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Abstract

Identifying what is at the center of the mean-
ing of a word and what discriminates it from
other words is a fundamental natural lan-
guage inference task. This paper describes
an explicit word vector representation model
(WVM) to support the identification of dis-
criminative attributes. A core contribution
of the paper is a quantitative and qualitative
comparative analysis of different types of data
sources and Knowledge Bases in the construc-
tion of explainable and explicit WVMs: (i)
knowledge graphs built from dictionary defini-
tions, (ii) entity-attribute-relationships graphs
derived from images and (iii) commonsense
knowledge graphs. Using a detailed quantita-
tive and qualitative analysis, we demonstrate
that these data sources have complementary
semantic aspects, supporting the creation of
explicit semantic vector spaces. The explicit
vector spaces are evaluated using the task of
discriminative attribute identification, show-
ing comparable performance to the state-of-
the-art systems in the task (F1-score = 0.69),
while delivering full model transparency and
explainability.

1 Introduction

Word-vector/embedding models (WVM) have
emerged as first-class representations in contem-
porary Natural Language Processing (NLP) tasks
due to their ability to capture semantic similar-
ity and relatedness in an unsupervised and com-
prehensive manner (Turney and Pantel, 2010),
(Freitas, 2015). Additionally, the simplicity en-
tailed by the vector space abstraction makes it
an engineering-friendly representation, also ex-
plaining its widespread adoption and use (Freitas,
2015). However, the latent features (dense vec-
tors) at the center of most of the best-performing
models have limited their application to two main
uses: (i) computing semantic similarity and relat-

edness measures and (ii) performing vocabulary
generalization as an input layer on Machine Learn-
ing (ML) models.

The identification of discriminative attributes
(IDA), recently introduced by Krebs et al. (2018),
can motivate the development of word vector mod-
els which can support types of operations with
finer semantics, going beyond the computation of
semantic similarity and relatedness scores, with
potential applications in fine-grained semantic in-
ference tasks.

Concretely, using the example provided by
(Krebs et al., 2018), given a pair of target terms
apple and banana, the IDA task seeks to answer if
the term red is a discriminative attribute for apple
in comparison to banana. According to Krebs et al.
semantic difference is a ternary relation between
two concepts (apple, banana) and a discriminative
feature (red) that characterizes the former concept
but not the latter.

This paper focuses on proposing an explicit
(sparse) WVM for detecting and explaining dis-
criminative attributes.  The proposed explicit
WVM provides a dimension of explainability
while keeping the simplicity of the vector space
representation model. This addition allows the
model to provide a justification while addressing
tasks such as the computation of discriminative
attributes (Figure 1). The explicit nature of the
model and its ability to compute the difference
between the term pairs is the core proposed con-
tribution (instead of the improvement of the F1-
score for the task). Models with the ability to com-
pute discriminative attributes can provide a repre-
sentation paradigm which can support more fine-
grained semantic inference tasks.

Another core contribution of this paper is a
comprehensive quantitative and qualitative com-
parative analysis on how different types of data
sources and Knowledge Bases (KBs) affect the
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construction of explainable and explicit WVMs.
The IDA task requires a granular representation
of the necessary and sufficient conditions associ-
ated with the definition of a target concept, many
of these transcending lexicographic and ency-
clopaedic representations. In order to address this
problem, we analyse three types of data sources:
(1) knowledge graphs built from dictionary defini-
tions, (ii) entity-attribute-relationship graphs de-
rived from images and (iii) commonsense knowl-
edge graphs. The goal behind using these mod-
els is twofold: (i) to provide an explainable, fine-
grained word-vector model and (ii) to support the
capture of lexical-semantic relations not captured
in a representative fashion in regular corpora used
in existing distributional models (which in most
cases combine news, encyclopedic and literary
discourse).

In summary, this paper focuses on the follow-
ing contributions: (i) The creation of a novel in-
terpretable word vector model based on the com-
bination of structured definitions and visual fea-
tures for the IDA task and (ii) a detailed com-
parative, quantitative and qualitative evaluation
of the semantic contribution of different types of
data sources for explicit semantics.

2 Related Work

In this section we group related work into two
major categories: (i) approaches for the identifi-
cation of discriminative attributes (IDA) and (ii)
definition-based word vector space models.

Existing approaches have explored combina-
tions of linguistic and data resources (WordNet,
ConceptNet, Wikipedia), linguistic features (syn-
tactic dependencies), sparse word vector models
(JoBimText), dense word-vector (DWV) models
(W2V, GloVe) and supervised/ unsupervised ma-
chine learning approaches (SVM, MLP, Ensemble
Methods).

With regard to interpretability and explainabil-
ity we can classify IDA approaches into three
categories. Frequency-based models over text-
based features, heavily relying on textual features
and frequency-based methods (Gamallo, 2018;
Gonzdlez et al., 2018) ; ML over Textual features
(Dumitru et al., 2018; Sommerauer et al., 2018;
King et al., 2018; Mao et al., 2018) and ML over
dense vectors and textual features (Brychcin et al.,
2018; Attia et al., 2018; Wu et al., 2018; Du-
mitru et al., 2018; Arroyo-Ferndndez et al., 2018;

Speer and Lowry-Duda, 2018; Santus et al., 2018;
Grishin, 2018; Zhou et al., 2018; Vinayan et al.,
2018; Kulmizev et al., 2018; Zhang and Carpuat,
2018; Shiue et al., 2018). While the first category
concentrates on models with higher interpretabil-
ity, none of these models provide explanations.
Comparatively, this work focuses on the cre-
ation of an explicit word vector space model
(EWVM), with an associated explanation, evalu-
ating the performance of different types of lexico-
semantic resources in the context of the task of
identification of discriminative attributes (IDA).

3 Identifying and Explaining
Discriminative Attributes

3.1 Problem Definition

This paper provides an explainable word vector
space model (EWVM) for detecting whether a
given term is a discriminative attribute or not with
regard to a pair of reference terms as defined by
Krebs et al. (2018). Given a triple < tp,t.,tf >,
t¢ (feature) is considered discriminative if it is re-
lated to the first term ¢, (pivor) to a significantly
higher extent than it is related to the second term ¢,
(comparison), i.e. ty € p(ty,) ANty & p(t.), where
the function p(t) returns a set of properties associ-
ated with term ¢.

Additionally, beyond the identification of the
discriminative attribute (i.e. assigning a value of
true or false to the target term triple), this paper
explores different notions of an explanation e as-
signed to the inference, which can be both human
and machine interpretable.

3.2 Types of Discriminative Attributes

The nature of the semantic relationships expressed
in the task of identifying discriminative attributes
can guide the selection of the supporting target
corpora. In this section, we propose a classifica-
tion of term-discriminative attribute relationships
into three dual categories: Essential vs. Inciden-
tal, Sensory vs. Logical and Relative vs. Abso-
lute.

Essential vs. Incidental: p is an essential prop-
erty of an object o just in case it is necessary that
o has p, whereas p is an incidental property of
an object o just in case o has p but it is possible
that o lacks p. Example: (cognac, whiskey,
french) is essential and (nose, throat,
perfume) is incidental. The notion of Essen-
tial v. Incidental is similar to the logical notion of
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Necessary and Sufficient Conditions, but rooted in
the philosophical notion of essential and acciden-
tal properties, particularly, as defined by Robert-
son and Atkins (2018).

Sensory vs. Logical: p is a sensory property of
an object o, in case p can be identified as a prop-
erty of o exclusively through sensory information,
whereas p is a logical property of an object o
otherwise. Example: (cheek, brow, red)
is sensory and (grapes, wine, fruit) is
logical. The Sensory vs. Logical dual category is
inspired by Hayes’ Second Naive Physics Mani-
festo, particularly, the distinction of ‘three ways in
which tokens can be attached to their denotations’,
where our notion of Sensory attribute corresponds
to the second way (‘some of the tokens can be at-
tached to sensory and motor systems’), whereas
our notion of Logical attribute corresponds to the
remaining two (‘tokens could be attached to the
world through language’ and ‘token is a metathe-
ory of some internal part of the theory’) (Hayes,
1995).

Relative vs. Absolute: p is a relative property
of an object o, in relation to o, just in case there
exists an object o, with the property p where p is
not an attribute of o, in relation to o.. Whereas p is
an absolute property of an object o, in case there
does not exist an object o, with the property p
where p is not an attribute of o, when compared to
op. Example: (giraffe, ostrich, tall)
is relative and (bat, butterfly, fur) is
absolute. The Relative vs. Absolute dual category
follows Hayes’ idea of ‘intrinsic qualities (abso-
lute) versus the distance between such qualities
(relative)’ (Hayes, 1995).

The classification scheme will guide the cre-
ation of the discriminative word vector model de-
scribed in the next section.

4 Building Explicit Word Vector Space
Models (EWVM)

Based on the dual categories identified in the pre-
vious section, a composition of three word vector
space models is used to define explicit word vec-
tor spaces (EWVM), using three different types of
corpora:

Definition-Based Model (DBM): Consists of a
dictionary-style definition corpus. In the context
of this work, WordNet and Wiktionary natural
language definitions are used as data sources.

Visual Feature Model (VFM): Built using lexi-
cal graph descriptors for images, containing enti-
ties, attributes and relations, grounded on image
bounding boxes.

Commonsense Knowledge Graph (CKG): Con-
sists on the use of lexico-semantic knowledge
graphs such as ConceptNet.

The following sections describe the construction
of the EWVM.

4.1 Definition-Based Models (DBMs)

DBMs are built out of natural language term
definitions (glosses) found either in dictionaries
or filtered out of larger corpora (for example,
Wikipedia contains many definitional sentences
which can be isolated using lexico-syntactic pat-
terns). The intuition behind the use of natural lan-
guage definitions is twofold: first they are succinct
descriptions of the necessary attributes associated
to a concept and secondly they are abundant across
domains and languages as dictionaries or defini-
tions embedded within discourse. The latter point
makes DBMs potentially transportable across lan-
guages and domains.

4.1.1 Model Construction

The representation behind the definition-based
model is built by segmenting and categorizing nat-
ural language definitions into a set of semantic
roles, a model which was introduced by (2016),
(2018b), (2017). These roles aim to transform nat-
ural definitions into definition knowledge graphs,
in order to facilitate natural language inference
tasks (Silva et al., 2018b), (Silva et al., 2018a).
The set of semantic roles includes: supertype, dif-
ferentia quality, differentia event, event location,
purpose, accessory determiner, origin location.
Figure 1 (DBM) depicts an example of a classified
definition.

The semantic roles are assigned by building a
recurrent neural network (RNN) Definition Role
Labeling (DRL) classifier using POS-tags, and
pre-trained word vectors as features using the con-
figuration of Silva et al. (2016). After the seman-
tic roles are assigned, they are used as an input to
build the supporting word vector space. For each
definition segment, all tokens are lemmatized and
stop-words removed. Afterwards, an inverse docu-
ment frequency (idf) weighting scheme is applied,
in order to support the computation of semantic
similarity and relatedness scores within the model
(despite not being the target use of the model). Ad-
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ditionally, for each target term, we take into ac-
count its upward taxonomic chain, i.e. it inher-
its the definition attributes from the parent terms
linked by the detected supertypes at the definition.

An inverted index is used to materialize the vec-
tor space. A workflow of the proposed model is
depicted in Figure 1.

Algorithm 1 EDAM: Identifying discriminative
attributes
D: Set of definitions d, containing predicates
pP and terms ¢
I: Set of images ¢, containing features with
predicates plO-Al and terms ¢
Query: < t,,t.,t, >
Output: discriminative, explanation
if (ta,tp) € D A (tq,tc) ¢ D then
discriminative <— true
explanation <— template(t,, t., tq, d)
return
end if
if (tq,tp) € I A (tq,tc) ¢ I then
discriminative <— true
explanation < template(t,, tc, tq,7)
return
end if
discriminative < false

4.2 Visual Feature Model

Natural language definition corpora by design fo-
cus on essential, logical and absolute discrimina-
tive attribute types. However, discriminative at-
tributes can also occur as incidental, sensorial or
relative instances. Most distributional semantic
models available today are built over journalis-
tic, encyclopedic or narrative types of discourse.
While incidental attributes can be captured as a
second-order distributional phenomena, these cor-
pora do not reflect explicit commonsense knowl-
edge, in particular with regard to extra-linguistic
phenomena.

Recent datasets introduced for the purpose of
supporting image classification tasks, such as Vi-
sualGenome (Krishna et al., 2017) have provided
multi-modal resources connecting sub-symbolic
visual data types to symbolic-level categories.
These datasets explore both modalities of visual
and textual data.

VisualGenome is a dataset consisting of scenes
(108,077 images) segmented into bounding boxes
(5.4M) and annotated with a set of objects (3.8M),

attributes (2.8M) and relationships (2.3M). Each
image has an associated lexical-semantic model
represented as a labeled graph. VisualGenome
concentrates on the description of a large spectrum
of commonsense scenes (not focusing on specific
named entities). Common terms are: man, person,
tree, window, grass, table (objects), white, black,
blueish, metallic, round (attributes) and along, in-
side, almost, above, ride (relationships). Essen-
tially, VisualGenome expresses facts about objects
in commonsense scenes.

The commonsense nature of VisualGenome
scenes and the object-attribute relations provide a
foundation for covering visual attribute sets, po-
tentially covering part of the sensorial attributes.
Additionally, VisualGenome can be used to cover
incidental attributes. VisualGenome can provide
some level of support for identifying relative dis-
criminative attributes, by focusing on features
which are mediated by visual interpretation such
as size (e.g. large, small). However, this work
does not focus on a representation which can sup-
port the identification of relative attributes medi-
ated by visual features.

4.2.1 Model Construction

The Visual Feature Model (VFM) also uses a
sparse explicit semantic vector space representa-
tion as its basis. The representation targets the
identification of sensorial and incidental discrim-
inative attributes, with a supporting explanatory
model.

The model is based on the construction of two
vector spaces: one for indexing objects and at-
tributes, object-attribute (OA) space associated
with bounding boxes and the other for indexing
relationships, i.e. the scene-object-relationship
(SOR) space. The OA space supports the identi-
fication of the set of attributes directly associated
with objects while the SOR space supports the
capture of association relations between objects
(objectA can inherit an attribute from objectB).

4.3 Commonsense Knowledge Graph

Dictionary definitions have a limited ability to ex-
press incidental relations among concepts due to
their conciseness. For example, relations which
express affordances (e.g. ‘can be used for’) are
not typically expressed in dictionaries. Labeled
visual datasets are limited in their domain cover-
age. We use commonsense knowledge graphs as
a third data source aiming to fill this gap. For ex-
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actor is a person who acts

WordNet Glosses

diff quality

query: actress, artist, acts C
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Discriminative: Yes

Justification: Actress is a female actor and
actor is a person who acts
but artist has no relation to acts
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query: olive, lemon, black
Discriminative: Yes

Justification: As can be seen in the
supporting image set: olive can be black
(but also green).

object attribute

(iii) CKG

[rel] object

<def_id (banana)>

query: banana, apple, yellow
Discriminative: Yes

Justification: A banana has essential
property yellow.

Figure 1: Sparse vector space representation and explanation of each model component.

ample Visual Genome contains 5.4 million region
descriptions, whereas ConceptNet 5 contains 28
million relationships, captured using 39 relation-
ship types.

4.3.1 Model Construction

The Commonsense Knowledge Graph is mapped
into a sparse explicit semantic vector space. The
model targets essential and logical attributes. The
model is constructed by indexing each relation-
ship using an idf weighting scheme, while ignor-
ing negation (prefixed by Not).

4.4 Combined Model: Explainable
Discriminative Attribute Model (EDAM)

The goal of the EDAM model is twofold: to max-
imize the quality of the discriminative attribute
identification (IDA) and to maximize the under-
lying interpretability of the model. The EDAM
model combines all three models by composing
them into an interpretability hierarchy.

Each component of the EDAM model provides
a different type of explanation, described below:
DBM/CKG: Consists of an attribute path between
the natural language definitions, using the struc-
ture defined by the graphs. It provides an explana-
tory model at the intensional level.

VFM: Consists of the description of the attribute-
pairs incidence and the supporting ground image-
set. It provides an explanatory model at an exten-
sional level.

The explanations are generated using a
template-based approach as described in Algo-
rithm 1. Details on the construction of the models
and on the formalization of the explanations can
be found online'.

5 Evaluation

The proposed EDAM model was evaluated using
the Semeval2018 Task 10 gold-standard on identi-
fying discriminative attributes (Krebs et al., 2018).
The dataset consists of 2340 triples (pivot, com-
parison and attribute) terms, classified as either
discriminative (if the attribute is a discriminative
feature of pivot) or not (otherwise). The evalua-
tion aimed at answering the following questions:
Q1: Can the combination of the Definition-Based
Model (DBM), the Visual Feature Model (VFM),
and the Commonsense Knowledge Graphs (CKG)
support the task of discriminative attribute identi-
fication?

Q2: What is the contribution of each component

"https://github.com/ab-10/Hawk
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for each type of attribute category?

In the experiment, DBM was instantiated using
WordNet 3.0 (only glosses structured into its se-
mantic roles), VFM used VisualGenome 1.4 and
CKG used ConceptNet 5. Table 2 depicts the out-
come of the evaluation of the combined model.

In order to answer Q1, we compared our model
to a set of reference systems in the task of dis-
criminative attribute identification (see table 1.
While EDAM performs lower than the state-of-
the-art (F1-Score 0.76 vs 0.69), from existing ap-
proaches EDAM provides the only explainable
model. Compared to EDAM, all the top per-
forming models used distributional methods de-
rived from large-scale corpora, while EDAM uses
the combination of definition, visual features and
commonsense structured KBs.

In order to answer Q2, we evaluated the perfor-
mance of each component of the model for the six
dual-categories. The goal is to provide a quanti-
tative basis to understand the contribution of each
component in addressing the task.

In order to perform the evaluation, we selected
a stratified random subset of 230 triples and manu-
ally classified each triple with the dual categories.
A triple can contain one or more categories as-
sociated with it. The annotation was performed
by two independent annotators, which reached an
inter-annotator agreement of 81%. For the final
annotated dataset, triples which were not consen-
sual were eliminated (i.e. the final dataset has a
100% inter-annotator agreement). The F1-score
of the combined EDAM model and of each com-
ponent for each category are shown in Table 2.

The list below summarizes the best component
performance for each category:

e Sensory: DBM significantly outperforms the
CKG and VFM model (75% over the second
best).

e Logical: CKG significantly outperforms the
other components (outperforms the second
best component by 52%).

o Relative: DBM significantly outperforms the
other components (100% over the second
best).

e Absolute: CKG outperforms the second best
component by 7%.

e Essential: CKG significantly outperforms
DBM and VFM (100% over the second best).

e Incidental: DBM outperforms VFM by
154% and CKG by 48%.

The analysis shows the complementary nature
of the models, where DBM contributes more for
the identification of the sensory and incidental cat-
egories, while CKG contributes to the logical and
essential categories. Additionally, VFM provides
contributions across all categories and has smaller
overlaps with other models. It is important to em-
phasize that the models are complementary at each
dimension: the combined model (EDAM) signif-
icantly outperforms the best individual models at
each dimension (as it can be observed at the gain
row on Table 2).

In order to observe the proportion on which
each model contributes (and conversely, the
amount of redundancy for each model), we ana-
lyze for each individual model, the pairwise over-
lap, in terms of true positives and false positives
(Table 3). The average redundancy between the
individual models is low (average 11%), showing
that all models contribute significantly to the per-
formance of the combined model.

Table 4 further breaks down the true positives
for each dimension, where we can analyse the
pairwise contribution of each model for each at-
tribute category. The analysis shows that the over-
all redundancy between the three models is low
for all categories. Excluding the relative category
(in which all models perform poorly), there is lit-
tle variance in the overlap between the pairwise
models (where the intersection between DBM and
VEM is the largest for each category).

The quantitative analysis shows that the main
limitation of the model is in the identifica-
tion of relative attributes. While DBMs are
able to correctly identify a small set of triples
with relative features such as (skyscraper,
apartment, tall) as discriminative, inter-
pretation of relative relations requires two types
of features which are not targeted by the models,
namely: (i) the extraction of precise numerical ref-
erence points at scale (dealing with variations of
dimensional units) and (ii) the ability to extrap-
olate the relations for unobserved lexemes by an
explicit mechanism of comparative/transitive rea-
soning. As a consequence, the current model is
able to identify “skyscraper” as being taller than an
“apartment”, but fails to identify neither as taller
than a “giraffe”.

DBM forms a significant (49% each) contribu-
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Model Approach Explainability F1 Score
(Lai et al., 2018) SVM with GloVe None 0.76
(Speer and Lowry-Duda, 2018) SVM with ConceptNet, Wikipedia articles and WordNet synonyms None 0.74
(Shiue et al., 2018) MLP combining information from various DSMs, PMI, and ConceptNet None 0.73
(Santus et al., 2018) Gradient boosting with co-occurrence count features and JoBimText features None 0.73
(Brychcin et al., 2018) LexVec, word co-occurrence, and ConceptNet data combined using maximum None 0.72
entropy classifier
Proposed Model (EDAM) Composes explicit vector spaces from WordNet Definitions, ConceptNet and Vi- Fully Explainable 0.69
sual Genome
(Sommerauer et al., 2018) Word2Vec cosine similarities of WordNet glosses Transp. (No expl.) 0.69
(Gonzalez et al., 2018) Use of Wikipedia and ConceptNet Transp. (No expl.) 0.69
(Attia et al., 2018) Google 5 grams and Word2Vec embeddings as features for feedforward neural None 0.67
network
(Zhou et al., 2018) Ensemble ML model with WordNet, PMI scores, Word2Vec, and GloVe embed- None 0.67
dings
(Kulmizev et al., 2018) A combination of GloVe and Paragram embeddings None 0.67
(Zhang and Carpuat, 2018) SVM with GloVe embeddings None 0.67
(Vinayan et al., 2018) CNN with GloVe embeddings None 0.66
(Grishin, 2018) Similarity calculations using a combination of DSMs None 0.65
(Wu et al., 2018) ‘Word2Vec, GloVe, and FastText embeddings as features for MLP-CNN None 0.63
(Gamallo, 2018) Dependency parsing and co-occurrence analysis Transp. (No expl.) 0.63
(Dumitru et al., 2018) SVM with word co-occurrence None 0.63
(Mao et al., 2018) CBOW and skip-gram with WordNet definitions Transp. (No expl.) 0.62
(King et al., 2018) Word2Vec, WordNet, and co-occurrence scores Transp. (No expl.) 0.61
(Arroyo-Fernandez et al., 2018) Convex Cone Method applied to GloVe embeddings None 0.60

Table 1: Performance of EDAM in contrast to baselines for discriminative attribute identification. Transp. means
transparent covering different dimensions of interpretability (Silva et al., 2019) (but without an explanation).

Model Sensory | Logical | Relative | Absolute | Essential | Incidental
DBM 0.49 0.33 0.40 0.41 0.29 0.46
CKG 0.28 0.50 0.20 0.44 0.58 0.31
VEM 0.13 0.11 0.05 0.14 0.10 0.13
EDAM(DBM+CKG+VFM) 0.62 0.63 0.50 0.65 0.68 0.60
EDAM gain 27% 26% 25% 48% 17% 30%

Table 2: Performance comparison (recall) against a random sample of categorized triples. The last row shows the
relative gain of the combined model over the best performing individual model.

Positives DBM A CKG | DBM A VFM | CKG A VEM | DBM A CKG A VFEM | Avg.
True 0.23 0.07 0.08 0.06 0.11
False 0.05 0.01 0.02 0.01 0.02

Table 3: Overlap between the components relative to the combined model.

Category DBM A CKG | DBM A VFEM | CKG A VEM | DBM A CKG A VEM | Average
Sensory 0.31 0.10 0.14 0.10 0.16
Logical 0.35 0.09 0.15 0.09 0.17
Relative 0.20 0.10 0.10 0.10 0.13
Absolute 0.36 0.09 0.15 0.09 0.15
Essential 0.33 0.05 0.10 0.05 0.13
Incidental 0.33 0.12 0.17 0.12 0.19
Avg. 0.31 0.09 0.14 0.09

Table 4: Categorical model overlap breakdown, relative to all true positives identified by the combined model.

tion to sensory attribute detection. CKG provides 5.1 Error Analysis

a significant (58%) contribution to essential. Ad- Definition Based Models:
ditionally, CKG provides a significant (50%) con-
tribution to logical attribute detection.

False negatives
comprise the majority (83%) of all model errors.
The cause is that the pivot’s definition does
not include the discriminative attribute. False
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negatives most commonly occurs with inciden-

tal features (e.g. (potatoes, butter,
mashed) - true:false and (nose,
throat, perfume) - true:false).

False positives occur when the attribute applies
to both pivot and comparison, however the
comparison’s definition does not include the
feature. This is most prevalent with incidental
attributes (e.g. (banana,onions,peel) -
false:true and (torah, bible, read)
- false:true).

Common Sense Knowledge Graphs: False neg-
atives comprise the majority (80%) of the model’s
errors and are mainly caused by incidental at-
tributes (e.g. (trays,employee,wooden)
- true:false) and relative attributes (e.g.
(stool,tray,tall) - true:false).
Visual Feature Models: Similarly as with DBMs
and CKGs, false negatives comprise the ma-
jority (94%) of all false classifications. Most
of the errors occur either with logical at-
tributes (e.g. (wife, lady, married) -
true: false, since these attributes are not likely
to be expressed in a visual corpus or relative at-
tributes (e.g. (torah, bible, short) -
true:false. False positives occur due to do-
main incompleteness. This can be caused by a
lack of domain coverage of the Visual Genome
dataset (e.g. in (cat, lion, whiskers) -
false:true; (meal, supper, food) -
false:true).

Combined EDAM: The decrease in the pro-
portion of false negatives as compared to the
individual models, illustrates the advantages of
the model composition. False negatives com-
prise 47% of model’s total errors. False pos-
itives, on the contrary, illustrate the limitations
of the model, since they occur when at least
one of the model components incorrectly classi-
fies a triple as discriminative: e.g. (banana,
onions, peel) - false:true false posi-
tive of DBM and (cat, lion, whiskers)
- false:true false positive of VFM.

5.2 Qualitative Analysis

In addition to correctly labeling common dis-
criminative triples such as (soup,
liquid) and (walnut, spinach,
brown) the technical specificity of definitions
present at dictionaries supports the identification
of discriminative triples such as (brandy,

meal,

whiskey, wine). Other noteworthy examples
of discriminative attribute detection include la-
beling triples (stomach, bladder, food)
and (nightclub, bar, dancing) as
discriminative.

For the DBM, the structure induced by the
extractor (e.g. the hypernym hierarchy) can
support the transference of discriminative at-
tributes across the taxonomic hierarchy. For the
triple (planet, moon, body) using imme-
diate definitions of pivot and comparison incor-
rectly suggests that the triple (planet, moon,
body) 1is discriminative. However, after ex-
panding using super-type definitions, the model
correctly identifies body as a property of both
planet and moon.

6 Conclusion

This paper described an explicit word vector
model targeting the identification of discrimina-
tive attributes using the composition of defini-
tions, visual features and commonsense knowl-
edge graphs. The proposed model, which is
built from structured representations from differ-
ent types of data sources is able to achieve a state-
of-the-art level Fl-score (0.69) while producing,
human interpretable explanations. The paper also
provided an in-depth comparative quantitative and
qualitative analysis on the contributions of differ-
ent types of data sources for the generation of ex-
plicit semantic vector spaces (WordNet glosses,
ConceptNet and Visual Genome), demonstrating
the complementarity aspect of these resources.
Future work will concentrate on extending the
model to cope with relative attributes, the inclu-
sion of additional data sources to increase model
coverage, such as large-scale definition sets.
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