (£0.09) 94.18 (£0.07)
0.9 93.01 (£0.10) 93.96 (£0.09)
0.7 93.19 (£0.09) 94.18 (£0.06)

Table 8: Different Weight Adjustments e.

M. On the other hand, this is at the cost of higher
computational expense. As shown in Table 7, we
observe that £ = 5, k = 10 are significantly better
than £ = 2. In fact, when k = 2, each train_set;
has only around 5000 sentences and 1500 entities
inside. These numbers become 7000 and 4000
when k = 5, and 9000 and 7000 when £ = 10.

As we mentioned before, the value € can be cho-
sen by estimating the quality of mistake estimation.
Table 8 presents some results when other values
are used. € = 0.3 leads to the worst performance.
Since our estimation does not have high precision,
assigning e to a low value like 0.3 may not be a
good choice. Interestingly ¢ = 0.5 performs on par
with e = 0.7, and even slightly better in the orig-
inal test set. We hypothesize that this is because
there are some ambiguous sentences that we did
not count during estimating the quality of mistake
estimation, see Section 5, and the actual precision
could be higher.

4.6 Other Datasets

To show the generalizability of our method across
domains and languages, we further evaluate
CrossWeigh on an emerging-entity NER dataset
from WNUT’17 and a Sinhalese NER dataset
from LORELEI*. Sinhalese is a low-resource,
morphology-rich language. For WNUT 17, we
use the Flair as our base NER algorithm. For
Sinhalese, we use BERT (Devlin et al., 2018) fol-
lowed by a BILSTM-CRF as our base NER al-
gorithm. We use the same parameters as used
in the previous CoNLLO3 experiments, namely
k=10,t=3,e=0.7.

The results averaged across 5 runs are reported
in Table 10. One can observe quite similar results
as those in the previous CoNLL03 experiments.

‘LDC2018E57
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Algorithm Potential Mistakes Actual Mistakes Precision Recall Fl1
Flair 573.0 144.0 0.2513 0.7742 0.3794
VanillaNER 821.67 146.33 0.1781 0.7867 0.2904

Table 9: Quality of noise estimation. The number of true mistakes, based on our manual correction, is 186. The

potential mistakes are counted based on average of 3 runs.

Dataset w/o CrossWeigh w/ CrossWeigh
WNUT’17 48.96 (£0.97) 50.03 (£0.40)
Sinhalese 66.34 (£0.34) 67.68 (£0.21)

Table 10: Applying CrossWeigh on other datasets

Training with CrossWeigh leads to a significantly
higher F1 and a smaller standard deviation. This
suggests that CrossWeigh works well in other
datasets and languages.

5 Case Studies

Test Set Correction. Despite the label mistakes
that we have corrected, we also find some am-
biguous but consistent cases. For instances, (1)
All NBA/NHL divisions such as “CENTRAL DI-
VISION”, “WESTERN DIVISION” were anno-
tated as MISC, while all European leagues, such
as “SPANISH FIRST DIVISION” and “ENGLISH
PREMIER LEAGUE”, are not marked as MISC
correctly — only “SPANISH” and “ENGLISH” are
labelled as MT SC. And (2) “Team A at Team B” is
a way to say “Team A” as an away team playing
with Team B as a home team. However, in almost
all cases (only 1 exception out of more than 100),
“Team A” was labelled as ORG while “Team B” was
labelled as LOC. For example, in “MINNESOTA
AT MILWAUKEE”, “NEW YORK AT CALIFOR-
NIA”, and “ORLANDO AT LA LAKERS”, the
second sports team “MILWAUKEE”, “CALIFOR-
NIA” and “LA LAKERS” were always labelled
as LOC. Because these parts behave consistently
and generally follow the annotation guideline, we
didn’t touch them during the test set correction.

CrossWeigh Framework. The mistakes in the
training set can harm the generalizability of the
trained model. For example, in Table 11, the origi-
nal training sentence “Hapoel Haifa 3 Maccabi Tel
Aviv 1” contains a label mistake, because “Maccabi
Tel Aviv” is a sports team but was not annotated
completely. Interestingly, there is a similar sen-
tence in the test set — “Hapoel Jerusalem 0 Maccabi
Tel Aviv 4”. In all 5 different runs of the original
Flair model, they failed to predict correctly that

“Maccabi Tel Aviv” in the test sentence as ORG be-
cause of the label mistake in the training sentence,
even though “ORG number ORG number” is an ob-
vious pattern in the training set. In CrossWeigh,
this label mistake in the training set was detected
in all £ = 3 iterations and therefore assigned a
very low weight during training. After that, in all
5 different runs of Flair w/ CrossWeigh, they suc-
cessfully predict that “Maccabi Tel Aviv” is ORG
as a whole.

6 Related Work

In this section, we review related works from three
aspects, mistake identification, cross validation &
boosting, and NER algorithms.

6.1 Mistake Identification

Researchers have noticed the label mistakes in so-
phisticated natural language processing tasks for
a while. For example, it is reported that the inter-
annotator agreement is about 97% on the Penn
Treebank POS tagging dataset (Manning, 2011;
Subramanya et al., 2010).

There are a few attempts towards detecting la-
bel mistakes automatically. For example, Naka-
gawa and Matsumoto (2002) designed a support
vector machine-based model to assign weights to
examples that were hard to classify in the POS tag-
ging task. Helgadottir et al. (2014) further applied
previous detection models and manually corrected
Icelandic Frequency Dictionary (Pind et al., 1991)
POS tagging dataset. However, these two meth-
ods are specifically developed for POS tagging and
cannot be directly applied to NER.

Recently, Rehbein and Ruppenhofer (2017) ex-
tends variational inference with active learning to
detect label mistakes in “silver standard” data gen-
erated by machines. In this paper, we focus on
detecting label mistakes in “gold standard” data,
which is a different scenario.

6.2 Cross Validation & Boosting

Our mistake estimation module shares some simi-
larity with cross validation. Applying cross valida-
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Training Set

Test Set

Text Hapoel Haifa 3 Maccabi Tel Aviv 1

Hapoel Jerusalem 0 Maccabi Tel Aviv 4

Original Annotations

[Hapoel Haifa]{ORG}, [Tel Aviv]{ORG}

[Hapoel Jerusalem]{ORD}, [Maccabi Tel Aviv]{ORG}

Correct Annotations

[Hapoel Haifa]{ORG}, [Maccabi Tel Aviv]{ORG}

[Hapoel Jerusalem]{ORD}, [Maccabi Tel Aviv]{ORG}

Action Result
Flair Assumes this sentence is equally reliable as others.  [Hapoel Jerusalem]{ ORD}, [Tel Aviv]{ORG}
Flair w/ CrossWeight Lowers the weight of this sentence as mistakes. [Hapoel Jerusalem]{ORD}, [Maccabi Tel Aviv]{ORG}

Table 11: Case Study on the CoNLLO3 dataset. Errors are marked with red

tion to the training set is the same as our mistake
estimation module, except that we have an entity
disjoint filtering step. Experiments in Table 4 show
that this step is crucial to our performance gain.
The choice of ten folds also stems from cross vali-
dation (Kohavi, 1995).

Another similar thread of work is boosting, such
as Adaboost (Freund et al., 1999; Schapire and
Singer, 1999). For example, Abney et al. (1999)
has applied Adaboost on the Penn Treebank POS
tagging dataset and gained encouraging results on
model performance. In boosting algorithms, the
training data is assumed to be perfect. Therefore,
it trains models using the full training set and then
increases the weights of training instances that fails
the current model in the next round of learning. In
contrast, we decrease the weights of sentences that
differ from the model built upon the entity disjoint
training set. More importantly, our framework is a
better fit for neural models, because they can likely
overfit the training data and thus being bad choices
as weak classifiers in boosting.

6.3 NER Algorithms

Neural models have been widely used for Named
Entity Recognition, and the state-of-the-art models
integrate LSTMs, conditional random field and lan-
guage models (Lample et al., 2016; Ma and Hovy,
2016; Liu et al., 2018b; Peters et al., 2018; Akbik
et al., 2018). In this paper, we focus on improving
the annotation quality for NER, and our method
has a big potential to help other methods, especially
for noisy datasets (Shang et al., 2018).

7 Conclusion & Future work

In this paper, we explore and correct the label mis-
takes in the CoNLLO3 NER dataset. Based on the
corrected test set, we re-evaluate most of recent
NER models. We further propose a novel frame-
work, CrossWeigh, that is able to detect label mis-
takes in the training set and then train a more robust
NER model accordingly. Extensive experiments

demonstrate the effectiveness of CrossWeigh on
three datasets and also indicate the potentials of us-
ing CrossWeigh to improve the annotation quality
during the label curation process.

In future, we plan to extend our framework into
an iterative setting, similar to those boosting algo-
rithms. The bottleneck of doing this lies in the ef-
ficiency problems of training multiple deep neural
models hundreds of times. One solution to over-
come it is to apply meta learning. We can first train
a meta model and only fine-tune on different train-
ing data on each fold. In this way, we can identify
label mistakes more accurately and obtain a series
of weighted models at the end.
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