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Abstract

This paper addresses the problem of infer-
ring the fine-grained type of an entity from
a knowledge base. We convert this problem
into the task of graph-based semi-supervised
classification, and propose Hierarchical Multi
Graph Convolutional Network (HMGCN), a
novel Deep Learning architecture to tackle this
problem. We construct three kinds of con-
nectivity matrices to capture different kinds
of semantic correlations between entities. A
recursive regularization is proposed to model
the subClassOf relations between types in
given type hierarchy. Extensive experiments
with two large-scale public datasets show
that our proposed method significantly outper-
forms four state-of-the-art methods.

1 Introduction

Nowadays, Knowledge Base (KB for short) at-
tracts increasing research interests in various ar-
eas. One of the fundamental components in KB
is the information of entity type, which clusters a
group of entities with same properties, and is the
glue that holds our mental world together (Mur-
phy, 2004). Traditional entity typing focuses
on a small set of types, such as Person, Loca-
tion and Organization (Ratinov and Roth, 2009;
Nadeau and Sekine, 2007), while Fine-Grained
Entity Typing assigns more specific types to an en-
tity, which normally forms a type-path in the type
hierarchy in KB (Ren et al., 2016). For example,
Messi is classified as having the path of following
types: FootballP layer ⊂ Athlete ⊂ Person.
Types in KB are usually organized as a hierar-
chical structure, namely type hierarchy. Unfortu-
nately, most KBs are incomplete and lack of type
information. For example, in DBpedia, the aver-
age number of types is only 2.9 (5,044,223 enti-
ties with 14,760,728 types), while 36.53% entities
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do not have type information. As Figure 1 shows,
for each unlabeled entity, we will fully utilize its
textual description, category and property to pre-
dict missing types. In this paper, we aim at assign-
ing Fine-grained Entity Typing for entities in KB
(such as Wikipedia and DBpedia).

Figure 1: Entity (i.e., Yao Ming) with textual de-
scription (with anchor text in red), property (e.g.,
bornIn Shanghai) and category (e.g., Houston Rock-
ets players). Yao Ming is associated with a type-
path: BasketballP layer ⊂ Athlete ⊂ Person ⊂
Agent ⊂ Thing

Many researches have been carried out in this
field. State-of-the-art methods normally learn dis-
tributed representation for each entity, and apply
a multi-label classification model to make type in-
ference. For example, (Neelakantan and Chang,
2015) and (Xu et al., 2016) exploit various kinds
of information to construct the feature represen-
tation of an entity, such as entity textual descrip-
tion, property and category. After that, a pre-
dict function is learned to infer whether entity e
is an instance of type t. (Yaghoobzadeh et al.,
2017) focus on the names of entities and the con-
text of entity mentions (in text), and design two
scoring models for pairs of entities and types. All
these works ignore the internal relations among
entities, and assign types for each entity in isola-
tion. (Jin et al., 2018) viewed the internal relations



4970

among entities as the structural information, and
constructed an Entity Graph, further proposed a
network embedding framework to learn the corre-
lation among entities. It will be profitable to en-
rich entity features to entity graph structures, as
recent studies have suggested to bring both node
feature and graph structure information in a convo-
lutional manner (Defferrard et al., 2016; Atwood
and Towsley, 2016). Among these works, graph
convolutional network (GCN) is the most widely-
used model which can directly operate on graphs
with arbitrary sizes and shapes (Kipf and Welling,
2016). The inputs of a GCN are feature vectors
of nodes and graph structure. The most signifi-
cant aspect of GCN is information diffusion, with
which node’s feature vector can be enriched by all
the feature vectors of its neighbors.

Here, we convert entities in KB into three
semantic graphs, each encoding a specific kind
of correlation among entities, as follows: Aco

a graph of the topical co-occurrence relations
among entities, Acat a category-based graph en-
coding the category-proximity between entities,
and Aprop a property-based graph encoding the
property-proximity between entities. We propose
Hierarchical Multi Graph Convolutional Network
(HMGCN), a novel deep learning architecture
consisting of three Graph Convolutional Networks
(GCNs): GCNco and GCNcat and GCNprop.
Each connectivity matrix is fed to its correspond-
ing GCN model, and the three GCN models are
learned by shared parameters and consistency reg-
ularization. We adopt a simple and effective re-
cursive regularization to deal with subClassOf re-
lations between types. The main contributions of
this paper are as follows:

• Graph convolutional network is applied for
fine-grained entity typing task, which effec-
tively integrates entity feature and structural
information.

• Multi connectivity matrices are constructed
to encode different kinds of semantic relat-
edness between entities. A recursive regular-
ization is proposed to model subClassOf re-
lations between types.

• Extensive experiments show that our pro-
posed method significantly outperforms four
state-of-the-art methods, with 1.7% and
1.3% improvement in Mi-F1 and Ma-F1 (on
FIGER dataset), respectively.

The rest of this paper is organized as follows.
Section 2 formally defines the problem of Fine-
Grained Entity Typing in knowledge bases. Sec-
tion 3 describes the proposed approach in de-
tail. Section 4 reports a number of experiments
with evaluations. Section 5 outlines some related
works. Section 6 concludes our work.

2 Problem Formulation

In this section, we formally define the problem of
Fine-Grained Entity Typing in KB.

Definition 1 Knowledge Base KB = (E , T ,R),
where E , T and R are sets of entities, types and
isA relations, respectively. |E| = N and |T | =
K. R = Ri ∪ Rs consists of instanceOf and
subClassOf triples. Ri = {(ei, isA, tj)|ei ∈
E , tj ∈ T } collects all instanceOf triples and
Rs = {(ti, isA, tj)|ti, tj ∈ T } collects all sub-
ClassOf triples.

Note that not each entity in a knowledge base
KB is assigned with types. We split the entity set
E into two subsets: E l and Eu, E = E l ∪ Eu,
E l ∩ Eu = ∅. E l denotes the entity set whose
member is assigned with type information. Eu de-
notes the entity set whose member has no type in-
formation. |E l| = N l, |Eu| = Nu. Types in T
form a tree or a directed acyclic graph (DAG) via
subClassOf relations, we refer it as type hierarchy
H = (T ,Rs).

For each entity, we distinguish three kinds of
features, namely, Text Description, Category, and
Property, which are beneficial to Fine-Grained
Entity Typing task.

• Text Description is a succinct summary of an
entity, providing valuable clues to predict en-
tity types. As Figure 1 shows, there are a
large number of anchor texts in textual de-
scription.

• Category refers, in Wikipedia, actually to
tags/topics that group entities on similar sub-
jects. For instance, Yao Ming in Wikipedia
has category Olympic basketball players of
China, which is the topic of the entity instead
of its type. Category can be a useful informa-
tion to infer missing type information.

• Property of entities is important cue in type
inference. For instance, from Yao Ming’s
property playing position, one may infer that
Yao Ming is an Athlete.
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Besides entity features above, there are many
kinds of semantic correlations between entities,
which organize entities into graph structures. We
refer it as entity graph. Each kind of semantic
correlation corresponds to a kind of connectivity
matrix. There are many ways to construct en-
tity graph via different connectivity manner, which
will be discussed in Section 3.

Definition 2 Entity Graph G = (A,X,Y). A ∈
RN×N is the connectivity matrix representing a
kind of link relation between entities. X ∈ RN×M

is the feature matrix representing inherent features
for all entities, where M is the number of features.
Each row in X refers to an entity’s feature vector
Xi. X can either be binary or take any real value.
Y ∈ RN l×K is the type matrix collecting type in-
formation for entities in E l. Each row in Y refers
to the instanceOf relations between an entity and
all types. Yij = 1 if ei has been assigned with
type tj , otherwise 0.

The task of Fine-Grained Entity Typing can be
formally described as follows: Given a partially-
labeled Entity Graph G = (A,X,Y), we aim at
learning a type predictor from Y, which compre-
hensively takes graph structure and entity features
into account. Then we utilize the learned type
predictor to predict the missing instanceOf rela-
tions in Eu, i.e., whether (ei, instanceOf, tj) is
true. In this way, we convert the task of Fine-
Grained Entity Typing into a task of graph-based
semi-supervised classification.

3 Hierarchical Multi Graph
Convolutional Network (HMGCN)

State-of-the-art methods convert entities in KB
into entity graph, then apply graph-based algo-
rithm. The difficulties lie in two facts:

• Firstly, it is hard to effectively integrate entity
features and structural information. Although
network embedding methods, in terms of at-
tributed network embedding, can take both
graph structure and features into considera-
tion (Huang et al., 2017), the node features
are usually only served as auxiliary informa-
tion in structure learning (Yang et al., 2016;
Liao et al., 2017).

• Secondly, it is not easy to effectively in-
tegrate different connectivity matrix which

capture different kinds of structural informa-
tion (Wang et al., 2018; Zhuang and Ma,
2018).

We propose a Hierarchical Multi GCN model
(HMGCN) to encode heterogeneous structural
information in an ensemble manner, as illus-
trated in Figure 2. We construct three undi-
rected entity graphs to capture different kinds
of semantic correlations between entities, i.e.,
co-occurrence graph Aco, category-based graph
Acat, and property-based graph Aprop. Aco en-
codes the topical relevance between entities, and
is derived from textual anchor texts. Acat is con-
structed through similarity computation based on
category information, based on the assumption
that entities with similar categories tend to have
the same type. In the same way, we construct
property-based graph Aprop. Each entity graph
is fed to corresponding GCN model, namely,
GCNco, GCNcat and GCNprop. These models
use shared parameters and unsupervised consis-
tency regularization, so that they can jointly con-
sider opinions from three semantic perspectives.
To achieve this, a simple and effective recursive
regularization is adopted to deal with the subClas-
sOf relations between types.

3.1 GCN-Based Entity Type Classification

GCN model consists of multiple stacked GCN lay-
ers. Given the input feature matrix X ∈ RN×M

and adjacency matrix A ∈ RN×N , the output of
the i-th hidden layer of the network Z(i) is defined
as:

Z(i) = σ(D̃−
1
2 ÃD̃−

1
2Z(i−1)W(i)) (1)

Ã = A + In is the adjacency matrix with self-
loops, where In ∈ RN×N is the identity matrix.
D̃ii =

∑
j Ãij . Accordingly, D̃−

1
2 ÃD̃−

1
2 is the

normalized adjacency matrix. Z(i−1)
A is the output

of the (i−1)-th layer, and Z(0) = X. W(i) are the
trainable parameters of the network, and σ(·) de-
notes an activation function (e.g., ReLU, Sigmoid).
A detailed explanation of GCN model is presented
in the original work (Kipf and Welling, 2016).

Since Fine-grained Typing is a multi-label clas-
sification problem. The final layer further con-
nects to a set of K Sigmoid functions, which corre-
spond to the K types in the type hierarchy. Given
the set of labeled entities E l, our model optimizes
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Figure 2: Framework of HMGCN. We convert entities in KB into multi kinds of semantic graphs. The co-
occurrence graph Aco is constructed from anchor text in textual description. The category-based graph Acat is
derived from category proximity. The property-based graph Aprop is derived from property proximity. Each
graph is fed to corresponding GCN model with same feature matrix X. The three GCN models are learned by
sharing parameters and consistency regularization. A hierarchical regularization is used to deal with the subClassOf
relations between types.

the cross-entropy between the true type distribu-
tion and the predicted distribution.

Ls = −
Nl∑
i=1

K∑
j=1

Yi,j ln Ẑi,j + (1−Yi,j) ln (1− Ẑi,j)

(2)

Where Yi,j indicates whether entity ei belongs to
type tj . Ẑi,j refers to the probability of GCN pre-
diction.

The role of D̃−
1
2 ÃD̃−

1
2Z(i−1)W(i) is to ex-

actly conduct a 1-hop diffusion process in each
layer. Namely, a node’s feature vector is enriched
in the way of linearly adding all the feature vectors
of its neighbors. With more hidden layers, an en-
tity’s feature can diffuse to further entities (2-hop,
3-hop and so on). Research shows that there’s no
significant increase when the number of layers is
higher than 3 (Kipf and Welling, 2016). Here, we
assume adjacency matrix A and feature matrix X
are given. In the next part of this section, we show
how to compute A and X.

3.2 Connectivity Matrix Designing

In Knowledge Graphs, there are large numbers of
descriptive anchor texts that are helpful for type
inference. For an entity e, CXT (e) is an entity
set which contains all entities occur in its textual
description. For example in Figure 1, Houston
Rockets is in CXT (Y aoMing). If entity ei ∈
CXT (ej), we can say that ei occurs in ej’context
or ej cites ei in its textual description. These
are co-occurrence information among entities, and
can be explicitly extracted and represented by the

connectivity matrix Aco.

Aco[i, j] =

{
1 ei ∈ CXT (ej) or ej ∈ CXT (ei)
0 otherwise

(3)
Aco can capture co-occurrence relations,

though not precise enough. For example, Houston
Rockets and NBA occur in Yao Ming’s context, but
they do not belong to same type.

Besides Aco, we calculate the correlation be-
tween entities via category information. If en-
tity ei and ej share common categories, ei and ej
will be likely belong to a same type. For exam-
ple in Figure 2, both Houston Rockets and Shang-
hai Sharks have category Basketball team clubs,
they have same type BasketballTeam. We con-
struct Acat, and use Jaccard similarity coefficient
to calculate each element Acat[i, j]:

Acat[i, j] =
|Cat(ei) ∩ Cat(ej)|
|Cat(ei) ∪ Cat(ej)|

(4)

in which, Cat(e) is the category set of entity e. In
the same way, we can calculate the correlation be-
tween entities via property information, and con-
struct Aprop, whose element is calculated as fol-
lows.

Aprop[i, j] =
|Prop(ei) ∩ Prop(ej)|
|Prop(ei) ∪ Prop(ej)|

(5)

in which Prop(e) is the property set of entity e.
Each connectivity matrix is fed to its corre-

sponding GCN model, i.e., GCNco, GCNcat and
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GCNprop, respectively. As mentioned in Sec-
tion 2, each entity is associated with text descrip-
tion, category and property. We used category and
property information to construct connectivity ma-
trix, therefore, words appeared in the text descrip-
tion of an entity can be approximately viewed as
features of this entity. We apply fastText method,
which treats the average of word/n-grams embed-
dings as entity feature (Joulin et al., 2016), and
construct the feature matrix X. As shown in Fig-
ure 2, both GCNco, GCNcat and GCNprop take X
as input feature matrix.

3.3 Parameters Sharing and Consistency
Regularization

The success of our model largely relies on the
strategy that three GCN models share common
parameters (i.e., neural network weights W(i) in
Eqs. 1), as shown in Figure 2. By doing so, our
model (which is characterized by the parameters
W(i)) can simultaneously consider the knowledge
encoded in Aco, Acat and Aprop. The predic-
tion of GCNco and GCNcat are denoted as Ẑco

and Ẑcat ∈ RN×K , respectively. To jointly con-
sider the opinions from GCNco and GCNcat, we
apply an unsupervised regularizer for the ensem-
ble. We minimize the mean squared difference be-
tween Ẑco and Ẑcat for all N entities.

Lc1 =
N∑
i=1

∥∥∥Ẑcat
i,: − Ẑco

i,:

∥∥∥2 (6)

The prediction of GCNprop is denoted as Ẑprop.
In the same way, we minimize the mean squared
differences between Ẑco and Ẑprop over all N en-
tities.

Lc2 =

N∑
i=1

∥∥∥Ẑprop
i,: − Ẑco

i,:

∥∥∥2 (7)

Our model can jointly consider the opinions of
GCNco, GCNcat and GCNprop. Although shar-
ing the same parameters W(i), three GCN mod-
els utilize different connectivity matrices as in-
put, which capture different semantic correlations
between entities. This difference may cause the
predictions of three GCN models to differ. Our
model is expected to give a consistent prediction
via the proposed unsupervised consistency regu-
larizations, i.e., minimizing Eqs. 6 and 7. As a
result, the learned parameter matrix W(i) consid-
ers the judgments from both GCNco, GCNcat and
GCNprop.

3.4 Recursive Hierarchical Regularization
Leaf nodes (in type hierarchy) may have insuffi-
cient training examples. In that case, decisions
can be regularized by its parent, if a type hier-
archy is available. We introduce dependency re-
lations among types to improve the classification
performance. Similar to (Peng et al., 2018; Gopal
and Yang, 2013), we use a recursive regularization
over the final layer. Two types shall have similar
embeddings, if they are close in a graph. In par-
ticular, types that are related by subClassOf re-
lation shall have similar embeddings. For exam-
ple, in Figure 1, there is an edge between Athlete
and BasketballPlayer, so the parameters of the two
types could be similar to each other. Assuming
there are n hidden layers, the last layer parameter
matrix W(n) can be regarded as the type embed-
ding matrix, each row in W(n) refers to a type rep-
resentation. Let C(t) refer to the sub-type set of t
(t’s children in the hierarchy). We use the follow-
ing recursive regularization term to regularize the
parameter of each type:

Lhie =
K∑
i=1

∑
j∈C(ti)

1

2

∥∥∥W(n)
i,: −W

(n)
j,:

∥∥∥2 (8)

3.5 Model Training
We calculate the supervised loss over all labeled
entities for GCNco (Eqs. 2). Although Zco

i is
regarded as the final type prediction result, our
model can consider the opinions from three GCN
models via parameters sharing and consistency
regularization. The total loss is the sum of super-
vised loss, two consistency regularizations and re-
cursive regularization.

Loss = Ls + λ(t)(Lc1 + Lc2) + λ′ Lhie (9)

in which λ(t) is a dynamic weight function, and
λ′ is chosen among a fixed set based on perfor-
mance on the dev set. At the beginning of the
training process, λ(t) is small, the loss function is
mainly dominated by Ls. HMGCN is inclined to
agree with GCNco when making decisions, which
encodes co-occurrence relation between entities.
λ(t) increases as time goes on, our model will
obtain posterior distribution over the types using
GCNco, and λ(t) will force our model to consider
simultaneously the knowledge encoded in GCNcat

and GCNprop. GCNcat and GCNprop play more
important role when making decision. We adopt
Adam (Kingma and Ba, 2014) to minimize the
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above loss functions. For each ei ∈ Eu, we use
Zco
i as the type prediction result.

4 Experiments

4.1 Datasets and Metrics

Datasets: There are two public large-scale
datasets available for Fine-Grained Entity Typing
inKB, FIGER1 and DBpedia (Zhang et al., 2015).
FIGER is a widely used dataset which is proposed
by Yaghoobzadeh et al.. The DBpedia dataset is
constructed by picking 14 non-overlapping types
for text classification originally, we expand these
14 types and form a hierarchy. For each dataset,
we extract entity feature from DBpedia2. For
FIGER and DBpedia, we split entities into train
(50%), dev (20%) and test (30%) sets. Since DB-
pedia dataset contains 630,000 entities, which is
too big for computation, we divide it equally into
three parts (i.e., DB-1, -2 and -3). Table 1 shows
some statistics about the two datasets. Our source
code is available3 for reference. More detailed in-
formation can be found there.

Table 1: Statistics of the datasets.

Dataset FIGER DB-1 DB-2 DB-3

#Entities 200,000 210,000 210,000 210,000
#Types 102 48 48 48

Metrics: To evaluate the performance of our
proposed method, we use Accuracy (Strict-F1),
Micro-averaged F1 (Mi-F1) and Macro-averaged
F1 (Ma-F1), which have been used in many fine-
grained typing systems (Ling and Weld, 2012; Ren
et al., 2016; Yaghoobzadeh et al., 2017).

4.2 Methods for Comparison

Baseline: we compare HMGCN with four
state-of-the-art of methods and three variants of
HMGCN:

• CUTE: (Xu et al., 2016) utilizes three kinds
of entity features: category, property and
property-value pair, and employs a hierarchi-
cal multi-label classification method.

• MuLR: (Yaghoobzadeh and Schütze, 2017)
applies embeddings of words, entities and

1https://github.com/yyaghoobzadeh/figment
2http://wiki.dbpedia.org/downloads-2016-10
3https://github.com/SIGKDD/HMGCN

types in entity typing task, and uses multi-
level representations of entities via character,
word, and entity embedding technologies.

• FIGMENT: (Yaghoobzadeh et al., 2017) in-
troduces global model and context model to
provide complementary information for en-
tity typing.

• APE: (Jin et al., 2018) applies an attributed
and predictive entity embedding method to
learn entity representations. In a way, it takes
graph structure and entity features into ac-
count.

• HMGCN’s variants: HMGCNno cat

only use GCNco and GCNprop to make
type inference. HMGCNno prop only use
GCNco and GCNcat to make type infer-
ence. HMGCNno co only use GCNcat

and GCNprop to make type inference.
HMGCNflat ignores the correlation be-
tween types, i.e., removes hierarchical
recursive regularization.

Parameter Settings: HMGCN is implemented
based on the original GCN model (Kipf and
Welling, 2016). In our implementation, both
GCNco, GCNcat and GCNprop have two hidden
layers. Namely, there are two separate parameter
vectors, W(1) and W(2), that need training.
Table 2 presents detailed information about the
implementation of our method for each dataset,
including (1) number of hidden units; (2) dropout
rate; and (3) learning rate η. λ′ is chosen among
{0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8},
we found λ′ = 0.2 achieves best performance.
We set λ(t) in several ways, which is discussed
in Section 4.4. We train all models for a max-
imum of 200 epochs (training iterations) using
Adam (Kingma and Ba, 2014) and early stopping
with a window size of 10 to minimize loss
functions.

Table 2: Values of the Hyper-Parameters in HMGCN
model.

Dataset W(1) W(2) Dropout rate Learning rate

DBpedia 32 48 30% 0.001
FIGER 64 102 10% 0.002

https://github.com/yyaghoobzadeh/figment
http://wiki.dbpedia.org/downloads-2016-10
https://github.com/SIGKDD/HMGCN
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4.3 Overall Comparison Results

Table 3 and 4 shows the overall performance on
two datasets and we have the following conclu-
sions:

Comparison with Entity Typing methods. Our
model significantly outperforms the state-of-the-
art entity typing methods over all datasets.
HMGCN outperforms the best baseline with 1.7%
and 1.3% improvement in Mi-F1 and Ma-F1 on
FIGER dataset, 3.2% and 3.6% improvement in
Mi-F1 and Ma-F1 on DB-1 dataset, 3.9% and
3.5% improvement in Mi-F1 and Ma-F1 on DB-
2 dataset, 3.7% and 3.8% improvement in Mi-F1
and Ma-F1 on DB-3 dataset, respectively. Com-
pared with other methods, the performance of
CUTE is relatively poor, as it ignores the rich
structure information both in entity graph and type
hierarchy. FIGMENT and MuLR achieve bet-
ter performance, in part because powerful em-
bedding technologies are applied and the deci-
sion is made in global-view and context-view.
APE considers graph structure and entity features
in attributed network embedding manner, while
HMGCN applies this in a convolutional manner,
which can embed the graph knowledge more suffi-
ciently (Kipf and Welling, 2016; Zhuang and Ma,
2018).

Comparison with Variants. HMGCN consis-
tently outperforms all four variants, because in
HMGCN three GCN models provide comple-
mentary information. The key of HMGCN is
parameter-sharing (W(i) in GCNco, GCNcat and
GCNprop) and unsupervised regularizer for en-
semble. The three GCNs encode different kinds
of semantic correlations between entities, so that
HMGCN could have a trade-off in decision-
making. As a result, the trained parameters W(i)

have considered opinions from all three GCNs.
HMGCNno co and HMGCNno prop demonstrate
better performance than HMGCNno cat, which
suggests that category information should be more
import than co-occurrence and property informa-
tion. HMGCNflat ignores the correlations be-
tween types (i.e., subClassOf relations), while
HMGCN take the structure of type hierarchy as
prior knowledge. Infrequent types benefit from
the recursive regularization in HMGCN. Because
when an infrequent type has less training exam-
ple, the decision can be regularized by its parent
(super-type).

4.4 Result Analysis

Effects of Labeled Data. Intuitively, our model
can learn better embeddings and achieve better
performance, if we have more labeled entities. We
investigate the effect of labeled data proportion.
The results show that three metrics strikingly in-
crease with more labeled data added, and grad-
ually become stable when the proportion is over
0.5, as illustrated in Figure 3(a). This shows that
our model can achieve a satisfactory result, even
with not enough labeled data, and this advantage
is benefited from the information diffusion of the
GCN model, i.e., similar entities should share in-
formation between each other.
Results of Frequent/Infrequent Types. We
evaluate the performance on frequent types
(frequency > 3, 000; 15 types) and infrequent
types (frequency < 200; 36 types). The clas-
sification measure is the type macro average F1
(F1 of entities assigned to a type, then averaged
over types) (Yosef et al., 2012). Note that it is
different from Ma-F1 reported in Table 3. Gener-
ally, the performance on infrequent types is worse
than frequent ones. Our model consistently out-
performs the other methods on infrequent types,
which demonstrates its ability on dealing with
rare types. The results for infrequent and fre-
quent types in FIGER dataset are illustrated in Fig-
ure 3(b).
Effect of Regularization Weight λ(t). Our
model uses a weight function λ(t) to balance the
trade-off between the supervised loss and unsu-
pervised consistency regularizer. We devised sev-
eral different weight functions (Zhuang and Ma,
2018), as shown in Figure 3(c). Here, t is defined
as the number of epochs. fi (1 ≤ i ≤ 4) increases
with different increment speed, as the number of
epochs increases; while f5 decreases as the num-
ber of epochs increases. fi (1 ≤ i ≤ 4) strik-
ingly outperforms f5, as shown in Figure 3(d). We
can see that the knowledge embedded in GCNcat

and GCNprop is beneficial to entity typing task.
At the beginning of training process, supervised
loss function plays the leading role. After several
epochs, λ(t) forces our model to simultaneously
consider the knowledge encoded in GCNcat and
GCNprop.

5 Related Work

Fine-grained entity typing in KB is an important
sub-task of knowledge base completion. Most ex-
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Table 3: Typing performance on DBpedia.

Methods DB-1 DB-2 DB-3

Strict Ma-F1 Mi-F1 Strict Ma-F1 Mi-F1 Strict Ma-F1 Mi-F1

CUTE 0.518 0.679 0.702 0.520 0.681 0.713 0.524 0.685 0.717
MuLR 0.608 0.748 0.771 0.612 0.757 0.784 0.610 0.752 0.775

FIGMENT 0.601 0.740 0.766 0.597 0.738 0.765 0.605 0.745 0.769
APE 0.612 0.758 0.784 0.614 0.761 0.785 0.611 0.760 0.782

HMGCNno cat 0.619 0.769 0.792 0.622 0.772 0.796 0.620 0.770 0.793
HMGCNno prop 0.621 0.771 0.793 0.625 0.782 0.801 0.623 0.775 0.799
HMGCNno co 0.627 0.789 0.808 0.629 0.790 0.814 0.626 0.786 0.812
HMGCNflat 0.626 0.785 0.812 0.633 0.794 0.820 0.628 0.791 0.817

HMGCN 0.635 0.794 0.816 0.637 0.796 0.824 0.631 0.798 0.819

(a) Label proportion (b) Frequent/infrequent types (c) λ(t) implementations (d) λ(t) performances

Figure 3: (a). Performance on different labeled data proportion. (b). Performance on frequent and infrequent
types in FIGER dataset (c). Five different implementations of the weight function. X-axis represents the function
variable t and the Y-axis represents the function value. (d). Classification accuracy using different λ(t) functions
for training on FIGER dataset.

Table 4: Typing performance on FIGER.

Methods Strict Ma-F1 Mi-F1

CUTE 0.531 0.743 0.782
MuLR 0.548 0.776 0.812

FIGMENT 0.563 0.785 0.819
APE 0.515 0.722 0.756

HMGCNno cat 0.546 0.773 0.805
HMGCNno prop 0.552 0.781 0.814
HMGCNno co 0.557 0.784 0.821
HMGCNflat 0.564 0.789 0.827

HMGCN 0.570 0.798 0.836

isting methods do type inference by utilizing en-
tity’s inherent feature (textual description, prop-
erty and category) or mention in text (anchor
text). (Neelakantan and Chang, 2015) use text de-
scription as entity feature representation, then de-
sign a global objective function to predict miss-
ing entity types in a KB. (Xu et al., 2016) use
property and category information, along with a
multi-label hierarchical classifier, to assign DBpe-
dia types to Chinese entities. (Yaghoobzadeh and
Schütze, 2015)first propose FIGMENT to address
this problem. They only used contextual informa-
tion to assign types for entities in KB. After that,

they present FIGMENT-Multi to learn multi-level
representations of entities on three complementary
levels (character, word and entity) (Yaghoobzadeh
and Schütze, 2017). FIGMENT-Multi predicts
whether an entity is a member of a type based
on the learned embeddings. Finally, they pro-
pose an embedding based method which combines
a global model with a context model. A global
model that scores based on aggregated context in-
formation and a context model that aggregates the
scores of individual contexts (Yaghoobzadeh et al.,
2017). Recent research convert entities in KB to
an entity graph and apply graph-based algorithm
on it. (Jin et al., 2018) use links between entities to
construct an entity graph, jointly utilize entity fea-
ture and graph structure to make type inference.
They apply an attributed and predictive network
embedding method to encode entity feature and
graph structure. After that, a multi-label classifier
is employed to carry out type classification.

6 Conclusion

We convert the task of Fine-Grained Entity Typing
in KB to graph-based semi-supervised classifica-
tion task, and propose a hierarchical multi graph
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convolutional network (HMGCN) that fully uti-
lizes entity features, entity graph structure, and
type hierarchy structure to address this task. Three
GCN models are devised to embed multi kinds
of semantic correlations between entities. A re-
cursive regularization is proposed to make the
model understand, to a certain extent, the struc-
ture of type hierarchy. Experiments on two real
datasets demonstrate the effectiveness of the pro-
posed model.
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