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Abstract

How to incorporate external knowledge into a
neural dialogue model is critically important
for dialogue systems to behave like real hu-
mans. To handle this problem, memory net-
works are usually a great choice and a promis-
ing way. However, existing memory networks
do not perform well when leveraging hetero-
geneous information from different sources.
In this paper, we propose a novel and ver-
satile external memory networks called Het-
erogeneous Memory Networks (HMNG), to si-
multaneously utilize user utterances, dialogue
history and background knowledge tuples. In
our method, historical sequential dialogues
are encoded and stored into the context-aware
memory enhanced by gating mechanism while
grounding knowledge tuples are encoded and
stored into the context-free memory. During
decoding, the decoder augmented with HMN's
recurrently selects each word in one response
utterance from these two memories and a gen-
eral vocabulary. Experimental results on mul-
tiple real-world datasets show that HMNs sig-
nificantly outperform the state-of-the-art data-
driven task-oriented dialogue models in most
domains.

1 Introduction

Compared with chitchat, task-oriented dialogue
systems aim at solving tasks in specific domains
with grounding knowledge. Though far from han-
dling conversation like a real human, existing task-
oriented dialogue systems have shown cheerful
prospect in a specific domain, e.g. Siri and Cor-
tana are personal assistants, helping people a lot
in daily life and business work.

In general, knowledge-grounded task-oriented
dialogue system can be divided into three impor-
tant components: understanding user utterances,
fetching right knowledge from external storage
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Figure 1: A multi-turn dialogue example. The upper
table shows several n-tuples sampled from knowledge
base. Lower table shows multi-turn dialogues. Agent
needs to retrieve appropriate knowledge tuples to gen-
erate the proper response.

and replying right answer. As shown in Fig-
ure 1, agent is required to do a point-of-interest
navigation. According to dialogue history, agent
will fetch related knowledge base information, in
our case represented as tuples (e.g. [hotel_keen,
poi_type, rest_stop], which indicates the point-
of-i nterests type of hotel keen is rest stop), as an
external knowledge to answer correctly and com-
plete task.

Traditional pipeline dialogue systems(Yan
et al., 2017; Rojas-Barahona et al., 2017) and
some end-to-end dialogue systems rely on the
predefined the slot filling labels. Despite the
consumption of human efforts, these kinds of
systems are difficult to adapt to new domains.

Many works, e.g. (Vinyals and Le, 2015; Shang
et al., 2015), show that training a fully data-driven
end-to-end model is a promising way to build
domain-agnostic dialogue system. Their mod-
els mostly try to use the attention mechanism,
including memory networks techniques, to fetch
the most similar knowledge (Sukhbaatar et al.,
2015), then incorporate grounding knowledge into
a seq2seq neural model to generate a suitable re-
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sponse (Madotto et al., 2018).

However, existing memory networks equally
treat information from multiple sources, e.g. se-
quential dialogue history and structure knowledge
bases. Therefore two weaknesses arise in such
methods: (1) It is difficult to model different types
of structured information in only one memory net-
work. (2) It is also difficult to model the effective-
ness of knowledge from different sources in such a
single memory network. To address these issues,
we expand the architecture of memory networks
used in a seq2seq neural model.

Our contributions are mainly three-fold:

e We propose a novel seq2seq neural conver-
sation model augmented with Heterogeneous
Memory Networks. We first model sequen-
tial dialogue history and grounding exter-
nal knowledge with two different kinds of
memory networks and then feed the output
of context-aware memory to the context-free
memory to search the representations of sim-
ilar knowledge.

e QOur context-aware memory networks is able
to learn the context-aware latent representa-
tions and stores them into memory slots, by
employing a gating mechanism when encod-
ing dialogue history and user utterance.

e Experimental results demonstrate that our
neural approach significantly outperforms the
examined neural methods automatic met-
rics, and context-aware memory networks
can learn and store more meaningful rep-
resentations than the examined memory ap-
proaches.

2 Related Works

The end-to-end model uses deep neural net in-
stead of several parts in pipeline models to gen-
erate responses. (Rojas-Barahona et al., 2017)
propose a data-driven goal-oriented neural dia-
logue system by adding database operator and pol-
icy networks modules to introduce database in-
formation and track state which need extra label-
ing step that breaks differentiability. (Bordes and
Weston, 2016) propose a testbed to break down
the strengths and shortcomings of end-to-end di-
alog systems in goal-oriented applications. Those
methods treated dialogue system as the problem of

learning a mapping policy from dialogue histories
to agents’ responses.

The booming internet dialogue data lay the
foundation of building data-driven models. (Rit-
ter et al., 2011) first applied phrase-based Statis-
tical Machine Translation(Setiawan et al., 2005).
It treats the conversation system as a translation
problem, a user utterance needs to be translated
into an agent response.

(Sutskever et al., 2014) propose Sequence to se-
quence model (SEQ2SEQ) architecture and apply
it to neural machine translation task. SEQ2SEQ
has become a general basis of natural language
generation tasks, e.g. question answering(Tan
et al., 2018) and question generation (Zhou et al.,
2017). By applying the RNN based encoder-
decoder framework to generate responses, mod-
els(Shang et al., 2015; Cho et al., 2014b; Luong
et al., 2015b) are able to utilize neural networks to
learn the representation of dialogue histories and
generate appropriate responses.

To deal with multi-turn information, (Sordoni
et al., 2015) propose a model that represents the
whole dialogue history (including the current mes-
sage) with continuous representations or embed-
dings of words and phrases to address the chal-
lenge of the context-sensitive response generation.

By adding a knowledge base module, recent
works (Ghazvininejad et al., 2018; Young et al.,
2018) have shown the possibility of training an
end-to-end task-oriented dialogue system on the
sequence to sequence architecture. Ghazvinine-
jad et al. (Ghazvininejad et al., 2018) general-
ize the SEQ2SEQ approach by conditioning re-
sponses on both conversation history and external
knowledge, aiming at producing more contextual
responses without slot filling.

CopyNet (Gu et al., 2016) and Pointer Networks
(Vinyals et al., 2015) improve model’s accuracy
and ability of handling of out-of-vocabulary words
using neural attention. Pointer-Generator net-
works (See et al., 2017) apply copy mechanism to
the neural generation model. Their work shows
copy mechanism can improve quality in text gen-
eration. (Dhingra et al., 2017) and (Li et al., 2017)
apply reinforcement learning to make it differen-
tiable.

Recent works on external memory (Graves
et al.,, 2014; Henaff et al., 2016) provide an ef-
ficient method of introducing and reasoning dif-
ferent types of external information. (Sukhbaatar
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Figure 2: An example of Heterogeneous Memory Networks with two-hop attention. Context-aware memory which
encodes dialog history to a context vector oc? while context-free memory loads knowledge base information. The
output of context-aware memory will be employed as the query vector to the context-free memory.

etal., 2015) propose end-to-end memory networks
with multiple attention hops model over a possi-
bly large external memory. (Madotto et al., 2018)
propose Mem2Seq that combines the end-to-end
memory networks with the idea of pointer net-
works. (Chen et al., 2018) add the hierarchical
structure and the variational memory network to
capture both the high-level abstract variations and
long-term memories during the dialogue tracking.
To take care of information from different sources,
(Fu and Feng, 2018) propose an attention mecha-
nism to encourage the decoder to actively interact
with the memory by taking its heterogeneity into
account.

3 Proposed Framework

To generate responses using dialogue history
and grounding knowledge, we introduce a novel
encoder-decoder neural conversation model aug-
mented with Heterogeneous Memory Networks
(HMNSs). The encoder module adopts a context-
aware memory network to better understand the
dialogue history and query. The decoder is en-
hanced with HMNSs, which is able to incorporate
external knowledge and dialog history when gen-
erating words.

3.1 Encoder

The encoder encodes the dialogue history into a
fixed context vector. Here we adopt the context-
aware memory as our encoder module. As shown
in the left part of Figure 2, each word will be ex-
tended to the following parts: 1) token itself. 2) A
turn tag. 3) An identity tag. For example, in the
first turn a user says “hello” and the response from
system is "may [ help you”, it will be concatenated
as [(hello, t1, user),(may, t1, sys),(I, t1, sys),(help,
tl, sys), (you, t1, sys)], sys means the word comes

2
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Figure 3: Decoder module with two attention hops

from the dialog system, so does user. t/ indicates
the word is from the first turn. Each word can be
transformed into vector by embedding lookup, and
we sum up vectors in each tuple to be the input
sequence of the context-aware memory. Using a
fixed vector to query the memory, a context vector
c can be obtained.

3.1.1 Context-Aware Memory

To efficiently model the context information of
sequential data, we present the context-aware
memory. Memory slots n* are structured
by concatenating all input vectors as n* =
cat[nk, nk, ...,n¥], k stands for the k-th hop in
memory, and [ means the length of the input. nf
is the sum of each word tag embedding using each
hop own randomly initialized embedding matrix
C*. And we adopt the adjacent weight sharing
scheme, which means C* is not only the input em-
bedding matrix in the k-th hop, but also the out-
put embedding matrix in the (k-1)-th hop. We add
a gating mechanism between memory cells. The
gating mechanism applied is adopted from Bidi-
rectional GRU (Cho et al., 2014a) in our case.

Thus the context-dependent representation of in-
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— —
puts, denoted as n* = [n? ,n¥], where n? and n*
are the forward and backward representation of in-
puts, respectively. The forward process can be il-

lustrated as equations:

re = (7(VV1’U£g + WQ??(t_l) + bl) (D

Zt = O'(VVg’Uéc + W47’Lj(t_1) + b2) (2)

et = tanh(Wg)vf + Tt(W6n?(t—1) +b3)) (3

~

ni = (1—z)e + ZtT?(t—l) 4)
where Wl, WQ, Wg, W4, W5, W6 and bl, bz, b3
are trainable weights and biases.

Given the query vector gc¥, attention weights
over memory cells n*¥ can be calculated by the
equation:

pk = Softmaz:(nk . qck) (5)

the readout vector is the sum of output memory
matrix n*! with corresponding attention weights

k
uF = "(pf -0t ©6)

¥
By summing query and readout vector together,
we can get the output from the k-th hop.

oct = qck +uF @)
Note oc” is also the query vector of the (k+1)-th
hop.

3.2 Decoder

The decoder contains HMNs and an RNN con-
troller, as shown in Figure 3. The controller con-
trols the process of querying HMNSs.

In each time step, HMNs will generate: 1) a
readout vector oc!, which is the output of the first
hop in history memory, and 2) attention weights of
the last hop in two memories, called history word
distribution Pj;s and knowledge tuple distribution
Pr,. The readout vector is concatenated with h;
to predict the vocabulary distribution P,,.q. For-
mally,

oncab = Softmax(W7 [htu Ocl]) (8)

where W7 is trainable weight matrix.

We adopt a simple strategy ( Section 3.5 ) to select
a word from three distributions P,,cqp, Phis and
Prp.

3.2.1 Heterogeneous Memory Networks

HMNSs stacks two types of memory: 1) context-
aware memory and 2) context-free memory. Di-
alog history is loaded into context-aware mem-
ory, and knowledge base triples are loaded into
context-free memory.  Firstlyy, HMNs accepts
query vector as inputs, then walk through context-
aware memories. The final output u”* in the last
hop will be employed to query context-free mem-
ory. Context-aware memory has been detailed in
Section 3.1.1.

Context-Free memory itself is end-to-end mem-
ory networks (Sukhbaatar et al., 2015). Com-
pared with our context-aware memory, it has no
gating mechanism. The input to the memory is
the summed vectors in each knowledge triple, as
depicted in the right part of Figure 2. Each hop

’
owns randomly initialized embedding matrix C'*
We denote memory slots as m¥. It accepts a query
vector and then follows the same process 5 to 7,

/
the output u* can be obtained.

3.2.2 Controller

We adopt GRU as our controller. It accepts the
output ¢ from encoder as initial hidden state hg.
In each time step, it takes the previous generated
word g;—1’s embedding F(g;—1) and last time hid-
den state h;_1 as inputs. Formally:

hy = GRU(E(gt-1), hi—1) )
then h; is used to query the HMNSs.

3.3 Copy Mechanism

We adopt copy mechanism to copy words from
memories. Attention weights in the last hop of the
two memories, Py, and Pp;s will be the probabil-
ity of the target word from those memories. If the
target word does not appear in inputs, the position
index will be the last position in memories, which
is a sentinel added in preprocessing stage.

3.4 Joint Learning

To learn the distribution of three vocabularies
Pyocaps Pip and Py, in each time step, the loss in
the t-th time step is the negative log-likelihood of
the predict probability of the target word for that
time step. Formally:

t=T
1
Loss = — ; ;Oogpm) (10)

Note that p;; means the t-th word’s probability in
XS {oncaba Pkba Phis} .
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Table 1: The statistics of the bAbI-3, 4, 5, DSTC2 and Key-Value Retrieval datasets

Datasets Key-Value Retrieval dataset | DSTC 2 | bAbI-3 | bAbI-4 | bAbI-5
Avg. History words 25.5 63.4 49.9 20.5 62.6
Avg. KB pairs 64.7 42.7 234 7.0 23.6
Avg. Response Length | 8.7 10.2 7.2 5.7 6.5
Vocabulary Size 1554 1066 739 1004 1135
Dialogue Turns 2.8 9.9 10.9 4.5 19.3

3.5 Word Selection Strategy

In our case, if words with the highest probability
in Py;s and P, vocabularies are not on sentinel
positions, we directly compare the probability of
each word and select the higher one. If one of
the vocabularies points to the sentinel position, the
model will select the word with the highest prob-
ability in the other vocabulary. At last, if both vo-
cabularies get to sentinel positions, the word from
P,ocap Will be selected.

4 Experimental Setup

4.1 Datasets

As the proposed approach is quite general, the
model can be applied to any task-oriented dia-
logue datasets with conversation and knowledge
base data. To evaluate and compare the results
with the state-of-the-art methods in multiple di-
mensions, we choose three popular task conver-
sation datasets including DSTC 2, Key-Value Re-
trieval dataset and the (6) dialog bAbI tasks. Table
1 shows the statistics of datasets.

o Key-Value Retrieval dataset (Eric and Man-
ning, 2017). This dataset releases a cor-
pus of 3,031 multi-turn dialogues. The di-
alogues consist of three different domains:
calendar scheduling, weather information re-
trieval, and point-of-interest navigation.

e The (6) dialog bAbI tasks (Bordes and We-
ston, 2016). The (6) dialog bAbI tasks are a
set of five subtasks within the goal-oriented
context of restaurant reservations. Conversa-
tions are grounded with an underlying knowl-
edge base of restaurants and their properties
(location, type of cuisine, etc.). As task 1 and
2 have been achieved very well, we only test
our model on task 3 to 5 and their OOV (out-
of-vocabulary), where entities (e.g. restau-
rant names) in test sets may not have been
able to see during training.

e The Dialog State Tracking Challenge 2
(DSTC 2). DSTC 2 is a research challenge
focused on improving the state-of-the-art in
tracking the state of spoken dialogue systems.
DSTC 2’s training dialogues were gathered
using Amazon Mechanical Turk related to
restaurant search.

For all datasets, we employ the original conver-
sation and knowledge base information only and
drop the other labels e.g. slot filling labels. We
take several metrics over all datasets to evaluate
the performance on multiple dimensions. And to
evaluate the context-aware memory networks, we
also test the HMNs with only context-free memory
on the dialog bAbI tasks.

4.2 Evaluation Method

To compare with the original datasets baselines,
we apply evaluation methods on each datasets the
same as datasets’ original papers described in 4.1.

e Bilingual Evaluation Understudy (BLEU)
(Papineni et al., 2002). BLEU has been
widely employed in evaluating sequence gen-
eration including machine translation, text
summarization, and dialogue systems. BLEU
calculates the n-gram precision which is the
fraction of n-grams in the candidate text
which is present in any of the reference texts.

e F1 Score (F-measure): F1 evaluates the
model’s ability in terms of precision and re-
call, which is more comprehensive than just
using precision or recall measure. We adopt
F1 to evaluate if a model can extract informa-
tion from a knowledge base precisely.

e Per-response accuracy and Per-dialog accu-
racy. Per-response and Per-dialog accuracy
count the percentage of responses that are
correct. Any incorrect words will make a
response or a dialogue negative. Accuracy
shows if the model is able to learn the dis-
tribution of reproducing factual details.
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Table 2: Results on Key-Value Retrieval dataset. F1 score, including Entity F1, is micro-average over the entire
set, and three subtasks. Human results are reported by Eric et al.(Eric and Manning, 2017)

Model name BLEU | Ent. F1 | Scheduling Ent. F1 | Weather Ent. F1 | Navigation Ent. F1
Human* 13.5 60.7 64.3 61.6 552
SEQ2SEQ 11.07 | 30.5 30.7 46.4 13.4
SEQ2SEQ+Attn. | 11.19 | 35.6 40.5 44.0 23.0
Mem?2Seq 12.06 | 31.1 51.8 343 12.3
HMNs 1446 | 43.1 61.3 40.3 32.3

Table 3: Results of Per-response accuracy and Per-dialog accuracy (in brackets) on bAbI dialogues. Per-dialog

accuracy presents the accuracy of complete dialogues.

Task SEQ2SEQ SEQ2SEQ+Attn. | Mem2Seq HMNs-CFO HMNs
T3 74.8(0) 74.8(0) 83.9(15.6) 93.7(55.9) 93.6(56.1)
T4 56.5(0) 56.5(0) 97.0(90.5)  96.8(89.3) 100(100)
TS 98.9(82.9) 98.6(83) 96.2(46.4) 97.1(58.2)  98.0(69.0)

T3-O0V 74.9(0) 74.0(0) 83.6(18.1) 92.3(45.2) 92.5(48.2)
T4-O0OV 56.5(0) 57.0(0) 97.0(89.4)  96.1(90.3) 100(100)
T5-O0V 67.2(0) 67.6(0) 71.4(0) 78.3(0) 84.1(2.6)

Table 4: The results on the DSTC 2

Model name F1 BLEU
SEQ2SEQ 69.7 55.0
SEQ2SEQ+Attn. | 67.1 56.6
SEQ2SEQ+Copy | 71.6 55.4
Mem?2Seq 75.3 55.3
Our model 717.7 56.4

4.3 Baselines and Training Setup

The hyper-parameter settings are adopted as the
best practice settings for each training set follow-
ing the Madotto’s (Madotto et al., 2018) and Man-
ning’s (Manning and Eric, 2017) best experimen-
tal results on baselines SEQ2SEQ and Mem2Seq.
Detailed models and their settings are as follows:

e Sequence to sequence. For SEQ2SEQ, we
adopt one layer LSTMs as encoder and de-
coder. For Key-Value Retrieval dataset, hid-
den size is placed at 512 and the dropout rate
is 0.3. On dataset bADbI, the hidden size and
dropout rate are 128 and 0.1 for task 3, 256
and 0.1 for task 4 and 5. Learning rates are
set to 0.001 for bAbI and 0.0001 for DSTC 2
and Key-Value Retrieval dataset.

e SEQ2SEQ + Attention. We adopt the atten-
tion mechanism (Luong et al., 2015a) com-
monly used in neural machine translation. On
dataset bAbI, hidden size and the dropout rate
are 256 and 0.1 for task 3 and 4, 128 and 0.1

for task 5. For Key-Value Retrieval dataset,
hidden size and dropout rate are 512 and 0.3.
On the DSTC 2 task, hidden size is set to 353
and word embedding size is 300 (same with
original work).

o Mem2Seq. Except 128 in task 3, hidden size
in other tasks is 256. The dropout rate is set
to 0.2 in task 3, 4 and Key-Value Retrieval
dataset, 0.1 in task 5 and DSTC 2 dataset. We
adopt three hops in DSTC 2 and Key-Value
Retrieval dataset.

o HMNs with context-free only (HMNs-CFO).
To test the performance of context-aware
memory, we apply other context-free to en-
code dialogue history instead of context-
aware memory in HMNs. All the other struc-
ture and parameter settings are the same as
HMNSs in this model.

All models are tested with various hyper-
parameter settings to get their best performance,
e.g. hidden size selected from [64, 128, 256, 512].
Note that settings from datasets are also tested
like SEQ2SEQ + Attention’s hidden size is 353 on
Key-Value Retrieval dataset.

During the training, all experiments employ the
teacher-forcing scheme, feeding the gold target of
last time or highest probability word into decoder
with probability 50%. We also randomly mask in-
put with UNK according to the dropout rate.
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Table 5: A generated example from Key-Value Retrieval dataset with correct knowledge entities in bold. Given
the knowledge base and user’s request, we list the generated responses of three models and the gold answers. This
example is randomly selected from all generated sentences and we only show tuples been used by models.

Dataset

valero poi_type gas_station
valero distance 2_miles

Knowledge Base

valero address 200_alester_ave
1_miles moderate_traffic parking_garage poi palo_alto_garage r

address to the gas_station

User
Gold valero is located at 200_alester_ave
Generated Sentence
SEQ2SEQ+Attn.| the closest gas_station is located at 200_alester_ave 7_miles away would you
like directions there
Mem?2Seq there is a valero 1_miles away
HMNs there is a gas_station located 2_miles away at 200_alester_ave

4.4 HMNs Training Settings

We test the hidden size in [64, 128, 256] and set
dropout rate in [0.1, 0.2]. Learning rate is initiated
with 0.001 and training batch is set to 64. The
metrics results are coming from the best result set-
tings for each dataset. We select hidden size and
dropout rate at (256, 0.1) on bADI task 3 and task
5, (256,0.2) on task 4. On the DSTC 2 task, we
set hidden size and dropout rate at (128, 0.1). For
Key-Value Retrieval dataset, the setting is hidden
size 256 and dropout rate 0.1. Except for bAbI
tasks’ 1 layer, all HMNs and Mem2Seq tasks em-
ploy 3 layer memories.

5 Results and Discussion

5.1 Results and Analysis

The best results of the baselines and HMNs
are gathered into tables and figures. Table 2
show the result of models on Key-Value Re-
trieval dataset. Except for F1 scores on Calendar
Scheduling, HMNs get significantly better results
on all benchmarks comparing the state-of-the-art
models. HMMs’ BLEU score is even higher than
human results which are reported in (Eric and
Manning, 2017). Results show our model’s out-
standing performance in generating a fluent and
accurate response in most tasks.

Examples generated by our approach and base-
lines are given in Table 5. These two exam-
ples are randomly selected from all generated sen-
tences. Comparing the generated sentences by hu-
mans, although entities and sentences are different

with gold answer in example one, our approach
is able to produce more fluent and accurate sen-
tences. However, the result on task weather fore-
casting neither HMNs and Mem2Seq can outper-
form SEQ2SEQ. We will discuss it in the next sec-
tion.

Table 4 shows our model gets the best F1 score
on dataset DSTC 2, while SEQ2SEQ with atten-
tion gets the best BLEU result.

Table 3 shows results of models on bAbI tasks.
HMNs and Mem?2Seq adopt one hop attention
only and note that all results are the best per-
formance of each model in 100 epochs. HMNs
achieved the best results on most tasks except
T5. HMNs-CFO also outperforms the other mod-
els. This demonstrates that both training multiple
distributions over heterogeneous information and
employment of context-aware memory benefit the
end-to-end dialogue system. The improvements in
per-dialogue accuracy on out-of-vocabulary tests
are even more significant. Figure 4 shows the
changes of HMNs and HMNs-CFO’s total loss
across time. HMNs learns significantly faster.

Though automatic metrics cannot really exam-
ine human beings’ diversified expression, existing
dialogue systems aim at generating sentence by
learning the patterns of training data, so we believe
BLEU is still a metric of great concern in compar-
ing the similar models’ ability in learning the sen-
tence patterns. Though human results show end-
to-end machines have still a long way to go (60.7
to 43.1). Compared to other models, HMNs sig-

4564



bADI-TS dataset

Key-Value Retrieval dataset

DSTC2 dataset

—— Context-Free Memory Only

—— Context-Free Memory Only

With Context-Aware Memory \ With Context-Aware Memory

Avg loss per epoch

-
S A
075 ey

o 0 20 3 4 O 60 70 80 o 20

(a) Loss changes on bAbI T5
trieval dataset

60 80 100 0 20 P 60 80 100
Epoch

Epoch
(b) Loss by epochs on Key-Value Re- (¢c) Loss by epochs on the DSTC2

dataset
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and the other with only context-free memory

nificantly improves performance in retrieving cor-
rect knowledge entities.

5.2 Discussion

5.2.1 Context-Aware Memory

To show whether context-aware memory bene-
fits conversation learning, on bAbI tasks, we also
tested HMNs-CFO memory only. From Table 3,
we observe that HMNs-CFO is significantly bet-
ter than original Mem2Seq as well as SEQ2SEQ +
attention in several results and only loses slightly
on task 4 (89.3 to 90.5). One reason is that one
memory is difficult to learn best distribution over
different sources. Respectively encoding sequen-
tial dialogue history and grounding knowledge can
learn two better distributions than one general but
not best distribution. This also indicates that using
the query vector generated by history memory to
retrieve information in knowledge base memory is
reasonable.

As the HMNs model get the best results in all
tasks except one, in addition the results of train-
ing speed of HMNs and HMNs-CFO (Figure 4),
the context-aware memory is clearly to learn rep-
resentation of the dialogue history much better and
faster and also demonstrates that the importance
of incorporating context information for dialogue
systems. HMNs outperform the HMNs-CFO not
only on BLEUs but also entity F1 on most tasks,
showing building a good representation of dia-
logue history benefits knowledge reasoning, and
help to improve the context-free memory by issu-
ing a good query vector.

From above all, we can conclude that both
stacked memory networks architecture and using
context-aware memory to load sequential infor-
mation can improve the performance of retrieving
knowledge and generating sentences.

5.2.2 Shortcomings

From the results in Table 2, we note that HMNs
and Mem?2Seq failed on weather forecasting task.
We analysed the average knowledge pairs of
weather forecasting tasks and find it near three
times the knowledge pairs of the other two
tasks. Then we carried out another experiment
that first narrows the KB candidates by perform-
ing a matching preprocessing operation, and the
Weather Ent. F1 result of our method will climb to
more than 48 which is the best. This may indicates
that this kind of memory networks may have diffi-
culties in handling large scale knowledge base. So
perform a matching operation to narrow the can-
didate knowledge space is critical in a real-world
large scale knowledge base.

And in this paper, we only show sequential data
and knowledge triples data. For more types of in-
formation to integrate, model needs to add other
memory networks, e.g. graph neural networks
augmented memory networks (Zhou et al., 2018)
for graph structured data.

6 Conclusion

In this paper, we propose a model that is able to
incorporate heterogeneous information in an end-
to-end dialogue system. The model applies Het-
erogeneous Memory Networks (HMNs) to model
sequential history and structured database. Re-
sults on several datasets show model can signifi-
cantly improve the performance of generating the
response. Our proposed context-aware memory
networks show outstanding performance in learn-
ing the distribution over dialogue history and re-
trieving knowledge. We present the possibility of
efficiently using various structured data in end-to-
end task-oriented dialogue without any extra label-
ing and module training.

4565



Acknowledgement

We thank the anonymous reviewers for their in-
sightful comments on this paper. This work
was supported by the NSFC (No.61402403),
DAMO Academy (Alibaba Group), Alibaba-
Zhejiang University Joint Institute of Frontier
Technologies, Chinese Knowledge Center for En-
gineering Sciences and Technology, and the Fun-
damental Research Funds for the Central Univer-
sities.

References
Antoine Bordes and Jason Weston. 2016. Learn-
ing end-to-end goal-oriented dialog. CoRR,

abs/1605.07683.

Hongshen Chen, Zhaochun Ren, Jiliang Tang, Yi-
hong Eric Zhao, and Dawei Yin. 2018. Hierarchi-
cal variational memory network for dialogue gener-
ation. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, WWW 2018, Lyon,
France, April 23-27, 2018, pages 1653—-1662.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. In Proceedings of SSST@EMNLP
2014, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, Doha, Qatar, 25
October 2014, pages 103—111.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724—
1734.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2017.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 484—495, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Mihail Eric and Christopher D Manning. 2017. Key-
value retrieval networks for task-oriented dialogue.
arXiv preprint arXiv:1705.05414.

Yao Fu and Yansong Feng. 2018. Natural answer gen-
eration with heterogeneous memory. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume I (Long Papers), pages 185—-195.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. pages 5110-5117.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2016. Tracking the
world state with recurrent entity networks. CoRR,
abs/1612.03969.

Xuijun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao,
and Asli Celikyilmaz. 2017. End-to-end task-
completion neural dialogue systems. In Proceedings
of The 8th International Joint Conference on Natu-
ral Language Processing.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015, pages 1412—-1421.

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015b. Addressing
the rare word problem in neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 11—
19.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung.
2018. Mem?2seq: Effectively incorporating knowl-
edge bases into end-to-end task-oriented dialog sys-
tems. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Vol-
ume 1: Long Papers, pages 1468—1478.

Christopher D. Manning and Mihail Eric. 2017. A
copy-augmented sequence-to-sequence architecture
gives good performance on task-oriented dialogue.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, EACL 2017, Valencia, Spain, April 3-7,
2017, Volume 2: Short Papers, pages 468—473.

4566


http://arxiv.org/abs/1605.07683
http://arxiv.org/abs/1605.07683
https://doi.org/10.1145/3178876.3186077
https://doi.org/10.1145/3178876.3186077
https://doi.org/10.1145/3178876.3186077
http://aclweb.org/anthology/W/W14/W14-4012.pdf
http://aclweb.org/anthology/W/W14/W14-4012.pdf
http://aclweb.org/anthology/W/W14/W14-4012.pdf
http://aclweb.org/anthology/D/D14/D14-1179.pdf
http://aclweb.org/anthology/D/D14/D14-1179.pdf
http://aclweb.org/anthology/D/D14/D14-1179.pdf
https://doi.org/10.18653/v1/P17-1045
https://doi.org/10.18653/v1/P17-1045
https://aclanthology.info/papers/N18-1017/n18-1017
https://aclanthology.info/papers/N18-1017/n18-1017
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710
http://aclweb.org/anthology/P/P16/P16-1154.pdf
http://aclweb.org/anthology/P/P16/P16-1154.pdf
http://arxiv.org/abs/1612.03969
http://arxiv.org/abs/1612.03969
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://aclweb.org/anthology/P/P15/P15-1002.pdf
http://aclweb.org/anthology/P/P15/P15-1002.pdf
https://aclanthology.info/papers/P18-1136/p18-1136
https://aclanthology.info/papers/P18-1136/p18-1136
https://aclanthology.info/papers/P18-1136/p18-1136
https://aclanthology.info/papers/E17-2075/e17-2075
https://aclanthology.info/papers/E17-2075/e17-2075
https://aclanthology.info/papers/E17-2075/e17-2075

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA., pages 311-318.

Alan Ritter, Colin Cherry, and William B. Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2011, 27-31 July 2011, John Mclntyre Conference
Centre, Edinburgh, UK, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 583-593.

Lina Maria Rojas-Barahona, Milica Gasic, Nikola
Mrksic, Pei-Hao Su, Stefan Ultes, Tsung-Hsien
Wen, Steve J. Young, and David Vandyke. 2017. A
network-based end-to-end trainable task-oriented di-
alogue system. pages 438—449.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1073—
1083.

Hendra Setiawan, Haizhou Li, Min Zhang, and
Beng Chin Ooi. 2005. Phrase-based statistical ma-
chine translation: A level of detail approach. In Nat-
ural Language Processing - IJCNLP 2005, Second
International Joint Conference, Jeju Island, Korea,
October 11-13, 2005, Proceedings, pages 576-587.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conver-
sation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, Volume 1: Long Papers,
pages 1577-1586.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In NAACL HLT
2015, The 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 196—
205.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 2440—
2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, pages 3104—
3112.

Chuangi Tan, Furu Wei, Nan Yang, Bowen Du,
Weifeng Lv, and Ming Zhou. 2018. S-net: From
answer extraction to answer synthesis for machine
reading comprehension. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, New Orleans, Louisiana, USA, February 2-7,
2018.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 2692-2700.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. CoRR, abs/1506.05869.

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe
Zhou, and Zhoujun Li. 2017. Building task-oriented
dialogue systems for online shopping. In Proceed-
ings of the Thirty-First AAAI Conference on Arti-
ficial Intelligence, February 4-9, 2017, San Fran-
cisco, California, USA., pages 4618-4626.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting end-to-end dialogue systems with common-
sense knowledge. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao,
Jingfang Xu, and Xiaoyan Zhu. 2018. Com-
monsense knowledge aware conversation generation
with graph attention. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden., pages 4623—-4629.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study. In
Natural Language Processing and Chinese Comput-
ing - 6th CCF International Conference, NLPCC
2017, Dalian, China, November 8-12, 2017, Pro-
ceedings, pages 662—-671.

4567


http://www.aclweb.org/anthology/P02-1040.pdf
http://www.aclweb.org/anthology/P02-1040.pdf
http://www.aclweb.org/anthology/D11-1054
https://aclanthology.info/papers/E17-1042/e17-1042
https://aclanthology.info/papers/E17-1042/e17-1042
https://aclanthology.info/papers/E17-1042/e17-1042
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1007/11562214_51
https://doi.org/10.1007/11562214_51
http://aclweb.org/anthology/P/P15/P15-1152.pdf
http://aclweb.org/anthology/P/P15/P15-1152.pdf
http://aclweb.org/anthology/N/N15/N15-1020.pdf
http://aclweb.org/anthology/N/N15/N15-1020.pdf
http://papers.nips.cc/paper/5846-end-to-end-memory-networks
http://papers.nips.cc/paper/5846-end-to-end-memory-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16239
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16239
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16239
http://papers.nips.cc/paper/5866-pointer-networks
http://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1506.05869
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261
https://doi.org/10.24963/ijcai.2018/643
https://doi.org/10.24963/ijcai.2018/643
https://doi.org/10.24963/ijcai.2018/643
https://doi.org/10.1007/978-3-319-73618-1_56
https://doi.org/10.1007/978-3-319-73618-1_56

