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Abstract

Most sequence-to-sequence (seq2seq) models
are autoregressive; they generate each token
by conditioning on previously generated to-
kens. In contrast, non-autoregressive seq2seq
models generate all tokens in one pass, which
leads to increased efficiency through parallel
processing on hardware such as GPUs. How-
ever, directly modeling the joint distribution of
all tokens simultaneously is challenging, and
even with increasingly complex model struc-
tures accuracy lags significantly behind au-
toregressive models. In this paper, we propose
a simple, efficient, and effective model for
non-autoregressive sequence generation using
latent variable models. Specifically, we turn
to generative flow, an elegant technique to
model complex distributions using neural net-
works, and design several layers of flow tai-
lored for modeling the conditional density of
sequential latent variables. We evaluate this
model on three neural machine translation
(NMT) benchmark datasets, achieving com-
parable performance with state-of-the-art non-
autoregressive NMT models and almost con-
stant decoding time w.r.t the sequence length.1

1 Introduction

Neural sequence-to-sequence (seq2seq) models
(Bahdanau et al., 2015; Rush et al., 2015; Vinyals
et al., 2015; Vaswani et al., 2017) generate an
output sequence y = {y1, . . . , yT } given an in-
put sequence x = {x1, . . . , xT 0} using condi-
tional probabilities P✓(y|x) predicted by neural
networks (parameterized by ✓).

Most seq2seq models are autoregressive, mean-
ing that they factorize the joint probability of the
output sequence given the input sequence P✓(y|x)
into the product of probabilities over the next to-

⇤ Equal contribution, in alphabetical order.
1https://github.com/XuezheMax/flowseq
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Figure 1: (a) Autoregressive (b) non-autoregressive and
(c) our proposed sequence generation models. x is the
source, y is the target, and z are latent variables.

ken in the sequence given the input sequence and
previously generated tokens:

P✓(y|x) =
TY

t=1

P✓(yt|y<t,x). (1)

Each factor, P✓(yt|y<t,x), can be implemented
by function approximators such as RNNs (Bah-
danau et al., 2015) and Transformers (Vaswani
et al., 2017). This factorization takes the com-
plicated problem of joint estimation over an ex-
ponentially large output space of outputs y, and
turns it into a sequence of tractable multi-class

classification problems predicting yt given the pre-
vious words, allowing for simple maximum log-
likelihood training. However, this assumption
of left-to-right factorization may be sub-optimal
from a modeling perspective (Gu et al., 2019;
Stern et al., 2019), and generation of outputs must
be done through a linear left-to-right pass through
the output tokens using beam search, which is not
easily parallelizable on hardware such as GPUs.

Recently, there has been work on non-
autoregressive sequence generation for neural ma-
chine translation (NMT; Gu et al. (2018); Lee
et al. (2018); Ghazvininejad et al. (2019)) and lan-
guage modeling (Ziegler and Rush, 2019). Non-
autoregressive models attempt to model the joint
distribution P✓(y|x) directly, decoupling the de-
pendencies of decoding history during generation.

https://github.com/XuezheMax/flowseq
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A naı̈ve solution is to assume that each token of
the target sequence is independent given the input:

P✓(y|x) =
TY

t=1

P✓(yt|x). (2)

Unfortunately, the performance of this simple
model falls far behind autoregressive models, as
seq2seq tasks usually do have strong conditional
dependencies between output variables (Gu et al.,
2018). This problem can be mitigated by introduc-
ing a latent variable z to model these conditional
dependencies:

P✓(y|x) =
Z

z
P✓(y|z,x)p✓(z|x)dz, (3)

where p✓(z|x) is the prior distribution over la-
tent z and P✓(y|z,x) is the “generative” distri-
bution (a.k.a decoder). Non-autoregressive gen-
eration can be achieved by the following indepen-
dence assumption in the decoding process:

P✓(y|z,x) =
TY

t=1

P✓(yt|z,x). (4)

Gu et al. (2018) proposed a z representing fertil-
ity scores specifying the number of output words
each input word generates, significantly improv-
ing the performance over Eq. (2). But the per-
formance still falls behind state-of-the-art autore-
gressive models due to the limited expressiveness
of fertility to model the interdependence between
words in y.

In this paper, we propose a simple, effective,
and efficient model, FlowSeq, which models ex-
pressive prior distribution p✓(z|x) using a pow-
erful mathematical framework called generative
flow (Rezende and Mohamed, 2015). This frame-
work can elegantly model complex distributions,
and has obtained remarkable success in model-
ing continuous data such as images and speech
through efficient density estimation and sampling
(Kingma and Dhariwal, 2018; Prenger et al., 2019;
Ma and Hovy, 2019). Based on this, we posit
that generative flow also has potential to introduce
more meaningful latent variables z in the non-
autoregressive generation in Eq. (3).

FlowSeq is a flow-based sequence-to-sequence

model, which is (to our knowledge) the first
non-autoregressive seq2seq model utilizing gen-
erative flows. It allows for efficient parallel
decoding while modeling the joint distribution
of the output sequence. Experimentally, on

three benchmark datasets for machine transla-
tion – WMT2014, WMT2016 and IWSLT-2014,
FlowSeq achieves comparable performance with
state-of-the-art non-autoregressive models, and al-
most constant decoding time w.r.t. the sequence
length compared to a typical left-to-right Trans-
former model, which is super-linear.

2 Background

As noted above, incorporating expressive latent
variables z is essential to decouple the depen-
dencies between tokens in the target sequence in
non-autoregressive models. However, in order to
model all of the complexities of sequence gener-
ation to the point that we can read off all of the
words in the output in an independent fashion (as
in Eq. (4)), the prior distribution p✓(z|x) will nec-
essarily be quite complex. In this section, we de-
scribe generative flows (Rezende and Mohamed,
2015), an effective method for arbitrary model-
ing of complicated distributions, before describing
how we apply them to sequence-to-sequence gen-
eration in §3.

2.1 Flow-based Generative Models
Put simply, flow-based generative models work by
transforming a simple distribution (e.g. a simple
Gaussian) into a complex one (e.g. the complex
prior distribution over z that we want to model)
through a chain of invertible transformations.

Formally, a set of latent variables � 2 ⌥ are
introduced with a simple prior distribution p⌥(�).
We then define a bijection function f : Z ! ⌥
(with g = f�1), whereby we can define a genera-
tive process over variables z:

� ⇠ p⌥(�)
z = g✓(�).

(5)

An important insight behind flow-based models is
that given this bijection function, the change of
variable formula defines the model distribution on
z 2 Z by:

p✓(z) = p⌥(f✓(z))

����det(
@f✓(z)

@z
)

���� . (6)

Here @f✓(z)
@z is the Jacobian matrix of f✓ at z.

Eq. (6) provides a way to calculate the (com-
plex) density of z by calculating the (simple) den-
sity of � and the Jacobian of the transforma-
tion from z to �. For efficiency purposes, flow-
based models generally use certain types of trans-
formations f✓ where both the inverse functions
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g✓ and the Jacobian determinants are tractable to
compute. A stacked sequence of such invert-
ible transformations is also called a (normalizing)
flow (Rezende and Mohamed, 2015):

z
f1 !
g1

H1
f2 !
g2

H2
f3 !
g3

· · · fK !
gK

�,

where f = f1 � f2 � · · · � fK is a flow of K trans-
formations (omitting ✓s for brevity).

2.2 Variational Inference and Training
In the context of maximal likelihood estimation
(MLE), we wish to minimize the negative log-
likelihood of the parameters:

min
✓2⇥

1

N

NX

i=1

� logP✓(y
i|xi), (7)

where D = {(xi,yi)}Ni=1 is the set of train-
ing data. However, the likelihood P✓(y|x) af-
ter marginalizing out latent variables z (LHS in
Eq. (3)) is intractable to compute or differentiate
directly. Variational inference (Wainwright et al.,
2008) provides a solution by introducing a para-
metric inference model q�(z|y,x) (a.k.a poste-
rior) which is then used to approximate this inte-
gral by sampling individual examples of z. These
models then optimize the evidence lower bound

(ELBO), which considers both the “reconstruction
error” logP✓(y|z,x) and KL-divergence between
the posterior and the prior:

logP✓(y|x) � Eq�(z|y,x)[logP✓(y|z,x)]
�KL(q�(z|y,x)||p✓(z|x)). (8)

Both inference model � and decoder ✓ parameters
are optimized according to this objective.

3 FlowSeq

We first overview FlowSeq’s architecture (shown
in Figure 2) and training process here before
detailing each component in following sections.
Similarly to classic seq2seq models, at both train-
ing and test time FlowSeq first reads the whole in-
put sequence x and calculates a vector for each
word in the sequence, the source encoding.

At training time, FlowSeq’s parameters are
learned using a variational training paradigm
overviewed in §2.2. First, we draw samples of la-
tent codes z from the current posterior q�(z|y,x).
Next, we feed z together with source encod-
ings into the decoder network and the prior flow

to compute the probabilities of P✓(y|z,x) and
p✓(z|x) for optimizing the ELBO (Eq. (8)).

At test time, generation is performed by first
sampling a latent code z from the prior flow by ex-
ecuting the generative process defined in Eq. (5).
In this step, the source encodings produced from
the encoder are used as conditional inputs. Then
the decoder receives both the sampled latent code
z and the source encoder outputs to generate the
target sequence y from P✓(y|z,x).

3.1 Source Encoder
The source encoder encodes the source sequences
into hidden representations, which are used in
computing attention when generating latent vari-
ables in the posterior network and prior network
as well as the cross-attention with decoder. Any
standard neural sequence model can be used as its
encoder, including RNNs (Bahdanau et al., 2015)
or Transformers (Vaswani et al., 2017).

3.2 Posterior
Generation of Latent Variables. The latent
variables z are represented as a sequence of con-
tinuous random vectors z = {z1, . . . , zT } with the
same length as the target sequence y. Each zt is
a dz-dimensional vector, where dz is the dimen-
sion of the latent space. The posterior distribution
q�(z|y,x) models each zt as a diagonal Gaussian
with learned mean and variance:

q�(z|y,x) =
TY

t=1

N (zt|µt(x,y),�
2
t (x,y)) (9)

where µt(·) and �t(·) are neural networks such as
RNNs or Transformers.

Zero initialization. While we perform standard
random initialization for most layers of the net-
work, we initialize the last linear transforms that
generate the µ and log �2 values with zeros. This
ensures that the posterior distribution as a simple
normal distribution, which we found helps train
very deep generative flows more stably.

Token Dropout. The motivation of introducing
the latent variable z into the model is to model
the uncertainty in the generative process. Thus,
it is preferable that z capture contextual interde-
pendence between tokens in y. However, there
is an obvious local optimum where the posterior
network generates a latent vector zt that only en-
codes the information about the corresponding tar-
get token yt, and the decoder simply generates the
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Figure 2: Neural architecture of FlowSeq, including the encoder, the decoder and the posterior networks, together
with the multi-scale architecture of the prior flow. The architecture of each flow step is in Figure 3.

“correct” token at each step t with zt as input. In
this case, FlowSeq reduces to the baseline model
in Eq. (2). To escape this undesired local opti-
mum, we apply token-level dropout to randomly
drop an entire token when calculating the poste-
rior, to ensure the model also has to learn how to
use contextual information. This technique is sim-
ilar to the “masked language model” in previous
studies (Melamud et al., 2016; Devlin et al., 2018;
Ma et al., 2018).

3.3 Decoder

As the decoder, we take the latent sequence z as
input, run it through several layers of a neural se-
quence model such as a Transformer, then directly
predict the output tokens in y individually and in-
dependently. Notably, unlike standard seq2seq de-
coders, we do not perform causal masking to pre-
vent attending to future tokens, making the model
fully non-autoregressive.

3.4 Flow Architecture for Prior

The flow architecture is based on Glow (Kingma
and Dhariwal, 2018). It consists of a series of steps
of flow, combined in a multi-scale architecture
(see Figure 2.) Each step of flow consists three
types of elementary flows – actnorm, invertible
multi-head linear, and coupling. Note that all three
functions are invertible and conducive to calcula-
tion of log determinants (details in Appendix A).

Actnorm. The activation normalization layer
(actnorm; Kingma and Dhariwal (2018)) is an
alternative for batch normalization (Ioffe and
Szegedy, 2015), that has mainly been used in the
context of image data to alleviate problems in
model training. Actnorm performs an affine trans-
formation of the activations using a scale and bias
parameter per feature for sequences:

z0t = s� zt + b. (10)

Both z and z0 are tensors of shape [T ⇥ dz] with
time dimension t and feature dimension dz. The
parameters are initialized such that over each fea-
ture z0t has zero mean and unit variance given an
initial mini-batch of data.

Invertible Multi-head Linear Layers. To in-
corporate general permutations of variables along
the feature dimension to ensure that each dimen-
sion can affect every other ones after a sufficient
number of steps of flow, Kingma and Dhariwal
(2018) proposed a trainable invertible 1⇥1 convo-
lution layer for 2D images. It is straightforward to
apply similar transformations to sequential data:

z0t = ztW, (11)

where W is the weight matrix of shape [dz ⇥ dz].
The log-determinant of this transformation is:

log

����det
✓
@linear(z;W)

@z

◆���� = T · log |det(W)|

The cost of computing det(W) is O(d3z).



4286

Encoder

Inter-Attention

source encodings

ActNorm

Linear Layer

Affine Coupling Layer

(a) One step of flow. (b) Coupling layer splits. (c) NN function on the split

of the coupling layer.

Figure 3: (a) The architecture of one step of our flow. (b) The visualization of three split pattern for coupling
layers, where the red color denotes za and the blue color denotes zvb. (c) The attention-based architecture of the
NN function in coupling layers.

Unfortunately, dz in Seq2Seq generation is
commonly large, e.g. 512, significantly slowing
down the model for computing det(W). To apply
this to sequence generation, we propose a multi-
head invertible linear layer, which first splits each
dz-dimensional feature vector into h heads with
dimension dh = dz/h. Then the linear trans-
formation in (11) is applied to each head, with
dh ⇥ dh weight matrix W, significantly reduc-
ing the dimension. For splitting of heads, one step
of flow contains one linear layer with either row-
major or column-major splitting format, and these
steps with different linear layers are composed in
an alternating pattern.

Affine Coupling Layers. To model interdepen-
dence across time steps, we use affine coupling
layers (Dinh et al., 2016):

za, zb = split(z)
z0a = za
z0b = s(za,x)� zb + b(za,x)
z0 = concat(z0a, z

0
b),

where s(za,x) and b(za,x) are outputs of two
neural networks with za and x as input. These are
shown in Figure 3 (c). In experiments, we imple-
ment s(·) and b(·) with one Transformer decoder
layer (Vaswani et al., 2017): multi-head self-
attention over za, followed by multi-head inter-
attention over x, followed by a position-wise feed-
forward network. The input za is fed into this layer
in one pass, without causal masking.

As in Dinh et al. (2016), the split() function
splits z the input tensor into two halves, while the
concat operation performs the corresponding re-
verse concatenation operation. In our architecture,
three types of split functions are used, based on

the split dimension and pattern. Figure 3 (b) il-
lustrates the three splitting types. The first type of
split groups z along the time dimension on alter-
nate indices. In this case, FlowSeq mainly models
the interactions between time-steps. The second
and third types of splits perform on the feature di-
mension, with continuous and alternate patterns,
respectively. For each type of split, we alternate za
and zb to increase the flexibility of the split func-
tion. Different types of affine coupling layers al-
ternate in the flow, similar to the linear layers.

Multi-scale Architecture. We follow Dinh et al.
(2016) in implementing a multi-scale architecture
using the squeezing operation on the feature di-
mension, which has been demonstrated helpful for
training deep flows. Formally, each scale is a com-
bination of several steps of the flow (see Figure 3
(a)). After each scale, the model drops half of the
dimensions with the third type of split in Figure 3
(b) to reduce computational and memory cost, out-
putting the tensor with shape [T ⇥ d

2 ]. Then the
squeezing operation transforms the T ⇥ d

2 tensor
into an T

2 ⇥d one as the input of the next scale. We
pad each sentence with EOS tokens to ensure T is
divisible by 2. The right component of Figure 2
illustrates the multi-scale architecture.

3.5 Predicting Target Sequence Length
In autoregressive seq2seq models, it is natural to
determine the length of the sequence dynamically
by simply predicting a special EOS token. How-
ever, for FlowSeq to predict the entire sequence
in parallel, it needs to know its length in advance
to generate the latent sequence z. Instead of pre-
dicting the absolute length of the target sequence,
we predict the length difference between source
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and target sequences using a classifier with a range
of [�20, 20]. Numbers in this range are predicted
by max-pooling the source encodings into a single
vector,2 running this through a linear layer, and
taking a softmax. This classifier is learned jointly
with the rest of the model.

3.6 Decoding Process

At inference time, the model needs to identify the
sequence with the highest conditional probability
by marginalizing over all possible latent variables
(see Eq. (3)), which is intractable in practice. We
propose three approximating decoding algorithms
to reduce the search space.

Argmax Decoding. Following Gu et al. (2018),
one simple and effective method is to select the
best sequence by choosing the highest-probability
latent sequence z:

z⇤ = argmax
z2Z

p✓(z|x)

y⇤ = argmax
y

P✓(y|z⇤,x)

where identifying y⇤ only requires independently
maximizing the local probability for each output
position (see Eq. 4).

Noisy Parallel Decoding (NPD). A more accu-
rate approximation of decoding, proposed in Gu
et al. (2018), is to draw samples from the latent
space and compute the best output for each la-
tent sequence. Then, a pre-trained autoregres-
sive model is adopted to rank these sequences. In
FlowSeq, different candidates can be generated by
sampling different target lengths or different sam-
ples from the prior, and both of the strategies can
be batched via masks during decoding. In our
experiments, we first select the top l length can-
didates from the length predictor in §3.5. Then,
for each length candidate we use r random sam-
ples from the prior network to generate output se-
quences, yielding a total of l ⇥ r candidates.

Importance Weighted Decoding (IWD) The
third approximating method is based on the lower

bound of importance weighted estimation (Burda
et al., 2015). Similarly to NPD, IWD first draws
samples from the latent space and computes the
best output for each latent sequence. Then, IWD

2We experimented with other methods such as mean-
pooling or taking the last hidden state and found no major
difference in our experiments

ranks these candidate sequences with K impor-
tance samples:

zi ⇠ p✓(z|x), 8i = 1, . . . , N
ŷi = argmax

y
P✓(y|zi,x)

z(k)i ⇠ q�(z|ŷi,x), 8k = 1, . . . ,K

P (ŷi|x) ⇡ 1
K

KP
k=1

P✓(ŷi|z(k)i ,x)p✓(z
(k)
i |x)

q�(z
(k)
i |ŷi,x)

IWD does not rely on a separate pre-trained
model, though it significantly slows down the de-
coding speed. The detailed comparison of these
three decoding methods is provided in §4.2.

3.7 Discussion
Different from the architecture proposed in Ziegler
and Rush (2019), the architecture of FlowSeq
is not using any autoregressive flow (Kingma
et al., 2016; Papamakarios et al., 2017), yield-
ing a truly non-autoregressive model with efficient
generation. Note that the FlowSeq remains non-
autoregressive even if we use an RNN in the ar-
chitecture because RNN is only used to encode a
complete sequence of codes and all the input to-
kens can be fed into the RNN in parallel. This
makes it possible to use highly-optimized imple-
mentations of RNNs such as those provided by
cuDNN.3 Thus while RNNs do experience some
drop in speed, it is less extreme than that experi-
enced when using autoregressive models.

4 Experiments

4.1 Experimental Setups
Translation Datasets We evaluate FlowSeq on
three machine translation benchmark datasets:
WMT2014 DE-EN (around 4.5M sentence pairs),
WMT2016 RO-EN (around 610K sentence pairs)
and a smaller dataset IWSLT2014 DE-EN (around
150K sentence pairs). We use scripts from fairseq
(Ott et al., 2019) to preprocess WMT2014 and
IWSLT2014, where the preprocessing steps fol-
low Vaswani et al. (2017) for WMT2014. We
use the data provided in Lee et al. (2018) for
WMT2016. For both WMT datasets, the source
and target languages share the same set of BPE
embeddings while for IWSLT2014 we use sepa-
rate embeddings. During training, we filter out
sentences longer than 80 for WMT dataset and 60
for IWSLT, respectively.

3https://devblogs.nvidia.com/optimizing-recurrent-
neural-networks-cudnn-5/
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WMT2014 WMT2016 IWSLT2014
Models EN-DE DE-EN EN-RO RO-EN DE-EN

Raw Data

CMLM-base 10.88 – 20.24 – –
LV NAR 11.80 – – – –

FlowSeq-base 18.55 23.36 29.26 30.16 24.75
FlowSeq-large 20.85 25.40 29.86 30.69 –

Knowledge Distillation

NAT-IR 13.91 16.77 24.45 25.73 21.86
CTC Loss 17.68 19.80 19.93 24.71 –
NAT w/ FT 17.69 21.47 27.29 29.06 20.32
NAT-REG 20.65 24.77 – – 23.89
CMLM-small 15.06 19.26 20.12 20.36 –
CMLM-base 18.12 22.26 23.65 22.78 –

FlowSeq-base 21.45 26.16 29.34 30.44 27.55
FlowSeq-large 23.72 28.39 29.73 30.72 –

Table 1: BLEU scores on three MT benchmark datasets
for FlowSeq with argmax decoding and baselines with
purely non-autoregressive decoding method. The first
and second block are results of models trained w/w.o.
knowledge distillation, respectively.

Modules and Hyperparameters We imple-
ment the encoder, decoder and posterior net-
works with standard (unmasked) Transformer lay-
ers (Vaswani et al., 2017). For WMT datasets,
the encoder consists of 6 layers, and the decoder
and posterior are composed of 4 layers, and 8
attention heads. and for IWSLT, the encoder
has 5 layers, and decoder and posterior have 3
layers, and 4 attention heads. The prior flow
consists of 3 scales with the number of steps
[48, 48, 16] from bottom to top. To dissect the im-
pact of model dimension on translation quality and
speed, we perform experiments on two versions of
FlowSeq with dmodel/dhidden = 256/512 (base)
and dmodel/dhidden = 512/1024 (large). More
model details are provided in Appendix B.

Optimization Parameter optimization is per-
formed with the Adam optimizer (Kingma and Ba,
2014) with � = (0.9, 0.999) and ✏ = 1e�6. Each
mini-batch consist of 2048 sentences. The learn-
ing rate is initialized to 5e � 4, and exponentially
decays with rate 0.999995. The gradient clipping
cutoff is 1.0. For all the FlowSeq models, we ap-
ply 0.1 label smoothing and averaged the 5 best
checkpoints to create the final model.

At the beginning of training, the posterior net-
work is randomly initialized, producing noisy su-
pervision to the prior. To mitigate this issue, we
first set the weight of the KL term in ELBO to
zero for 30,000 updates to train the encoder, de-
coder and posterior networks. Then the KL weight
linearly increases to one for another 10,000 up-

WMT2014 WMT2016
Models EN-DE DE-EN EN-RO RO-EN

Autoregressive Methods

Transformer-base 27.30 – – –
Our Implementation 27.16 31.44 32.92 33.09

Raw Data

CMLM-base (refinement 4) 22.06 – 30.89 –
CMLM-base (refinement 10) 24.65 – 32.53 –

FlowSeq-base (IWD n = 15) 20.20 24.63 30.61 31.50
FlowSeq-base (NPD n = 15) 20.81 25.76 31.38 32.01
FlowSeq-base (NPD n = 30) 21.15 26.04 31.74 32.45
FlowSeq-large (IWD n = 15) 22.94 27.16 31.08 32.03
FlowSeq-large (NPD n = 15) 23.14 27.71 31.97 32.46
FlowSeq-large (NPD n = 30) 23.64 28.29 32.35 32.91

Knowledge Distillation

NAT-IR (refinement 10) 21.61 25.48 29.32 30.19
NAT w/ FT (NPD n = 10) 18.66 22.42 29.02 31.44
NAT-REG (NPD n = 9) 24.61 28.90 – –
LV NAR (refinement 4) 24.20 – – –
CMLM-small (refinement 10) 25.51 29.47 31.65 32.27
CMLM-base (refinement 10) 26.92 30.86 32.42 33.06

FlowSeq-base (IWD n = 15) 22.49 27.40 30.59 31.58
FlowSeq-base (NPD n = 15) 23.08 28.07 31.35 32.11
FlowSeq-base (NPD n = 30) 23.48 28.40 31.75 32.49
FlowSeq-large (IWD n = 15) 24.70 29.44 31.02 31.97
FlowSeq-large (NPD n = 15) 25.03 30.48 31.89 32.43
FlowSeq-large (NPD n = 30) 25.31 30.68 32.20 32.84

Table 2: BLEU scores on two WMT datasets of models
using advanced decoding methods. The first block are
Transformer-base (Vaswani et al., 2017). The second
and the third block are results of models trained w/w.o.
knowledge distillation, respectively. n = l ⇥ r is the
total number of candidates for rescoring.

dates, which we found essential to accelerate train-
ing and achieve stable performance.

Knowledge Distillation Previous work on non-
autoregressive generation (Gu et al., 2018;
Ghazvininejad et al., 2019) has used translations
produced by a pre-trained autoregressive NMT
model as the training data, noting that this can sig-
nificantly improve the performance. We analyze
the impact of distillation in § 4.2.

4.2 Main Results
We first conduct experiments to compare the per-
formance of FlowSeq with strong baseline mod-
els, including NAT w/ Fertility (Gu et al., 2018),
NAT-IR (Lee et al., 2018), NAT-REG (Wang
et al., 2019), LV NAR (Shu et al., 2019),
CTC Loss (Libovickỳ and Helcl, 2018), and
CMLM (Ghazvininejad et al., 2019).

Table 1 provides the BLEU scores of FlowSeq
with argmax decoding, together with baselines
with purely non-autoregressive decoding methods
that generate output sequence in one parallel pass.
The first block lists results of models trained on
raw data, while the second block are results using
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(a) batch size (b) target length

Figure 4: The decoding speed of Transformer (batched, beam size 5) and FlowSeq on WMT14 EN-DE test set (a)
w.r.t different batch sizes (b) bucketed by different target sentence lengths (batch size 32).

knowledge distillation. Without using knowledge
distillation, FlowSeq base model achieves signif-
icant improvement (more than 9 BLEU points)
over CMLM-base and LV NAR. It demonstrates
the effectiveness of FlowSeq on modeling the
complex interdependence in target languages.

Towards the effect of knowledge distillation,
we can mainly obtain two observations: i) Sim-
ilar to the findings in previous work, knowledge
distillation still benefits the translation quality of
FlowSeq. ii) Compared to previous models, the
benefit of knowledge distillation on FlowSeq is
less significant, yielding less than 3 BLEU im-
provement on WMT2014 DE-EN corpus, and
even no improvement on WMT2016 RO-EN cor-
pus. The reason might be that FlowSeq does not
rely much on knowledge distillation to alleviate
the multi-modality problem.

Table 2 illustrates the BLEU scores of FlowSeq
and baselines with advanced decoding methods
such as iterative refinement, IWD and NPD
rescoring. The first block in Table 2 includes
the baseline results from autoregressive Trans-
former. For the sampling procedure in IWD and
NPD, we sampled from a reduced-temperature
model (Kingma and Dhariwal, 2018) to obtain
high-quality samples. We vary the temperature
within {0.1, 0.2, 0.3, 0.4, 0.5, 1.0} and select the
best temperature based on the performance on de-
velopment sets. The analysis of the impact of sam-
pling temperature and other hyper-parameters on
samples is in § 4.4. For FlowSeq, NPD obtains
better results than IWD, showing that FlowSeq
still falls behind auto-regressive Transformer on
model data distributions. Comparing with CMLM
(Ghazvininejad et al., 2019) with 10 iterations of

refinement, which is a contemporaneous work that
achieves state-of-the-art translation performance,
FlowSeq obtains competitive performance on both
WMT2014 and WMT2016 corpora, with only
slight degradation in translation quality. Leverag-
ing iterative refinement to further improve the per-
formance of FlowSeq has been left to future work.

4.3 Analysis on Decoding Speed
In this section, we compare the decoding speed
(measured in average time in seconds required to
decode one sentence) of FlowSeq at test time with
that of the autoregressive Transformer model. We
use the test set of WMT14 EN-DE for evalua-
tion and all experiments are conducted on a single
NVIDIA TITAN X GPU.

How does batch size affect the decoding speed?
First, we investigate how different decoding batch
size can affect the decoding speed. We vary the
decoding batch size within {1, 4, 8, 32, 64, 128}.
Figure. 4a shows that for both FlowSeq and Trans-
former decoding is faster when using a larger
batch size. However, FlowSeq has much larger
gains in the decoding speed w.r.t. the increase in
batch size, gaining a speed up of 594% of base
model and 403% of large model when using a
batch size of 128. We hypothesize that this is be-
cause the operations in FlowSeq are more friendly
to batching while the Transformer model with
beam search at test time is less efficient in bene-
fiting from batching.

How does sentence length affect the decoding
speed? Next, we examine if sentence length is
a major factor affecting the decoding speed. We
bucket the test data by the target sentence length.
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Figure 5: Impact of sampling hyperparameters on the
rescoring BLEU on the dev set of WMT14 DE-EN.
Experiments are performed with FlowSeq-base trained
with distillation data. l is the number of length candi-
dates. r is the number of samples for each length.

From Fig. 4b, we can see that as the sentence
length increases, FlowSeq achieves almost con-
stant decoding time while Transformer has a lin-
early increasing decoding time. The relative de-
coding speed up of FlowSeq versus Transformer
linearly increases as the sequence length increases.
The potential of decoding long sequences with
constant time is an attractive property of FlowSeq.

4.4 Analysis of Rescoring Candidates
In Fig. 5, we analyze how different sampling hy-
perparameters affect the performance of rescoring.
First, we observe that the number of samples r for
each length is the most important factor. The per-
formance is always improved with a larger sample
size. Second, a larger number of length candidates
does not necessarily increase the rescoring perfor-
mance. Third, we find that a larger sampling tem-
perature (0.3 - 0.5) can increase the diversity of
translations and leads to better rescoring BLEU.
However, the latent samples become noisy when a
large temperature (1.0) is used.

4.5 Analysis of Translation Diversity
Following (Shen et al., 2019), we analyze the
output diversity of FlowSeq. Shen et al. (2019)
proposed pairwise-BLEU and BLEU computed in
a leave-one-out manner to calibrate the diversity
and quality of translation hypotheses. A lower
pairwise-BLEU score implies a more diverse hy-
pothesis set. And a higher BLEU score implies
a better translation quality. We experiment on
a subset of test set of WMT14-ENDE with ten
references each sentence (Ott et al., 2018). In
Fig. 6, we compare FlowSeq with other multi-

Figure 6: Comparisons of FlowSeq with human
translations, beam search and sampling results of
Transformer-base, and mixture-of-experts model (Hard
MoE (Shen et al., 2019)) on the averaged leave-one-out
BLEU score v.s pairwise-BLEU in descending order.

hypothesis generation methods (ten hypotheses
each sentence) to analyze how well the genera-
tion outputs of FlowSeq are in terms of diversity
and quality. The right corner area of the figure in-
dicates the ideal generations: high diversity and
high quality. While FlowSeq still lags behind the
autoregressive generations, by increasing the sam-
pling temperature it provides a way of generating
more diverse outputs while keeping the translation
quality almost unchanged. More analysis of trans-
lation outputs and detailed results are provided in
the Appendix D and E.

5 Conclusion

We propose FlowSeq, an efficient and effective
model for non-autoregressive sequence generation
by using generative flows. One potential direc-
tion for future work is to leverage iterative refine-
ment techniques such as masked language models
to further improve translation quality. Another ex-
citing direction is to, theoretically and empirically,
investigate the latent space in FlowSeq, hence pro-
viding deep insights of the model, even enhancing
controllable text generation.
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