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Abstract

Pre-trained language models such as BERT
have proven to be highly effective for natu-
ral language processing (NLP) tasks. How-
ever, the high demand for computing resources
in training such models hinders their applica-
tion in practice. In order to alleviate this re-
source hunger in large-scale model training,
we propose a Patient Knowledge Distillation
approach to compress an original large model
(teacher) into an equally-effective lightweight
shallow network (student). Different from pre-
vious knowledge distillation methods, which
only use the output from the last layer of the
teacher network for distillation, our student
model patiently learns from multiple interme-
diate layers of the teacher model for incremen-
tal knowledge extraction, following two strate-
gies: (¢) PKD-Last: learning from the last &
layers; and (¢¢) PKD-Skip: learning from ev-
ery k layers. These two patient distillation
schemes enable the exploitation of rich infor-
mation in the teacher’s hidden layers, and en-
courage the student model to patiently learn
from and imitate the teacher through a multi-
layer distillation process. Empirically, this
translates into improved results on multiple
NLP tasks with significant gain in training ef-
ficiency, without sacrificing model accuracy.!

1 Introduction

Language model pre-training has proven to be
highly effective in learning universal language
representations from large-scale unlabeled data.
ELMo (Peters et al., 2018), GPT (Radford et al.,
2018) and BERT (Devlin et al., 2018) have
achieved great success in many NLP tasks, such as
sentiment classification (Socher et al., 2013), natu-
ral language inference (Williams et al., 2017), and
question answering (Lai et al., 2017).

!Code will be avialable at https://github.com/
intersun/PKD-for-BERT-Model-Compression.

Despite its empirical success, BERT’s compu-
tational efficiency is a widely recognized issue be-
cause of its large number of parameters. For exam-
ple, the original BERT-Base model has 12 layers
and 110 million parameters. Training from scratch
typically takes four days on 4 to 16 Cloud TPUs.
Even fine-tuning the pre-trained model with task-
specific dataset may take several hours to finish
one epoch. Thus, reducing computational costs for
such models is crucial for their application in prac-
tice, where computational resources are limited.

Motivated by this, we investigate the redun-
dancy issue of learned parameters in large-scale
pre-trained models, and propose a new model
compression approach, Patient Knowledge Distil-
lation (Patient-KD), to compress original teacher
(e.g., BERT) into a lightweight student model
without performance sacrifice. In our approach,
the teacher model outputs probability logits and
predicts labels for the training samples (extend-
able to additional unannotated samples), and the
student model learns from the teacher network to
mimic the teacher’s prediction.

Different from previous knowledge distillation
methods (Hinton et al., 2015; Sau and Balasub-
ramanian, 2016; Lu et al., 2017), we adopt a pa-
tient learning mechanism: instead of learning pa-
rameters from only the last layer of the teacher,
we encourage the student model to extract knowl-
edge also from previous layers of the teacher net-
work. We call this ‘Patient Knowledge Distilla-
tion’. This patient learner has the advantage of dis-
tilling rich information through the deep structure
of the teacher network for multi-layer knowledge
distillation.

We also propose two different strategies for the
distillation process: (¢) PKD-Last: the student
learns from the last k layers of the teacher, under
the assumption that the top layers of the original
network contain the most informative knowledge
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to teach the student; and (¢¢) PKD-Skip: the stu-
dent learns from every & layers of the teacher, sug-
gesting that the lower layers of the teacher network
also contain important information and should be
passed along for incremental distillation.

We evaluate the proposed approach on sev-
eral NLP tasks, including Sentiment Classifi-
cation, Paraphrase Similarity Matching, Natu-
ral Language Inference, and Machine Reading
Comprehension. Experiments on seven datasets
across these four tasks demonstrate that the pro-
posed Patient-KD approach achieves superior per-
formance and better generalization than standard
knowledge distillation methods (Hinton et al.,
2015), with significant gain in training efficiency
and storage reduction while maintaining compa-
rable model accuracy to original large models. To
the authors’ best knowledge, this is the first known
effort for BERT model compression.

2 Related Work

Language Model Pre-training Pre-training has
been widely applied to universal language repre-
sentation learning. Previous work can be divided
into two main categories: (z) feature-based ap-
proach; (¢¢) fine-tuning approach.

Feature-based methods mainly focus on learn-
ing: (¢) context-independent word representa-
tion (e.g., word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), FastText (Bo-
janowski et al., 2017)); (i¢) sentence-level rep-
resentation (e.g., Kiros et al. (2015); Conneau
et al. (2017); Logeswaran and Lee (2018)); and
(72¢) contextualized word representation (e.g.,
Cove (McCann et al., 2017), ELMo (Peters et al.,
2018)). Specifically, ELMo (Peters et al., 2018)
learns high-quality, deep contextualized word rep-
resentation using bidirectional language model,
which can be directly plugged into standard NLU
models for performance boosting.

On the other hand, fine-tuning approaches
mainly pre-train a language model (e.g.,
GPT (Radford et al., 2018), BERT (Devlin
et al., 2018)) on a large corpus with an unsu-
pervised objective, and then fine-tune the model
with in-domain labeled data for downstream
applications (Dai and Le, 2015; Howard and
Ruder, 2018). Specifically, BERT is a large-scale
language model consisting of multiple layers
of Transformer blocks (Vaswani et al., 2017).
BERT-Base has 12 layers of Transformer and 110

million parameters, while BERT-Large has 24
layers of Transformer and 330 million parameters.
By pre-training via masked language modeling
and next sentence prediction, BERT has achieved
state-of-the-art performance on a wide-range of
NLU tasks, such as the GLUE benchmark (Wang
et al., 2018) and SQuAD (Rajpurkar et al., 2016).

However, these modern pre-trained language
models contain millions of parameters, which hin-
ders their application in practice where computa-
tional resource is limited. In this paper, we aim
at addressing this critical and challenging prob-
lem, taking BERT as an example, i.e., how to
compress a large BERT model into a shallower
one without sacrificing performance. Besides, the
proposed approach can also be applied to other
large-scale pre-trained language models, such as
recently proposed XLNet (Yang et al., 2019) and
RoBERTa (Liu et al., 2019b).

Model Compression & Knowledge Distillation
Our focus is model compression, i.e., making deep
neural networks more compact (Han et al., 2016;
Cheng et al., 2015). A similar line of work has
focused on accelerating deep network inference at
test time (Vetrov et al., 2017) and reducing model
training time (Huang et al., 2016).

A conventional understanding is that a large
number of connections (weights) is necessary for
training deep networks (Denil et al., 2013; Zhai
et al., 2016). However, once the network has
been trained, there will be a high degree of pa-
rameter redundancy. Network pruning (Han et al.,
2015; He et al., 2017), in which network con-
nections are reduced or sparsified, is one com-
mon strategy for model compression. Another di-
rection is weight quantization (Gong et al., 2014;
Polino et al., 2018), in which connection weights
are constrained to a set of discrete values, allowing
weights to be represented by fewer bits. However,
most of these pruning and quantization approaches
perform on convolutional networks. Only a few
work are designed for rich structural information
such as deep language models (Changpinyo et al.,
2017).

Knowledge distillation (Hinton et al., 2015)
aims to compress a network with a large set
of parameters into a compact and fast-to-execute
model. This can be achieved by training a com-
pact model to imitate the soft output of a larger
model. Romero et al. (2015) further demonstrated
that intermediate representations learned by the
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large model can serve as hints to improve the train-
ing process and the final performance of the com-
pact model. Chen et al. (2015) introduced tech-
niques for efficiently transferring knowledge from
an existing network to a deeper or wider network.
More recently, Liu et al. (2019a) used knowledge
from ensemble models to improve single model
performance on NLU tasks. Tan et al. (2019)
tried knowledge distillation for multilingual trans-
lation. Different from the above efforts, we inves-
tigate the problem of compressing large-scale lan-
guage models, and propose a novel patient knowl-
edge distillation approach to effectively transfer-
ring knowledge from a teacher to a student model.

3 Patient Knowledge Distillation

In this section, we first introduce a vanilla knowl-
edge distillation method for BERT compression
(Section 3.1), then present the proposed Patient
Knowledge Distillation (Section 3.2) in details.

Problem Definition The original large teacher
network is represented by a function f(x;6),
where x is the input to the network, and 6 denotes
the model parameters. The goal of knowledge dis-
tillation is to learn a new set of parameters 6 for
a shallower student network g(x; 6’), such that the
student network achieves similar performance to
the teacher, with much lower computational cost.
Our strategy is to force the student model to imi-
tate outputs from the teacher model on the training
dataset with a defined objective L p.

3.1 Distillation Objective

In our setting, the teacher f(x;6) is defined as a
deep bidirectional encoder, e.g., BERT, and the
student g(x; #’) is a lightweight model with fewer
layers. For simplicity, we use BERT}, to denote
a model with k£ layers of Transformers. Follow-
ing the original BERT paper (Devlin et al., 2018),
we also use BERT-Base and BERT-Large to de-
note BERT; > and BERT44, respectively.

Assume {x;,y;}}¥, are N training samples,
where x; is the i-th input instance for BERT,
and y; is the corresponding ground-truth label.
BERT first computes a contextualized embedding
h; = BERT(x;) € RY. Then, a softmax layer
yvi = P(yi|x;) = softmax(Why) for classifica-
tion is applied to the embedding of BERT output,
where W is a weight matrix to be learned.

To apply knowledge distillation, first we need to
train a teacher network. For example, to train a 12-

layer BERT-Base as the teacher model, the learned
parameters are denoted as:

0" = arg min Z Lep(%i, yis [OerT,o, W])
1€[N]

(1
where the superscript ¢ denotes parameters in
the teacher model, [N] denotes set {1,2,..., N},
LtC p denotes the cross-entropy loss for the
teacher training, and fpgrt,, denotes parameters
of BERT12 .

The output probability for any given input x;
can be formulated as:

Wh;
yi = P'(yilx;) = SOfthWC( T )

. gt

W BERZT_,H (Xz, 9 )) (2)
where P!(-|-) denotes the probability output from
the teacher. y; is fixed as soft labels, and T
is the temperature used in KD, which controls
how much to rely on the teacher’s soft predic-
tions. A higher temperature produces a more di-
verse probability distribution over classes (Hinton
et al., 2015). Similarly, let #° denote parameters
to be learned for the student model, and P*(-|-)
denote the corresponding probability output from
the student model. Thus, the distance between the
teacher’s prediction and the student’s prediction
can be defined as:

-3 [P

i€[N] ceC
log P*(yi = ¢[x3;0°)|  (3)

where c is a class label and C' denotes the set of
class labels.

Besides encouraging the student model to imi-
tate the teacher’s behavior, we can also fine-tune
the student model on target tasks, where task-
specific cross-entropy loss is included for model

>3 [

1€[N] ceC

log P*(y; = c|x;; 6%) 4)

= softmazx (

Lps = (yi = cfx;0"):

s
CE — —

Thus, the final objective function for knowledge
distillation can be formulated as:

Ligp = (1—O¢)LSCE+05LDS (5

where « is the hyper-parameter that balances the
importance of the cross-entropy loss and the dis-
tillation loss.
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Figure 1: Model architecture of the proposed Patient
Knowledge Distillation approach to BERT model com-
pression. (Left) PKD-Skip: the student network learns
the teacher’s outputs in every 2 layers. (Right) PKD-
Last: the student learns the teacher’s outputs from the
last 6 layers. Trm: Transformer.

3.2 Patient Teacher for Model Compression

Using a weighted combination of ground-truth la-
bels and soft predictions from the last layer of the
teacher network, the student network can achieve
comparable performance to the teacher model on
the training set. However, with the number of
epochs increasing, the student model learned with
this vanilla KD framework quickly reaches satura-
tion on the test set (see Figure 2 in Section 4).

One hypothesis is that overfitting during knowl-
edge distillation may lead to poor generalization.
To mitigate this issue, instead of forcing the stu-
dent to learn only from the logits of the last layer,
we propose a “patient” teacher-student mecha-
nism to distill knowledge from the teacher’s inter-
mediate layers as well. Specifically, we investi-
gate two patient distillation strategies: (i) PKD-
Skip: the student learns from every k layers of the
teacher (Figure 1: Left); and (i7) PKD-Last: the
student learns from the last k layers of the teacher
(Figure 1: Right).

Learning from the hidden states of all the to-
kens is computationally expensive, and may intro-
duce noise. In the original BERT implementation
(Devlin et al., 2018), prediction is performed by
only using the output from the last layer’s [CLS]

token. In some variants of BERT, like SDNet
(Zhu et al., 2018), a weighted average of all lay-
ers’ [CLS] embeddings is applied. In general,
the final logit can be computed based on hgpy =
>_jek) wihy, where w; could be either learned pa-
rameters or a pre-defined hyper-parameter, h; is
the embedding of [CLS] from the hidden layer
j, and k is the number of hidden layers. Derived
from this, if the compressed model can learn from
the representation of [CLS] in the teacher’s inter-
mediate layers for any given input, it has the po-
tential of gaining a generalization ability similar to
the teacher model.

Motivated by this, in our Patient-KD frame-
work, the student is cultivated to imitate the repre-
sentations only for the [CLS] token in the inter-
mediate layers, following the intuition aforemen-
tioned that the [CLS] token is important in pre-
dicting the final labels. For an input x;, the outputs
of the [CLS] tokens for all the layers are denoted
as:

h; = [h;1,h;o, ... RF>d

(6)

We denote the set of intermediate layers to dis-
till knowledge from as I,;. Take distilling from
BERT, to BERTg as an example. For the PKD-
Skip strategy, Iy = {2,4,6,8,10}; and for the
PKD-Last strategy, I, = {7,8,9,10,11}. Note
that £ = 5 for both cases, because the output from
the last layer (e.g., Layer 12 for BERT-Base) is
omitted since its hidden states are connected to the
softmax layer, which is already included in the KD
loss defined in Eqn. (5). In general, for BERT stu-
dent with n layers, k always equals to n — 1.

The additional training loss introduced by the
patient teacher is defined as the mean-square loss
between the normalized hidden states:

ZZHH Ll

where M denotes the number of layers in the stu-
dent network, N is the number of training sam-
ples, and the superscripts s and ¢ in h indicate the
student and the teacher model, respectively. Com-
bined with the KD loss introduced in Section 3.1,
the final objective function can be formulated as:

Lpxkp =1 —a)Ligp+alps+ BLpr  (8)

where [ is another hyper-parameter that weights
the importance of the features for distillation in the
intermediate layers.

7hi,k’] = BERTk(XZ) <

let(J H
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4 Experiments

In this section, we describe our experiments on ap-
plying the proposed Patient-KD approach to four
different NLP tasks. Details on the datasets and
experimental results are provided in the following
sub-sections.

4.1 Datasets

We evaluate our proposed approach on Sentiment
Classification, Paraphrase Similarity Matching,
Natural Language Inference, and Machine Read-
ing Comprehension tasks. For Sentiment Clas-
sification, we test on Stanford Sentiment Tree-
bank (SST-2) (Socher et al., 2013). For Para-
phrase Similarity Matching, we use Microsoft Re-
search Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005) and Quora Question Pairs (QQP)?
datasets. For Natural Language Inference, we
evaluate on Multi-Genre Natural Language Infer-
ence (MNLI) (Williams et al., 2017), QNLI® (Ra-
jpurkar et al., 2016), and Recognizing Textual En-
tailment (RTE).

More specifically, SST-2 is a movie review
dataset with binary annotations, where the bi-
nary label indicates positive and negative re-
views. MRPC contains pairs of sentences and
corresponding labels, which indicate the semantic
equivalence relationship between each pair. QQP
is designed to predict whether a pair of questions
is duplicate or not, provided by a popular on-
line question-answering website Quora. MNLI is
a multi-domain NLI task for predicting whether
a given premise-hypothesis pair is entailment,
contradiction or neural. Its test and develop-
ment datasets are further divided into in-domain
(MNLI-m) and cross-domain (MNLI-mm) splits
to evaluate the generality of tested models. QNLI
is a task for predicting whether a question-answer
pair is entailment or not. Finally, RTE is based
on a series of textual entailment challenges, cre-
ated by General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018).

For the Machine Reading Comprehension task,
we evaluate on RACE (Lai et al., 2017), a large-
scale dataset collected from English exams, con-
taining 25,137 passages and 87,866 questions. For
each question, four candidate answers are pro-

*https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

3The dataset is derived from Stanford Question Answer
Dataset (SQuAD).

vided, only one of which is correct. The dataset is
further divided into RACE-M and RACE-H, con-
taining exam questions for middle school and high
school students.

4.2 Baselines and Training Details

For experiments on the GLUE benchmark, since
all the tasks can be considered as sentence (or
sentence-pair) classification, we use the same ar-
chitecture in the original BERT (Devlin et al.,
2018), and fine-tune each task independently.

For experiments on RACE, we denote the in-
put passage as P, the question as ¢, and the four
answers as ai,...,a4. We first concatenate the
tokens in ¢ and each a;, and arrange the input of
BERT as [CLS] P [SEP] q+a; [SEP] for each
input pair (P, q + a;), where [CLS] and [SEP]
are the special tokens used in the original BERT.
In this way, we can obtain a single logit value for
each a;. Atlast, a softmax layer is placed on top of
these four logits to obtain the normalized probabil-
ity of each answer a; being correct, which is then
used to compute the cross-entropy loss for model-
ing training.

We fine-tune BERT-Base (denoted as BERT19)
as the teacher model to compute soft labels for
each task independently, where the pretrained
model weights are obtained from Google’s offi-
cial BERT’s repo*, and use 3 and 6 layers of
Transformers as the student models (BERT3 and
BERTj), respectively. We initialize BERT}, with
the first k£ layers of parameters from pre-trained
BERT-Base, where &k € {3,6}. To validate the
effectiveness of our proposed approach, we first
conduct direct fine-tuning on each task without us-
ing any soft labels. In order to reduce the hyper-
parameter search space, we fix the number of hid-
den units in the final softmax layer as 768, the
batch size as 32, and the number of epochs as 4
for all the experiments, with a learning rate from
{5e-5, 2e-5, 1e-5}. The model with the best vali-
dation accuracy is selected for each setting.

Besides direct fine-tuning, we further imple-
ment a vanilla KD method on all the tasks by
optimizing the objective function in Eqn. (5).
We set the temperature 7" as {5, 10, 20}, a =
{0.2,0.5,0.7}, and perform grid search over T', «
and learning rate, to select the model with the best
validation accuracy. For our proposed Patient-KD
approach, we conduct additional search over [

*https://github.com/google-research/bert
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Model SST-2  MRPC QQP MNLI-m MNLI-mm QNLI RTE
(67k) (3.7k) (364k) (393k) (393k) (105k) (2.5k)

BERT;2 (Google) 93.5 88.9/84.8 71.2/89.2 84.6 83.4 90.5 66.4
BERTy (Teacher) 94.3  89.2/85.2 70.9/89.0 83.7 82.8 90.4 69.1
BERT§-FT 90.7 85.9/80.2 69.2/88.2 80.4 79.7 86.7 63.6
BERTs-KD 91.5 86.2/80.6 70.1/88.8 80.2 79.8 88.3 64.7
BERTs-PKD 92.0 85.0/79.9 170.7/88.9 81.5 81.0 89.0 65.5
BERT;3-FT 86.4  80.5/72.6 65.8/86.9 74.8 74.3 84.3 55.2
BERT3-KD 86.9 79.5/71.1 67.3/87.6 75.4 74.8 84.0 56.2
BERT3-PKD 87.5 80.7/72.5 68.1/87.8 76.7 76.3 84.7 58.2

Table 1: Results from the GLUE test server. The best results for 3-layer and 6-layer models are in-bold. Google’s
submission results are obtained from official GLUE leaderboard. BERT;5 (Teacher) is our own implementation
of the BERT teacher model. FT represents direct fine-tuning on each dataset without using knowledge distillation.
KD represents using a vanilla knowledge distillation method. And PKD represents our proposed Patient-KD-Skip
approach. Results show that PKD-Skip outperforms the baselines on almost all the datasets except for MRPC. The
numbers under each dataset indicate the corresponding number of training samples.
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Figure 2: Accuracy on the training and dev sets of QNLI and MNLI datasets, by directly applying vanilla knowl-
edge distillation (KD) and the proposed Patient-KD-Skip. The teacher and the student networks are BERT 5 and
BERT¢, respectively. The student network learned with vanilla KD quickly saturates on the dev set, while the

proposed Patient-KD starts to plateau only in a later stage.

from {10, 100,500, 1000} on all the tasks. Since
there are so many hyper-parameters to learn for
Patient KD, we fix o and T to the values used
in the model with the best performance from the
vanilla KD experiments, and only search over 3
and learning rate.

4.3 Experimental Results

We submitted our model predictions to the offi-
cial GLUE evaluation server to obtain results on
the test data. Results are summarized in Table 1.
Compared to direct fine-tuning and vanilla KD,
our Patient-KD models with BERT3 and BERTg
students perform the best on almost all the tasks
except MRPC. For MNLI-m and MNLI-mm, our
6-layer model improves 1.1% and 1.3% over fine-
tune (FT) baselines; for QNLI and QQP, even
though the gap between BERT4-KD and BERT
teacher is relatively small, our approach still suc-
ceeded in improving over both FT and KD base-

lines and further closing the gap between the stu-
dent and the teacher models.

Furthermore, in 5 tasks out of 7 (SST-2 (-2.3%
compared to BERT-Base teacher), QQP (-0.1%),
MNLI-m (-2.2%), MNLI-mm (-1.8%), and QNLI
(-1.4%)), the proposed 6-layer student coached by
the patient teacher achieved similar performance
to the original BERT-Base, demonstrating the ef-
fectiveness of our approach. Interestingly, all
those 5 tasks have more than 60k training sam-
ples, which indicates that our method tends to per-
form better when there is a large amount of train-
ing data.

For the QQP task, we can further reduce the
model size to 3 layers, where BERT3-PKD can
still have a similar performance to the teacher
model. The learning curves on the QNLI and
MNLI datasets are provided in Figure 2. The stu-
dent model learned with vanilla KD quickly sat-
urated on the dev set, while the proposed Patient-
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Model SST-2  MRPC QQP MNLI-m MNLI-mm QNLI RTE
BERTg (PKD-Last) 919  85.1/79.5 70.5/88.9 80.9 81.0 88.2 65.0
BERT¢ (PKD-Skip) 92.0  85.0/79.9 70.7/88.9 81.5 81.0 89.0 655

Table 2: Performance comparison between PKD-Last and PKD-Skip on GLUE benchmark.

KD keeps learning from the teacher and improving
accuracy, only starting to plateau in a later stage.

For the MRPC dataset, one hypothesis for the
reason on vanilla KD outperforming our model is
that the lack of enough training samples may lead
to overfitting on the dev set. To further investigate,
we repeat the experiments three times and com-
pute the average accuracy on the dev set. We ob-
serve that fine-tuning and vanilla KD have a mean
dev accuracy of 82.23% and 82.84%, respectively.
Our proposed method has a higher mean dev accu-
racy of 83.46%, hence indicating that our Patient-
KD method slightly overfitted to the dev set of
MRPC due to the small amount of training data.
This can also be observed on the performance gap
between teacher and student on RTE in Table 5,
which also has a small training set.

We further investigate the performance gain
from two different patient teacher designs: PKD-
Last vs. PKD-Skip. Results of both PKD variants
on the GLUE benchmark (with BERTg as the stu-
dent) are summarized in Table 2. Although both
strategies achieved improvement over the vanilla
KD baseline (see Table 1), PKD-Skip performs
slightly better than PKD-Last. Presumably, this
might be due to the fact that distilling informa-
tion across every k layers captures more diverse
representations of richer semantics from low-level
to high-level, while focusing on the last k layers
tends to capture relatively homogeneous semantic
information.

Results on RACE are reported in Table 3, which
shows that the Vanilla KD method outperforms di-
rect fine-tuning by 4.42%, and our proposed pa-
tient teacher achieves further 1.6% performance
lift, which again demonstrates the effectiveness of
Patient-KD.

4.4 Analysis of Model Efficiency

We have demonstrated that the proposed Patient-
KD method can effectively compress BERT > into
BERTg models without performance sacrifice. In
this section, we further investigate the efficiency of
Patient-KD on storage saving and inference-time
speedup. Parameter statistics and inference time

Model RACE RACE-M RACE-H
BERT9 (Leaderboard) 65.00 71.70 62.30
BERT, (Teacher) 65.30 71.17 62.89
BERTs-FT 5432  61.07 51.54
BERTs-KD 58.74 64.69 56.29
BERTs-PKD-Skip 60.34  66.57 57.78

Table 3: Results on RACE test set. BERT 5

(Leaderboard) denotes results extracted from the of-
ficial leaderboard (http://www.gizhexie.com/
/data/RACE_leaderboard). BERT;, (Teacher)
is our own implementation. Results of BERTj3 are not
included due to the large gap between the teacher and
the BERT3 student.

are summarized in Table 4. All the models share
the same embedding layer with 24 millon param-
eters that map a 30k-word vocabulary to a 768-
dimensional vector, which leads to 1.64 and 2.4
times of machine memory saving from BERTg and
BERTS3, respectively.

To test the inference speed, we ran experiments
on 105k samples from QNLI training set (Ra-
jpurkar et al., 2016). Inference is performed on
a single Titan RTX GPU with batch size set to
128, maximum sequence length set to 128, and
FP16 activated. The inference time for the em-
bedding layer is negligible compared to the Trans-
former layers. Results in Table 4 show that the
proposed Patient-KD approach achieves an almost
linear speedup, 1.94 and 3.73 times for BERTg and
BERTS3, respectively.

4.5 Does a Better Teacher Help?

To evaluate the effectiveness of the teacher model
in our Patient-KD framework, we conduct ad-
ditional experiments to measure the difference
between BERT-Base teacher and BERT-Large
teacher for model compression.

Each Transformer layer in BERT-Large has
12.6 million parameters, which is much larger
than the Transformer layer used in BERT-Base.
For a compressed BERT model with 6 layers,
BERTg with BERT-Base Transformer (denoted as
BERTg[Base]) has only 67.0 million parameters,
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# Layers  # Param (Emb)

# Params (Trm)

Total Params Inference Time (s) ‘

3 23.8M 21.3M
6 23.8M 42.5M
12 23.8M 85.1M

45.7M (2.40%)
67.0M (1.64x)
109M (1x)

27.35 (3.73%)
52.51 (1.94%)
101.89 (1x)

Table 4: The number of parameters and inference time for BERT3, BERTs and BERT . Parameters in Transform-
ers (Trm) grow linearly with the increase of layers. Note that the summation of # Param (Emb) and # Param (Trm)
does not exactly equal to Total Params, because there is another softmax layer with 0.6M parameters.

’ Setting  Teacher Student SST-2 MRPC QQP MNLI-m MNLI-mm QNLI RTE ‘
N/A N/A BERT2 (Teacher) 94.3 89.2/85.2  70.9/89.0 83.7 82.8 904  69.1
N/A N/A BERT>4 (Teacher) 94.3 88.2/84.3  71.9/89.4 85.7 84.8 922 728

#1 BERT > BERT¢[Base]-KD 91.5 86.2/80.6  70.1/88.8 79.7 79.1 88.3 647
#2 BERT24 BERTs[Base]-KD 91.2  86.1/80.7 69.4/88.6 80.2 79.7 87.5  65.7
#3 BERT24  BERTs[Large]-KD 89.6  79.0/70.0 65.0/86.7 75.3 74.6 834 537
#4 BERT24 BERTs[Large]-PKD  89.8  77.8/68.3 67.1/87.9 77.2 76.7 83.8 532

Table 5: Performance comparison with different teacher and student models. BERTg[Base]/[Large] denotes a
BERTg model with a BERT-Base/Large Transformer in each layer. For PKD, we use the PKD-Skip architecture.

while BERTg with BERT-Large Transformer (de-
noted as BERT¢[Large]) has 108.4 million param-
eters. Since the size of the [CLS] token embed-
ding is different between BERT-Large and BERT-
Base, we cannot directly compute the patient
teacher loss (7) for BERTs[Base] when BERT-
Large is used as teacher. Hence, in the case
where the teacher is BERT-Large and the student
is BERTg[Base], we only conduct experiments in
the vanilla KD setting.

Results are summarized in Table 5. When the
teacher changes from BERT2 to BERTy, (i.e.,
Setting #1 vs. #2), there is not much differ-
ence between the students’ performance. Specif-
ically, BERT5 teacher performs better on SST-2,
QQP and QNLI, while BERT24 performs better on
MNLI-m, MNLI-mm and RTE. Presumably, dis-
tilling knowledge from a larger teacher requires a
larger training dataset, thus better results are ob-
served on MNLI-m and MNLI-mm.

We also report results on using BERT-Large
as the teacher and BERTg[Large] as the stu-
dent. Interestingly, when comparing Setting #I
with #3, BERTg[Large] performs much worse
than BERTg[Base] even though a better teacher
is used in the former case. The BERTg[Large]
student also has 1.6 times more parameters than
BERTg[Base]. One intuition behind this is that the
compression ratio for the BERTg[Large] model is
4:1 (24:6), which is larger than the ratio used for
the BERTg[Base] model (2:1 (12:6)). The higher
compression ratio renders it more challenging for
the student model to absorb important weights.

When comparing Setting # 2 and #3, we ob-

serve that even when the same large teacher is
used, BERTg[Large] still performs worse than
BERTg[Base]. Presumably, this may be due
to initialization mismatch. Ideally, we should
pre-train BERTg[Large] and BERTg[Base] from
scratch, and use the weights learned from the pre-
training step for weight initialization in KD train-
ing. However, due to computational limits of train-
ing BERT¢ from scratch, we only initialize the stu-
dent model with the first six layers of BERT5 or
BERT34. Therefore, the first six layers of BERT24
may not be able to capture high-level features,
leading to worse KD performance.

Finally, when comparing Setting #3 vs. #4,
where for setting #4 we use Patient-KD-Skip in-
stead of vanilla KD, we observe a performance
gain on almost all the tasks, which indicates
Patient-KD is a generic approach independent of
the selection of the teacher model (BERT2 or
BERT2,).

5 Conclusion

In this paper, we propose a novel approach to
compressing a large BERT model into a shal-
low one via Patient Knowledge Distillation. To
fully utilize the rich information in deep struc-
ture of the teacher network, our Patient-KD ap-
proach encourages the student model to patiently
learn from the teacher through a multi-layer distil-
lation process. Extensive experiments over four
NLP tasks demonstrate the effectiveness of our
proposed model.

For future work, we plan to pre-train BERT
from scratch to address the initialization mismatch
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issue, and potentially modify the proposed method
such that it could also help during pre-training.
Designing more sophisticated distance metrics for
loss functions is another exploration direction. We
will also investigate Patient-KD in more com-
plex settings such as multi-task learning and meta
learning.
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