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Abstract

While target-side monolingual data has been
proven to be very useful to improve neural ma-
chine translation (briefly, NMT) through back
translation, source-side monolingual data is
not well investigated. In this work, we study
how to use both the source-side and target-
side monolingual data for NMT, and propose
an effective strategy leveraging both of them.
First, we generate synthetic bitext by translat-
ing monolingual data from the two domains
into the other domain using the models pre-
trained on genuine bitext. Next, a model is
trained on a noised version of the concate-
nated synthetic bitext where each source se-
quence is randomly corrupted. Finally, the
model is fine-tuned on the genuine bitext and
a clean version of a subset of the synthetic bi-
text without adding any noise. Our approach
achieves state-of-the-art results on WMT16,
WMT17, WMT18 English$German transla-
tions and WMT19 German!French transla-
tions, which demonstrate the effectiveness of
our method. We also conduct a comprehensive
study on how each part in the pipeline works.

1 Introduction

Neural machine translation (briefly, NMT) (Bah-
danau et al., 2014; Gehring et al., 2017; Wu et al.,
2016; Vaswani et al., 2017) is well-known for it-
s outstanding performance (Hassan et al., 2018),
which usually relies on large-scale bitext for train-
ing. However, high quality bitext is always limit-
ed and costly to collect. In contrast, there exists
large amount of monolingual data which can be
leveraged to augment the training corpus. How to
effectively leverage monolingual data is an impor-
tant research topic for NMT and there are plenty
of works studying this problem (Gulcehre et al.,
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2015, 2017; Sennrich et al., 2016a; He et al., 2016;
Zhang and Zong, 2016; Zhang et al., 2018; Cheng
et al., 2016; Wang et al., 2018; Chinea-Rios et al.,
2017; Wu et al., 2018).

Among them, one of the most cited approach
is back translation (briefly, BT) (Sennrich et al.,
2016a), which leverages the target-side monolin-
gual data. Specifically, a target-to-source transla-
tion model (trained on the genuine bitext) is used
to translate target-side monolingual sentences in-
to the source domain to generate a set of synthetic
bitext, which is then used together with the gen-
uine bitext to train a source-to-target NMT mod-
el. While target-side monolingual data is well u-
tilized by NMT through BT and its variants (Sen-
nrich et al., 2016a; Edunov et al., 2018; Hassan
et al., 2018; He et al., 2016), the investigation on
source-side monolingual data is very limited. On-
ly few attempts (Zhang and Zong, 2016; Ueffin-
g et al., 2007) are made to explore source-side
monolingual data, with a common high-level idea
that a source-to-target translation model is trained
to translate the source-side monolingual data into
target domain, the resulted synthetic data is then
used for further training. In this work, we study
how to leverage both source-side and target-side
monolingual data to boost the accuracy of NMT.

We propose a simple yet effective strategy to
leverage two-side monolingual data for NMT,
which consists of three steps:
(1) Preparation: We pretrain a source-to-target
and a target-to-source NMT models on the gen-
uine bitext, and use them to generate synthetic bi-
text by translating the monolingual data from the
source/target domain to the other domain respec-
tively.
(2) Large-scale Noised training: The source sen-
tences of the synthetic parallel corpus (includ-
ing both the genuine source-side monolingual sen-
tences and the synthetic source sentences back-
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translated from the target domain) are first cor-
rupted. We then train an NMT model on this
noised dataset together with the genuine bitext.
We find that this step benefits from a large amoun-
t of monolingual data. The NMT model obtained
from noised training can be further improved in
the next finetune step.
(3) Clean training: We randomly generate a subset
of the clean synthetic bitext without adding any
noise, and leverage them together with the genuine
bitext to finetune the output model of step (2). This
step only needs a small set of synthetic bitext.

We conduct a comprehensive study of our pro-
posed method on WMT English$German trans-
lation and German$French translation and have
the following empirical observations:

• Using both source-side and target-side mono-
lingual data is better than using monolingual
data from only one domain (see Section 5.1).

• Adding noise to large-scale synthetic bitext
improves the accuracy of NMT (see Section
5.2 and Section 5.3).

• Clean training/tuning of the model obtained
from noised training further improves its ac-
curacy (see Section 5.4).

• Our method achieves state-of-the-art result-
s on English$German newstest 2016, 2017
and 2018 and German!French newstest
2019 (see Section 4.2).

2 Related Work

Our work is related to several important research
directions of NMT, and we describe the previous
relevant works in this section.

2.1 Neural Machine Translation

NMT adopts the sequence-to-sequence frame-
work, which consists of an encoder and a decoder
in the network architecture. The encoder and de-
coder are usually built upon deep neural networks,
which can be recurrent neural network (Sutskev-
er et al., 2014), convolutional neural network
(Gehring et al., 2017) or simple self-attention
based transformer network (Vaswani et al., 2017).
The encoder encodes the source sentence into a
continuous representation space, and the decoder
will decodes the target sentence based on the en-
coder representations word-by-word. The objec-
tive of the NMT model training is to maximize

the conditional probability of the target sentence
given the source sequence. Different model archi-
tectures and modifications have been proposed to
improve the training efficiency and NMT accuracy
(Hassan et al., 2018; Luong et al., 2015; Gu et al.,
2016).

Different from the view of model architecture,
in this paper, we study the NMT training from the
data aspect. Specifically, we study the effect of
both source-side and target-side monolingual data
at scale and investigate how to make the best uti-
lization of the monolingual data.

2.2 Improving NMT by Monolingual Data

NMT heavily relies on large-scale parallel dataset
for training. To augment the limited bilingual data,
there are plenty of works attempt to leverage the
monolingual data to help the training, which in-
cludes the language model fusion (Gulcehre et al.,
2015), back translation (Sennrich et al., 2016a), d-
ual learning (He et al., 2016; Wang et al., 2018,
2019) and self learning (Zhang and Zong, 2016).

Gulcehre et al. (2017) integrates the hidden s-
tates from the target language model into the N-
MT decoder to improve the accuracy. Sennrich
et al. (2016a) propose the back translation (BT)
approach to leverage the target-side monolingual
data, which is simple and effective. BT requires
training an additional target-to-source NMT mod-
el given the bilingual dataset, the model will be
used to back translate the target-side monolingual
data. The translation output and the target-side
monolingual data then paired as synthetic paral-
lel corpus to augment the original bilingual dataset
in order to further train the source-to-target NMT
model. Dual learning (He et al., 2016) extend-
s the BT approach to train NMT systems in both
translation directions. When jointly training the
source-to-target and target-to-source NMT model-
s, the two models can provide back translated data
for each other direction and perform multi-rounds
BT. This strategy is also successfully adopted to
build the unsupervised translation system (Lample
et al., 2017).

There exists few attempts working on using the
source-side monolingual data. Zhang and Zong
(2016) propose self learning approach to generate
the synthetic data for the source-side monolingual
data, which is a semi-supervised method. Wu et al.
(2017) leverage the source-side monolingual data
to train the NMT system by learning reward func-



4209

4200

tion in a reinforcement learning framework.

2.3 Study of the Back Translation

Since BT is widely acknowledged and effective to
improve the NMT model, there has been several
works investigating back translation from differ-
ent views. Poncelas et al. (2018) study on how
using the back translated data as a training cor-
pus (separately usage or combined with bilingual
data) affects the performance of an NMT model.
Burlot and Yvon (2019) analyze the accuracy im-
pact from the quality of the BT data, the alternative
uses of BT data to give explanations of why BT
works. Cotterell and Kreutzer (2018) provide an
interpretation of back translation as approximate
inference in a generative model of bitext and give
a new algorithm. However, above studies are all
based on the small-scale monolingual data, there-
fore it remains unclear in the large-scale setting.

Edunov et al. (2018) firstly provide an exten-
sive analysis of the back translation at scale. They
investigate the different synthetic data generation
methods, and also compare the different combina-
tion of the synthetic data with bitext. They finally
build a strong system with millions of target-side
monolingual sentences.

3 Training Strategy

In this section, we give a detailed introduction of
our training strategy.

Notations: Let X and Y denote two languages,
and let X and Y denote two corresponding lan-
guage sentence domains, which are the collec-
tion of all sentences. Let B = {(xi, yi)}Ni=1 de-
note the bilingual training pairs, where xi 2 X ,
yi 2 Y , N is the number of sentence pairs. Let
Mx = {xj}Mx

j=1 and My = {yj}
My

j=1 denote the
collections of monolingual sentences, where Mx

and My are the sizes of the two sets, xj 2 X ,
yj 2 Y . Our objective is to obtain a translation
model f : X 7! Y , that can translate sequences
from language X to language Y .

There are three steps of our training strategy:

Step-1: Preparation. We first train two transla-
tion models fb : X 7! Y and gb : Y 7! X on the
given bilingual data B by minimizing the negative
log-likelihood. After that, we build the following
two synthetic datasets through the trained models:

B̄s = {(x, fb(x))|x 2 Mx},
B̄t = {(gb(y), y)|y 2 My},

(1)

where B̄s and B̄t can be seen the forward-
translation (i.e., self learning) of source-side
monolingual data (Zhang and Zong, 2016) and
back-translation of target-side monolingual da-
ta (Sennrich et al., 2016a). In practice, fb and gb
will output one translation by either beam search
or random sampling according to the model out-
put distribution. Random sampling explores more
possibility for the unknown generated sentence,
which may benefit the data augmentation. In this
work, we mainly adopt beam search to generate
the sentences, but we will also compare different
sequence generation methods in Section 5.2.

Step-2: Large-scale noised training. Inspired
from the noised back translation (Edunov et al.,
2018) and denoising auto-encoder (Vincent et al.,
2008), we add noise to the source-side data of
both B̄s and B̄t for training instead of directly us-
ing them to train models. We build two following
noised versions of the two augmented datasets,

B̄n
s = {(�(x), y)|(x, y) 2 B̄s},

B̄n
t = {(�(x), y)|(x, y) 2 B̄t},

(2)

where � is the operator of adding noise. We follow
Edunov et al. (2018) to design �. Specifically,
(1) we randomly replace a word in the sentence
to be a special token “<UNK>” (representing un-
known words) with probability 0.1;
(2) we randomly drop the words in each position
with probability 0.1;
(3) we randomly shuffle (swap) the words in the
sentence, with constraint that the words will not
be shuffled further than three positions distance.

We then train an NMT model fn for X to Y
translation on B[ B̄n

s [ B̄n
t by minimizing the neg-

ative log-likelihood. Compared with Edunov et al.
(2018), we enlarge the noised data from B̄n

t to
B̄n
s [ B̄n

t , instead of using the target-side monolin-
gual data only. The intuition behind noised train-
ing is to force the encoder to discover more robust
features and thus improve the generalization abili-
ty (Vincent et al., 2008). Besides, the output mod-
el of noised training has great potential to be im-
proved in further finetune. Adding noise is wide-
ly acknowledged in other NLP tasks, like unsu-
pervised NMT (Lample et al., 2017), BERT pre-
taining (Devlin et al., 2019), etc. There are some
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other ways to augment/add noise to the training
data (Artetxe et al., 2017) and we leave the com-
bination with those approaches as future work.

Step-3: Clean data tuning. After obtaining
noised training model from step-2, we further fine-
tune it on the clean version of the synthetic data
without adding noise manually. For the efficiency,
we can randomly subsample B̄s and B̄t to form the
clean B̄s

s and B̄s
t dataset. Then we continue tuning

fn on the new datasets:

min
X

(x,y)2B[B̄s
s[B̄s

t

� logP (y|x; f), (3)

where f is initialized by fn.
There are different ways to obtain B̄s

s and B̄s
t ,

such as the subset of B̄s and B̄t we described here.
A more effective way is to train another f̄b for X
to Y translation and another ḡb for Y to X trans-
lation, and use them to build new synthetic data
for step-3. In this way, more diverse samples are
included and we are able to achieve better results.
We will provide more discussions in Section 4.1
and study in Section 5.4.

4 Experiments

We verify the effectiveness of our proposed train-
ing strategy in this section. We conduct experi-
ments on four different translation tasks. We also
make a comprehensive study about the effect of
the monolingual data usage in our approach from
various aspects.

4.1 Experimental Setup

Datasets We carry out experiments on four d-
ifferent translation tasks from WMT19 competi-
tion1, including En!De, De!En, De!Fr and
Fr!De, where En, De and Fr are short for En-
glish, German and French.

For En$De translation tasks, the bilingual da-
ta consists of two parts: (1) We concatenate “Eu-
roparl v9”, “News Commentary v14”, “Common
Crawl corpus” and “Document-split Rapid cor-
pus”, remove the empty and duplicate lines and
eventually get a clean dataset of news domain. (2)
We also use the Paracrawl dataset to extend the
bilingual corpus. Consider Paracrawl is noisy, we
apply a series of filtration rules to this dataset and

1http://www.statmt.org/wmt19/
translation-task.html

remove the low-quality sentences, including sen-
tences with too many punctuation marks or in-
valid characters, and those with too many or too
few words, etc. All the rules are available in
the preprocess.py in the supplementary doc-
ument. These two parts of data are then merged
together to get the bilingual dataset. We even-
tually get a clean corpus with about 5M clean
data and 18M Paracrawl data, which are denot-
ed as WMT and WMTPC respectively for ease of
reference. The monolingual data we use is from
newscrawl released by WMT19. We combine the
newscrawl data from year 2016 to 2018 for the
English and German monolingual corpus. After
filtering with similar rules applied in Paracrawl
(preprocess mono.py in the supplementary
document), an additional step is that we further
perform language detection (Lui and Baldwin,
2012) on each side monolingual data. Finally, we
randomly select about 120M sentences for each
of English and German language. We choose
newstest2015 as the validation set and use new-
stest2016 to newstest2019 as test sets.

For De$Fr translation data, we follow the same
process as that used in En$De. Eventually, the
WMT and ParaCrawl data of De$Fr contains about
2M and 4.8M sentence pairs respectively. As for
the French monolingual data, we use all the avail-
able newscrawl from previous years due to its s-
mall size compared to En and De. After filter-
ing, we keep 60M monolingual data. We use the
validation and test set provided by WMT19 for
De$Fr translation.

All datasets are tokenized with Moses (Koehn
et al., 2007) toolkit2. The vocabulary is built
based on the Byte-Pair-Encoding (BPE) (Sennrich
et al., 2016b) with 35K merge operations3 for both
En$De and De$Fr datasets. We learn the BPE
vocabulary jointly on the source and target lan-
guage sentences.

Models We choose the state-of-the-art Trans-
former network as our model structure, which con-
sists of an encoder with 6 layers and a decoder
with 6 layers. We use transformer big con-
figuration for all experiments: the dimension of
word embedding and the inner feed-forward layer
is 1024 and 4096 respectively. The parameters of

2https://github.com/moses-smt/
mosesdecoder/tree/master

3https://github.com/rsennrich/
subword-nmt
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source and target word embeddings, as well as the
projection layer before softmax are shared. The
number of attention heads is 16. The dropout is
fixed as 0.2 due to validation performance. We
conduct experiments on the fairseq (Ott et al.,
2019) codebase4.

Training The models are trained by the Adam
optimizer (Kingma and Ba, 2014) with �1 = 0.9,
�2 = 0.98. We use the default learning rate sched-
ule used in Vaswani et al. (2017) with the initial
learning rate 5⇥10�4. Label smoothing (Szegedy
et al., 2016) is adopted with value 0.1. The batch
size is set to be 4096 tokens per GPU. We use 4
P40 GPUs for training and update the parameter-
s every 16 minibatches. The pretraining and the
noised training both take about one week, and the
finetune process takes about one day training.

To effectively leverage monolingual data, as
mentioned in Section 3, we use two differen-
t groups of models to generate synthetic data for
noised training and finetuning. For noised train-
ing, the models used for translating monolingual
data are trained on WMT; for finetuning, the models
are trained on WMTPC. The intuition behind using
different generation models is that each optimiza-
tion stage can benefit from the new/unseen gener-
ated synthetic training data. Therefore, we adopt
this way in our experiments. As for the data size,
in noised training, |B̄s| = |B̄t| = 60M , and during
finetuning, |B̄s

s| = |B̄s
t | = 20M .

Evaluation To evaluate the model performance,
we use beam search generation with beam width
5 and without length penalty. The BLEU score
is measured by the de-tokenized case-sensitive
SacreBLEU (Post, 2018), which is widely adopted
in the WMT competitions5.

4.2 Results

We summarize the results of our training strategy
for En$De and De$Fr translations in Table 1 and
Table 2.

As can be seen from Table 1, the Paracrawl
dataset improves the model accuracy by a large
margin. Compared with the baseline of using
WMT only, on average, Paracrawl brings more than

4https://github.com/pytorch/fairseq
5https://github.com/mjpost/sacreBLEU.

SacreBLEU signatures: BLEU+case.mixed+lang.$task
+numrefs.1+smooth.exp+test.$SET+tok.13a+version.1.2.12,
where $task are en-de, de-en, de-fr and fr-de; $SET are 16,
17, 18, 19.

De!Fr Fr!De

WMT 31.2 26.1
WMTPC 34.2 28.6

+Noised Training 36.1 30.8
+Clean Tuning 37.3 33.1

Table 2: De-tokenized case-sensitive SacreBLEU on
WMT De$Fr newstest2019. “+” is conducted upon
WMTPC dataset.

3.0 and 4.0 BLEU improvements to En!De and
De!En tasks respectively, indicating the effec-
tiveness of leveraging more data. After large-scale
noised training, the accuracy of each task is fur-
ther boosted. On average, we improve the BLEU
scores of En!De and De!En by 1.6 and 2.2
points, demonstrating the effectiveness of noised
training. At last, the output models are tuned on
the clean synthetic data. This step further brings
1.7 and 1.5 points gain over the previous step.
For En$De translation tasks, we finally achieve
40.9, 32.9, 49.2 and 43.8 BLEU scores from new-
stest2016 to newstest2019; for De!En, the even-
tual BLEU scores of the four test sets end up at
47.5, 41.0, 49.5 and 41.9. Such strong improve-
ments over the baseline reveal the great potential
of our proposed strategy.

Prior to this work, the most common way to
leverage monolingual data is BT (Sennrich et al.,
2016a). We also compare our strategy to the vanil-
la BT, which consists of 20M synthetic data and
WMTPC. The results are shown in the last row of
Table 1. Without finetuning, our noised training
strategy surpasses the BT by 0.92 and 0.55 points
respectively. This shows that our strategy is more
effective than standard BT.

In Table 2, we show the results of De$Fr trans-
lation tasks. We have similar observation as that
for En$De translations. Specifically, the noised
training can improve WMTPC by 1.9 and 2.2 points
on De!Fr and Fr!De. When turning to clean
tuning, we can obtain another 1.2 and 2.3 points
improvement. The results on De$Fr demonstrate
that our strategy works across different languages.

Our method achieves state-of-the-art results on
En$De newstest2016, newstest2017 and new-
stest2018 and De!Fr newstest2019. We list sev-
eral widely acknowledged systems on En!De
translation in Table 3: MS-Marian (Junczys-
Dowmunt, 2018), which is the champion of
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En!De De!En

Model 2016 2017 2018 2019 Avg 2016 2017 2018 2019 Avg

WMT 34.0 28.0 41.3 37.3 35.15 38.6 34.3 41.1 34.5 37.13
WMTPC 37.1 30.5 45.6 40.3 38.38 41.9 37.5 45.4 40.1 41.23

+Noised Training 39.3 32.0 47.5 41.2 40.00 46.1 39.8 47.7 40.2 43.45
+Clean Tuning 40.9 32.9 49.2 43.8 41.70 47.5 41.0 49.5 41.9 44.98

WMTPC+BT 38.7 31.8 46.0 39.8 39.08 45.8 39.8 47.2 38.6 42.90

Table 1: De-tokenized case-sensitive SacreBLEU on WMT En$De newstest2016, newstest2017, newstest2018,
newstest2019 and the average score. “Avg” means the average BLEU score. “+” is conducted upon WMTPC dataset.

Model (En!De) 2016 2017 2018

FAIR (ensemble) 38.0 32.8 46.1
MS-Marian (ensemble) 39.6 31.9 48.3
Ours (single) 40.9 32.9 49.2

Table 3: De-tokenized case-sensitive SacreBLEU on
WMT En!De newstest2016, newstest2017 and new-
stest2018. MS-Marian and FAIR are ensemble results
while ours are single-model results.

Model (De!En) 2016 2017 2018

UCAM (ensemble) 45.1 38.7 48.0
RWTH (ensemble) 46.0 39.9 48.4
Ours (single) 47.5 41.0 49.5

Table 4: De-tokenized case-sensitive SacreBLEU on
WMT De!En newstest2016, newstest2017 and new-
stest2018. UCAM and RWTH are ensemble results
while ours are single-model results.

WMT18 En!De competition, and FAIR’s mod-
el (Edunov et al., 2018) which leverages a large
amount of monolingual data. Note that results of
MS-Marian and FAIR are from ensemble models,
while ours are from a single model. We find that
our single model successfully surpasses the previ-
ous best systems in all test sets. Especially, for
newstest2016 and newstest2018, we achieve 1.0
BLEU score improvement over the MS-Marian
and set new records for these tasks. We also list
the WMT18 top-2 systems for De!En translation
in Table 4: RWTH (Graça et al., 2018) and UCAM
(Stahlberg et al., 2018) systems, which are both
ensemble models. Similarly, our single model sur-
passes these ensemble systems by a large margin.

5 Analysis

In this section, we provide a comprehensive study
on the effect of monolingual data from differen-
t aspects, including data combination ways, data
scale and the data generation methods. The ex-
periments are conducted on the En!De transla-
tion and evaluated on newstest2016, newstest2017
and newstest2018. In this section, without specific
clarification, the training data of each setting con-
tains WMTPC.

5.1 Source or Target Monolingual Data

We first investigate the effect about different com-
binations of monolingual data. Specifically, we
compare three different ways to use monolingual
data, including leveraging source-side monolin-
gual data only (i.e., B̄s), target-side monolingual
data only (i.e., B̄t), and the monolingual data from
both two sides (i.e., B̄s and B̄t).

We keep the number of total synthetic data to
be same across the three settings, that is, (i) 120M
B̄s; (ii) 120M B̄t, and (iii) the combination of 60M
B̄s and 60M B̄t. We conduct this study on the
clean synthetic data without noise, in order to ver-
ify which kind of data is more helpful for boosting
performances.

The results are shown in Figure 1. From
the figure, we can clearly observe that the best
configuration is the combination of B̄s and B̄t.
With the same data size, on average, the mod-
el trained with combined synthetic dataset out-
performs those trained with B̄s only and B̄t only
by 2.6 and 3.5 points respectively. In particular,
on newstest2018, the advantage of the combined
dataset is nearly 5 points compared to B̄t, which
is extremely significant. This result strongly sup-
ports us that our training strategy by leveraging
both the source-side and target-side monolingual
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Figure 1: The de-tokenized SacreBLEU scores
on En!De newstest2016, newstest2017 and new-
stest2018 of the models trained by different synthetic
data: (1) B̄s from source-side monolingual data only,
(2) B̄t from target-side monolingual data only and (3)
the combination of B̄s and B̄t.

data is helpful. Another point is that on such large-
scale dataset, the B̄t data from back translation
seems to be worse than the B̄s data generated by
source-side monolingual data, which also supports
the point that source-side monolingual is helpful.

5.2 Synthetic Data Generation

We conduct experiments on different generated
synthetic data, to verify whether adding noise is
essential. We use the same combined dataset (i.e.,
60M B̄s and 60M B̄t) as that used in Section 5.1
since the effectiveness has been verified.

We compare our noised training data B̄n
s and B̄n

t

with another two baselines: 1) B̄s and B̄t without
any transformation; 2) B̄s and the randomly sam-
pled synthetic data B̄r

t , where each token in the
translation is sampled from the multinomial distri-
bution determined by the NMT model. Random
sampling is an alternative way to introduce noise,
where the resulted synthetic dataset is more di-
verse but the translation quality is relatively poor.
The data sizes for all settings are 120M.

We present the result in Figure 2. Overal-
l, noised traininig outperforms the clean training,
e.g., 0.8 and 0.5 points advantage on newstest2016
and newstest2018 respectively. Compared with
randomly sampled data, our noised data training
achieves more than 1.0 BLEU improvement on
newstest2016 and newstest2018, and similar per-
formance on newstest2017. The above results sug-
gest that our noised training is effective.

Figure 2: The de-tokenized SacreBLEU scores
on En!De newstest2016, newstest2017 and new-
stest2018 of the models trained by synthetic data gen-
erated in different ways: (1) clean B̄s and B̄t data, (2)
B̄r
s and randomly sampled B̄r

t data, and (3) noised B̄n
s

and B̄n
t data.

5.3 Scale of Monolingual Data

In this section, we give a comparison of different
data scales for each kind of synthetic data.

(a) Scale of Target-side (BT) Data We first
look into the widely adopted back translation da-
ta B̄t. We vary the data scale from 20M to 60M,
which are obtained by random selection from the
120M corpus, and then to 120M.

From Figure 3(a), we can observe that model
performance is improved when we add 20M B̄t

data. However, adding more clean back translat-
ed data starts to hurt the model performances. We
suspect the reason is that the data distribution of B̄t

shifts from the groundtruth distribution. Adding
too much B̄t will enforce the model training to fit
a biased distribution, making the generalization a-
bility drop and thus, we observe that the BLEU
scores drop. This result implies that we should
choose a proper data size when using B̄T only,
such as same size of bitext (e.g., 20M as we used).

(b) Scale of Source-side Data We then investi-
gate the effect of data scale of source-side mono-
lingual data, i.e., B̄s data. We also set the data
sizes as {20M,60M,120M}.

The results are shown in Figure 3(b). We do
not observe any improvement over the bilingual
system when adding B̄s data, and with more data
added, the performance slightly drops. It seems to
be contrary to the experimental results in Zhang
and Zong (2016) which are conducted on RNN
models. We speculate the self learning approach
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(a) Different scales of B̄t data. (b) Different scales of B̄s data. (c) Different scales of noised B̄s + B̄t data.

Figure 3: The de-tokenized SacreBLEU scores on newstest2016, newstest2017, newstest2018 of the models trained
with varied data scales of (a) B̄t data, (b) B̄s data, and (c) combined B̄s and B̄t data.

is actually hard for the model to boost itself, s-
ince there are no other signals to help the learning.
The results demonstrate that leveraging source-
side monolingual data alone is not a good choice.

(c) Scale of Noised Synthetic Data We final-
ly study our noised training on different sizes of
noised synthetic data. The experiments are con-
ducted on the combination of noised 30M, 60M
and 120M B̄n

s and B̄n
t with the same number

of source-side and target-side monolingual sen-
tences6. We choose the maximum data size as
120M due to GPU memory limitation. The results
are shown in Figure 3(c).

We can see that the performances are consis-
tently improved as the number of the noised syn-
thetic data increases on all test sets. The result a-
gain proves that the hybrid usage of source-side
and target-side monolingual data is an effective
approach which outperforms using the two kinds
of data individually.

In summary, first, we verify that source-side
monolingual data is helpful and the best way to
use it is to combine with target-side monolingual
data. Next, we show that adding noise to syn-
thetic data outperforms that without noise. Final-
ly, we empirically prove that our strategy benefits
from more monolingual data, while BT does not,
demonstrating our strategy has great potential of
utilizing more data.

5.4 Synthetic Tuning

We further study the clean tuning step in our train-
ing strategy. Two questions remain to be an-
swered: (1) Is it helpful to use two groups of mod-
els of building synthetic data for noised training

6For example, same as combined 120M data, 60M com-
bined data contains 30M B̄n

s and 30M B̄n
t data.

Figure 4: The de-tokenized SacreBLEU scores
on En!De newstest2016, newstest2017 and new-
stest2018 of the models tuned by different synthetic
data and pretrained models: (1) noised training mod-
el tuned on the subset of B̄s and B̄t (WMT in the figure),
(2) noised training model tuned on the synthetic data as
introduced in Section 4.1, and (3) clean training model
tuned on the same synthetic data generated as (2).

and clean training as we discussed before? (2) Is it
helpful to use noised training first regarding future
BLEU score achieved by the finetune step?

To answer these questions, we conduct another
two experiments: (1) At finetuning step, use a sub-
sample of synthetic data of noised training step,
which is B̄s

s ⇢ B̄s, B̄s
t ⇢ B̄t. (2) Training without

noise first and then finetuning using clean data.
We present the results in Figure 4. Obviously,

we can see that tuning on the subset of B̄s and B̄t

is worse than tuning on another set of synthetic
data used in our experiments (e.g., 49.2 v.s. 48.0
on newstest2018). In addition, first training on the
clean synthetic data and then tuning on other clean
synthetic data also makes improvement, but simi-
lar to the results shown in Section 5.2, it is still not
as good as our noised pretraining. Above results
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again prove the importance of our noised training
and tuning on more diverse dataset is effective.

6 Conclusion

In this work, we exploit the monolingual data
at scale for the neural machine translation. Dif-
ferent from previous works which usually adop-
t back translation on target-side monolingual da-
ta only, we propose an effective training strate-
gy to boost the NMT performance by leverag-
ing both source-side and target-side monolingual
data. Our approach contains three steps: syn-
thetic data generation, large-scale noised training
on synthetic data and clean data training/tuning.
We verify our approach on the widely acknowl-
edged WMT English$German translation tasks
and achieve state-of-the-art results, as well as that
for the WMT German$French translations. We
also make a comprehensive study on the monolin-
gual data utilization.

For future work, we would like to verify our
training strategy on more language pairs and oth-
er sequence-to-sequence tasks. Furthermore, we
are interested in studying our noised training with
other data augmentation approaches.
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