Don’t Take the Easy Way Out:
Ensemble Based Methods for Avoiding Known Dataset Biases

Christopher Clark*, Mark Yatskar', Luke Zettlemoyer*

*Paul G. Allen School of CSE, University of Washington
{csquared, 1lsz}@cs.uw.edu

f Allen Institute for Artificial Intelligence, Seattle WA
marky@allenai.org

Abstract

State-of-the-art models often make use of su-
perficial patterns in the data that do not gener-
alize well to out-of-domain or adversarial set-
tings. For example, textual entailment mod-
els often learn that particular key words im-
ply entailment, irrespective of context, and vi-
sual question answering models learn to pre-
dict prototypical answers, without considering
evidence in the image. In this paper, we show
that if we have prior knowledge of such biases,
we can train a model to be more robust to do-
main shift. Our method has two stages: we (1)
train a naive model that makes predictions ex-
clusively based on dataset biases, and (2) train
arobust model as part of an ensemble with the
naive one in order to encourage it to focus on
other patterns in the data that are more likely to
generalize. Experiments on five datasets with
out-of-domain test sets show significantly im-
proved robustness in all settings, including a
12 point gain on a changing priors visual ques-
tion answering dataset and a 9 point gain on an
adversarial question answering test set.

1 Introduction

While recent neural models have shown remark-
able results, these achievements have been tem-
pered by the observation that they are often ex-
ploiting dataset-specific patterns that do not gen-
eralize well to out-of-domain or adversarial set-
tings. For example, entailment models trained on
MNLI (Bowman et al., 2015) will guess an an-
swer based solely on the presence of particular
keywords (Gururangan et al., 2018) or whether
sentences pairs contain the same words (Mc-
Coy et al., 2019), while QA models trained on
SQuAD (Rajpurkar et al., 2016) tend to select text
near question-words as answers, regardless of con-
text (Jia and Liang, 2017).

We refer to these kinds of superficial patterns
as bias. Models that rely on bias can perform

well on in-domain data, but are brittle and easy
to fool (e.g., SQuUAD models are easily distracted
by irrelevant sentences that contain many question
words). Recent concern about dataset bias has led
researchers to re-examine many popular datasets,
resulting in the discovery of a wide variety of bi-
ases (Agrawal et al., 2018; Anand et al., 2018; Min
et al., 2019; Schwartz et al., 2017).

In this paper, we build on these works by show-
ing that, once a dataset bias has been identified,
we can improve the out-of-domain performance of
models by preventing them from making use of
that bias. To do this, we use the fact that these bi-
ases can often be explicitly modelled with simple,
constrained baseline methods to factor them out of
a final model through ensemble-based training.

Our method has two stages. First, we build
a bias-only model designed to capture a naive
solution that performs well on the training data,
but generalizes poorly to out-of-domain settings.
Next, we train a second model in an ensemble
with the pre-trained bias-only model, which in-
centivizes the second model to learn an alternative
strategy, and use the second model alone on the
test set. We explore several different ensembling
methods, building on product-of-expert style ap-
proaches (Hinton, 2002; Smith et al., 2005). Fig-
ure 1 shows an example of applying this proce-
dure to prevent a visual question answering (VQA)
model from guessing answers because they are
typical for the question, a flaw observed in VQA
models (Goyal et al., 2018; Agrawal et al., 2018).

We evaluate our approach on a diverse set
of tasks, all of which require models to over-
come a challenging domain-shift between the train
and test data. First, we build a set of syn-
thetic datasets that contain manually constructed
biases by adding artificial features to MNLI. We
then consider three challenge datasets proposed by
prior work (Agrawal et al., 2018; McCoy et al.,

4069

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 4069—4082,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics

Robust Model

1
I
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
L

Training
iBrown srown
Yellow - N vellow
1 Gold [N Gold [l
1Green N Green -
{ Bl Ensemble Blve [
| Gray M Gray W
| Other J§
H p(answer|model) p(answer|ensemble)

iBrown
iYellow
! Gold '
iGreen NG
| Blue [N '
i Gray [N
1 other [N

I Other |

Training Loss

p(answer | bias)

Bias-Only Model

— Data
Gradients

Figure 1: An example of applying our method to a Visual Question Answering (VQA) task. We assume predicting
green for the given question is almost always correct on the training data. To prevent a model from learning this
bias, we first train a bias-only model that only uses the question as input, and then train a robust model in an
ensemble with the bias-only model. Since the bias-only model will have already captured the target pattern, the
robust model has no incentive to learn it, and thus does better on test data where the pattern is not reliable.

2019; Jia and Liang, 2017), which were designed
to break models that adopt superficial strategies
on well known textual entailment (Bowman et al.,
2015), reading comprehension (Rajpurkar et al.,
2016), and VQA (Antol et al., 2015) datasets.

We additionally construct a new QA challenge
dataset, TriviaQA-CP (for TriviaQA changing pri-
ors). This dataset was built by holding out ques-
tions from TriviaQA (Joshi et al., 2017) that ask
about particular kinds of entities from the train set,
and evaluating on those questions in the dev set, in
order to challenge models to generalize between
different types of questions.

We are able to improve out-of-domain perfor-
mance in all settings, including a 6 and 9 point
gain on the two QA datasets. On the VQA chal-
lenge set, we achieve a 12 point gain, compared
to a 3 point gain from prior work. In general, we
find using an ensembling method that can dynam-
ically choose when to trust the bias-only model is
the most effective, and we present synthetic exper-
iments and qualitative analysis to illustrate the ad-
vantages of that approach. We release our datasets
and code to facilitate future work.'

2 Related Work

Researchers have raised concerns about bias in
many datasets. For example, many joint natu-

! github.com/chrisc36/debias

ral language processing and vision datasets can
be partially solved by models that ignore the vi-
sion aspect of the task (Jabri et al., 2016; Zhang
et al., 2016; Anand et al., 2018; Caglayan et al.,
2019). Some questions in recent multi-hop QA
datasets (Yang et al., 2018; Welbl et al., 2018) can
be solved by single-hop models (Chen and Dur-
rett, 2019; Min et al., 2019). Additional examples
include story completion (Schwartz et al., 2017)
and multiple choice questions (Clark et al., 2016,
2018). Recognizing that bias is a concern in di-
verse domains, our work is the first to perform an
evaluation across multiple datasets spanning lan-
guage and vision.

Recent dataset construction protocols have tried
to avoid certain kinds of bias. For example, both
CoQA (Reddy et al., 2019) and QuAC (Choi et al.,
2018) take steps to prevent annotators from us-
ing words that occur in the context passage, VQA
2.0 (Goyal et al., 2018) selects examples to limit
the effectiveness of question-only models, and
others have filtered examples solvable by simple
baselines (Yang et al., 2018; Zhang et al., 2018b;
Clark et al., 2018; Zellers et al., 2018). While re-
ducing bias is important, developing ways to pre-
vent models from using known biases will allow
us to continue to leverage existing datasets, and
update our methods as our understanding of what
biases we want to avoid evolve.

4070

Recent work has focused on biases that come
from ignoring parts of the input (e.g., guessing
the answer to a question before seeing the evi-
dence). Solutions include generative objectives to
force models to understand all the input (Lewis
and Fan, 2019), carefully designed model archi-
tecture (Agrawal et al., 2018; Zhang et al., 2016),
or adversarial removal of class-indicative features
from model’s internal representations (Ramakrish-
nan et al., 2018; Zhang et al., 2018a; Belinkov
et al., 2019; Grand and Belinkov, 2019). In
contrast, we consider biases beyond partial-input
cases (Feng et al., 2019), and show our method
is superior on VQA-CP. Concurrently, He et al.
(2019) also suggested using a product-of-experts
ensemble to train unbiased models, but we con-
sider a wider variety of ensembling approaches
and test on additional domains.

A related task is preventing models from us-
ing particular problematic dataset features, which
is often studied from the perspective of fair-
ness (Zhao et al., 2017; Burns et al., 2018). A
popular approach is to use an adversary to remove
information about a target feature, often gender
or ethnicity, from a model’s internal representa-
tions (Edwards and Storkey, 2016; Wang et al.,
2018; Kim et al., 2019). In contrast, the biases we
consider are related to features that are essential to
the overall task, so they cannot simply be ignored.

Evaluating models on out-of-domain examples
built by applying minor perturbations to exist-
ing examples has also been the subject of recent
study (Szegedy et al., 2014; Belinkov and Bisk,
2018; Carlini and Wagner, 2018; Glockner et al.,
2018). The domain shifts we consider involve
larger changes to the input distribution, built to un-
cover higher-level flaws in existing models.

3 Methods

This section describes the two stages of our
method, (1) building a bias-only model and (2) us-
ing it to train a robust model through ensembling.

3.1 Training a Bias-Only Model

The goal of the first stage is to build a model that
performs well on training data, but is likely to per-
form very poorly on the out-of-domain test set.
Since we assume we do not have access to ex-
amples from the test set, we must apply a-priori
knowledge to meet this goal.

The most straightforward approach is to iden-

tify a set of features that are correlated with the
class label during training, but are known to be un-
correlated or anticorrelated with the label on the
test set, and then train a classifier on those fea-
tures.” For example, our VQA-CP (Agrawal et al.,
2018) bias-only model (see Section 5.2) uses the
question type as input, because the correlations be-
tween question types and answers is very different
in the train set than the test set (e.g., 2 is a common
answer to “How many...” questions on the train set,
but is rare for such questions on the test set).

However, a benefit of our method is that the bias
can be modelled using any kind of predictor, giv-
ing us a way to capture more complex intuitions.
For example, on SQuAD our bias-only model op-
erates on a view of the input built from TF-IDF
scores (see Section 5.4), and on our changing prior
TriviaQA dataset our bias-only model makes use
of a pre-trained named entity recognition (NER)
tagger (see Section 5.5).

3.2 Training a Robust Model

This stage trains a robust model that avoids using
the method learned by the bias-only model.

3.2.1 Problem Definition

We assume n training examples (x1,x2, ..., Ty),
each of which has an integer label y;, where y; €
{1,2,...,C} and C is the number of classes. We
additionally assume a pre-trained bias-only pre-
dictor, h, where h(fl‘z) = b = <bi1, bio, sz>
and b;; is the bias-only model’s predicted proba-
bility of class j for example ¢. Finally we have a
second predictor function, f, with parameters 6,
where f(x;,6) = p; and p; is a similar probability
distribution over the classes. Our goal is to con-
struct a training objective to optimize 6 so that f
will learn to select the correct class without using
the strategy captured by the bias-only model.

3.2.2 General Approach

We train an ensemble of h and f. In particular,
for each example, a new class distribution, p;, is
computed by combining p; and b;. During train-
ing, the loss is computed using p; and the gradi-
ents are backproped through f. During evaluation
f is used alone. We propose several different en-
sembling methods.

2Since the bias-only model is trained on the same train-
set as the robust model care should also be taken to minimize
overfitting, although the bias-only model is typically simple
enough that this is not an issue.

4071

3.2.3 Bias Product

Our simplest ensemble is a product of ex-
perts (Hinton, 2002):

p; = softmaz(log(p;) + log(b;))

Equivalently, p; o p; o b;, where o is element-
wise multiplication.

Probabilistic Justification: For a given ex-
ample, x, let 2 be the bias of the example. That
is, it is the features we will use in our bias-only
model. Let 7% be a view of the example that
captures all information about that example
except the bias. Assume that 2 ° and z® are
conditionally independent given the label, c. Then
to compute p(c|x) we have:

p(clz) = p(c]a:b,x_b) (D
o plelz")p(alle,z™) (@)
= plclz™")p(a’|c) (3)
b b
= plela)" (C’ﬁ(g’@))
x plcz)? gf('f)b) (5)

Where 2 is from applying Bayes Rule while
conditioning on z~°, 3 follows from the condi-
tional independence assumption, and 4 applies
Bayes Rule a second time to p(z°|c).

We cannot directly model p(c|z~%) because it
is usually not possible to create a view of the data
that excludes the bias. Instead, with the goal of
encouraging the model to fall into the role of com-
puting p(c|z~?), we compute p(c|z®)/p(c) using
the bias-only model, and train the product of the
two models to compute p(c|z).

In practice, we ignore the p(c) factor because,
on our datasets, either the classes are uniformly
distributed (MNLI), the bias-only model cannot
easily capture a class prior since it is using a
pointer network (QA), or because we want to re-
move class priors from model anyway (VQA).

3.2.4 Learned-Mixin

The assumption of conditional independence
(Equation 3) will often be too strong. For exam-
ple, in some cases the robust model might be able
to predict the bias-only model will be unreliable
for certain kinds of training examples. We find
that this can cause the robust model to selectively
adjust its behavior in order to compensate for the

inaccuracy of the bias-only model, leading to er-

rors in the out-of-domain setting (see Section 5.1).
Instead we allow the model to explicitly deter-

mine how much to trust the bias given the input:

pi = softmaz(log(pi) + g(:) log(b:))

where g is a learned function. We compute g as
softplus(w - h;) where w is a learned vector, h; is
the last hidden layer of the model for example z;,
and the softplus(x) = log(1+¢e”) function is used
to prevent the model reversing the bias by multi-
plying it by a negative weight. w is trained with
the rest of the model parameters. This reduces to
bias product when g(z;) = 1.

A difficulty with this method is that the model
could learn to integrate the bias into p; and set
g(z;) = 0. We find this does sometimes occurs in
practice, and our next method alleviates this chal-
lenge.

3.2.5 Learned-Mixin +H

To prevent the learned-mixin ensemble from ig-
noring b;, we add an entropy penalty to the loss:

R = wH (softmaz(g(x;)log(b;)))

Where H(z) = — >, zjlog(z;) is the entropy
and w is a hyperparameter. Penalizing the entropy
encourages the bias component to be non-uniform,
and thus have a greater impact on the ensemble.

4 Evaluation Methodology

We evaluate our methods on several datasets that
have out-of-domain test sets. Some of these tasks,
such as HANS (McCoy et al., 2019) or Adversar-
ial SQuAD (Jia and Liang, 2017), can be solved
easily by generating additional training examples
similar to the ones in the test set (e.g., Wang and
Bansal (2018)). We, instead, demonstrate that it is
possible to improve performance on these tasks by
exploiting knowledge of general, biased strategies
the model is likely to adopt.

Our evaluation setup consists of a training set,
an out-of-domain test set, a bias-only model, and
a main model. To run an evaluation we train the
bias-only model on the train set, train the main
model on the train set while employing one of the
methods in Section 3, and evaluate the main model
on the out-of-domain test set. We also report per-
formance on the in-domain test set, when avail-
able. We use models that are known to work well
for their respective tasks for the main model, and

4072

Task Dataset Domain Shift

Bias-Only Model Main Model

NLI Synthetic MNLI

Synthetic indicator features are

Indicator features Co-Attention

Question-type BottomUpTopDown

Shared word features BERT & Co-Attention

randomized
VQA VQA-CPv2.0 Correlations between question-
types and answers are altered
NLI HANS Sentence pairs always contain

the same words

QA Adv. SQuUAD
to the context
QA TriviaQA-CP
kinds of entities

Distractor sentences are added

Questions ask about different

TF-IDF sentence selector Modified BIDAF

NER answer detector Modified BiDAF

Table 1: Summary of the evaluations we perform, Domain Shift refers to what changes between the train and test
data, and Bias-Only Model specifies how the bias model we use was constructed. See the main text for details.

do not further tune their hyperparameters or per-
form early stopping.

We consider two extractive QA datasets, which
we treat as a joint classification task where the
model must select the start and end answer to-
ken (Wang and Jiang, 2017). For these datasets,
we build independent bias-only models for select-
ing the start and end token, and separately ensem-
ble those biases with the classifier’s start token and
end token output distributions. We apply a ReLU
layer to the question and passage embeddings, fol-
lowed by max-pooling, to construct a hidden state
for computing the learned-mixin weights.

We compare our methods to a reweighting base-
line described below, and to training the main
model without any modifications. On VQA we
also compare to the adversarial methods from Ra-
makrishnan et al. (2018) and Grand and Belinkov
(2019). The other biases we consider are not based
on observing only part of the input, so these adver-
sarial methods cannot be directly applied.

4.1 Reweight Baseline

As a non-ensemble baseline, we train the main
model on a weighted version of the data, where the
weight of example x; is 1 —b;y, (i.e., we weigh ex-
amples by one minus the probability the bias-only
model assigns the correct label). This encourages
the main model to focus on examples the bias-only
model gets wrong.

4.2 Hyperparameters

One of our methods (Learned-Mixin +H) requires
hyperparameter tuning. However hyperparame-
ter tuning is challenging in our setup since our
assumption is that we have no access to out-of-
domain test examples during training. A plausible
option would be to tune hyperparameters on a dev

set that exhibits a related, but not identical, do-
main shift to the test set, but unfortunately none of
our datasets have such dev sets. Instead we follow
prior work (Grand and Belinkov, 2019; Ramakr-
ishnan et al., 2018) and perform model selection
on the test set. Although this presents an important
caveat to the results of this method, we think it is
still of interest to observe that the entropy regular-
izer can be very impactful. Future work may be
able to either construct suitable development sets,
or propose other hyperparameter-tuning methods
to relieve this issue. The hyperparameters selected
are shown in Appendix A.

S Experiments

We provide experiments on five different domains,
summarized in Table 1, each of which requires
models to overcome a challenging domain-shift
between train and test data. In the following sec-
tions we provide summaries of the datasets, main
models and bias-only models, but leave low-level
details to the appendix.

5.1 Synthetic Data

Data: We experiment with a synthetic dataset
built by modifying MNLI (Bowman et al., 2015).
In particular, we add a feature that is correlated
with the class label to the train set, and build an
out-of-domain test set by adding a randomized
version of that feature to the MNLI matched dev
set. We additionally construct an in-domain test
set by modifying the matched dev set in the same
way as was done in the train set. We build three
variations of this dataset:

Indicator: Adds the token “0”, “1”, or ‘27
to the start of the hypothesis, such that 80% of the

4073

time the token corresponds to the example’s label
(i.e., “0” if the class is “entailment”, “1” if the
class is contradiction, ect.). In the out-of-domain
test set, the token is selected randomly.

Excluder: The same as Indicator, but with a
3% chance the added token corresponds to the
example’s label, meaning the token can usually be
used to eliminate one of the three output classes.

Dependent: In the previous two settings, the
added bias is independent of the example given
the example’s label. To simulate a case where
this independence is broken, we experiment with
adding an additional feature that is correlated with
the bias feature, but is not treated as being part
of the bias (i.e., it is not used by the bias-only
model). In particular, 80% of the time a token is
added to the start of the hypothesis that matches
the label with 90% probability, and the “0”
token is appended to the end of the hypothesis.
The other 20% of the time a random token is
prepended and “1” is appended.

Bias-Only Model: The bias-only model predicts
the label using the first token of the hypothesis.

Main Model: We use a recurrent co-attention
model, similar to ESIM (Chen et al., 2017). De-
tails are given in Appendix B.

Results: Table 2 shows the results. All ensem-
bling methods work well on the Indicator bias.
The reweight method performs poorly on the Ex-
cluder bias, likely because the bias-only model as-
signs the correct class approximately 50% proba-
bility for almost all the training examples, making
the weights mostly uniform. This illustrates a gen-
eral weakness with reweighting methods: they re-
quire at least a small number of bias-free examples
for the model to learn from.

The bias product method performs poorly on
the Dependent bias. Inspection shows that, when
the indicator is 1, the bias product model is anti-
correlated with the bias. In particular, it assigns
an average of 22.5% probability to the class indi-
cated by the bias, where an unbaised model would
assign an average of 33% since the bias is ran-
dom. The root cause is that, if the indicator is 1,
the model knows the bias is likely to be wrong, so
it learns to subtract the value the bias-only model

will produce from its own output in order to cancel
out the bias-only model’s effect on the ensemble’s
output.

The learned-mixin model does not suffer from
this issue, and assigns the class indicated by the
bias an average of 34.5% probability. Analysis
shows that g(x;) is set to 0.00 £ 0.0001 when the
indicator is turned off, and to 1.91 + 0.285 other-
wise, showing that the model learns to turn off the
bias-only component of the ensemble as needed,
thus avoiding this over-compensating issue. The
entropy regularizer appears to be unnecessary on
this dataset because g(x;) does not go to zero.

5.2 VQA-CP

Data: We evaluate on the VQA-CP v2 (Agrawal
et al., 2018) dataset, which was constructed by re-
splitting the VQA 2.0 (Goyal et al., 2018) train and
validation sets into new train and test sets such
that the correlations between question types and
answers differs between each split. For exam-
ple, “tennis” is the most common answer for ques-
tions that start with “What sport...” in the train set,
whereas “skiing” is the most common answers for
those questions in the test set. Models that choose
answers because they are typical in the training
data will perform poorly on this test set.

Bias-Only Model: VQA-CP comes with ques-
tions annotated with one of 65 question types, cor-
responding to the first few words of the question
(e.g., “What color is”). The bias-only model uses
this categorical label as input, and is trained on the
same multi-label objective as the main model.

Main Model: We use a popular implementation’
of the BottomUpToDown (Anderson et al., 2018)
VQA model. This model uses a multi-label
objective, so we apply our ensemble methods
by treating each possible answer as a two-class
classification problem.*

Results: Table 3 shows the results. The
learned-mixin method was highly effective,
boosting performance on VQA-CP by about 9
points, and the entropy regularizer can increase
this by another 3 points, significantly surpassing

3 github.com/hengyuan-hu/bottom-up-attention-vga

“Since the bias sometimes assigns a zero probability to
an answer, we additionally add o («) to the bias probabilities
where « is learned parameter to allow the model to soften the
bias as needed

4074

. Indicator Excluder Dependent
Debiasing Method Acc. w/Bias Acc. w/Bias Acc. w/Bias
None 69.36 86.49 68.06 83.56 63.23 87.90
Reweight 7544 8274 7036 8329 69.81 85.50
Bias Product 76.27 8132 7733 8041 71.85 84.98
Learned-Mixin 76.29 8135 7780 7886 7575 77.70
Learned-Mixin+H 76.77 77.65 7790 78.57 75.79 76.65

" Unbiased Training ~ 78.94 7894 7894 = 7894 77886 78.86

Table 2: Results on MNLI with different kinds of synthetic bias. The Acc columns show the accuracy on the out-
of-domain test set, and the w/Bias columns show accuracy on the in-domain test. Unbiased Training is an upper
bound constructed by training a model with the same randomized features that are used at test time.

Debiasing Method Acc.
None 39.18
Reweight 40.06
Bias Product 39.93
Learned-Mixin 48.69
Learned-Mixin +H 52.05
" Ramakrishnan et al. (2018) =~ 41.17 ~
Grand and Belinkov (2019) 42.33

Table 3: Results on the VQA-CP v2.0 test set.

prior work. For the learned-mixin ensemble, we
find g(x;) is strongly correlated with the bias’s
expected accuracy’, with a spearmanr correlation
of 0.77 on the test data. Qualitative examples
(Figure 2) further suggest the model increases
g(z;) when it knows if can rely on the bias-only
model.

5.3 HANS

Data: We evaluate on the HANS adversarial
MNLI dataset (McCoy et al., 2019). This dataset
was built by constructing templated examples of
entailment and non-entailment, such that the hy-
pothesis sentence only includes words that are also
in the premise sentence. Naively trained models
tend to classify all such examples as “entailment”
because detecting the presence of many shared
words is an effective tactic on MNLI.

Bias-Only Model: The bias-only model is a shal-
low linear classifier using the following features:
(1) whether the hypothesis is a sub-sequence of
the premise, (2) whether all words in the hy-
pothesis appear in the premise, (3) the percent
of words from the hypothesis that appear in the
premise, (4) the average of the minimum distance
between each premise word with each hypothe-
sis word, measured using cosine distance with the

A .
Computed as), §ijbij / 22, bi; where s;; is the score
for class j on example %

.. Co-Attention BERT
Debiasing Method g "MNLI HANS ~ MNLI
None 50.58 7873 6240 @ 84.24
Reweight 52.85 77.03 69.19 83.54
Bias Product 53.69 76.63 67.92 82.97
Learned-Mixin 51.65 78.05 64.00 84.29
Learned-Mixin +H 53.35 74.50 66.15 83.97

Table 4: Accuracy on the adversarial MNLI dataset,
HANS, and the MNLI matched dev set.

fasttext (Mikolov et al., 2018) word vectors, and
(5) the max of those same distances. We con-
strain the bias-only model to put the same amount
of probability mass on the neutral and contradic-
tion classes so it focuses on distinguishing entail-
ment and non-entailment, and reweight the dataset
so that the entailment and non-entailment exam-
ples have an equal total weight to prevent a class
prior from being learned.

Main Models: We experiment with both the un-
cased BERT base model (Devlin et al., 2019), and
the same recurrent model used for the synthetic
data (see Appendix B). We use the default hyper-
parameters for BERT since they work well for
MNLI.

Results: Table 4 shows the results. We show
scores for individual heuristics used in HANS in
Appendix C. For the recurrent method, both the
bias product and learned-mixin +H methods result
in about a three point gain. However, for the BERT
model, the simpler reweight method is more ef-
fective. We noticed high variance in performance
between runs in this setting, and speculate the en-
semble methods might be compounding this insta-
bility by introducing additional complexity.

4075

Question Type Is this a.... ? How many.... ? What color is the.... ? What kind of.... ?
Bias Answer No 2 White Pizza
G=§.61 G*=5.89 =0‘06 G*=2.93
Higher Bias
Weight
Is this a black bear? [No] What color is the door? What kind of food is in the
[White] box? [Pizza]
G=0.00 G*=0.48 G=0.11 G*=2.34 G=0.00 G*=1.89
Lower Bias
Weight 4
& = e
Is this a photo or How many birds? [17] What color is the tennis What kind of birds are in the
painting? [Painting] court? [Purple] picture? [Seagull]

Figure 2: Qualitative examples of the values of g(x;) on the VQA-CP training data for the learned-mixin model
(labelled “G”) and learned-mixin +H model (labelled “G+"). The question type and the bias model’s highest ranked
answer for that type are shown above. We find g(z;) is larger when the bias answers are likely to be correct.

5.4 Adversarial SQuAD

Data: We evaluate on the Adversarial SQuAD (Jia
and Liang, 2017) dataset, which was built by
adding distractor sentences to the passages in
SQuAD (Rajpurkar et al., 2016). The sentences
are built to closely resemble the question and con-
tain a plausible answer candidate, but with a few
key semantic changes to ensure they do not inci-
dentally answer the question. Models that naively
focus on sentences that contain many question
words are often fooled by the new sentence.

Bias-Only Models: We consider two bias-only
models: (1) TF-IDF: the TF-IDF score between
each sentence and question is used to select an an-
swer (meaning tokens within the same sentence all
get the same score) and (2) TF-IDF Filtered: the
same but excluding pronouns and numbers from
the words used to compute the TF-IDF scores. The
second model is motivated by the fact distractor
sentences never include numbers or pronouns that
occur in the question.

Main Model: We use an updated version of
BiDAF (Seo et al., 2017), that uses the fasttext
words vectors (Mikolov et al., 2018), includes an
additional recurrent layer, and simplifies the pre-
diction stage (see Appendix D).

Results: Table 5 shows the results. We find
the bias product method improves performance by

up to 3 points, and the learned-mixin +H model
achieves up to a 9 point gain. The importance
of including the entropy penalty is explained by
the fact that, without the penalty, the model learns
to ignore the bias by settings g(x;) close to zero.
For example, on the AddSent dataset with the TF-
IDF filtered bias, the learned-mixin ensemble sets
g(x;) to an average of 0.13, while the learned-
mixin +H ensemble increases that to 5.16. The
high values are likely caused by the fact the bias-
only model is very weak, since it assigns the same
score to each token in each sentence, so the model
can often scale it by large values. As expected, we
get better results using the TF-IDF Filtered bias
which is more closely tailored to how the test set
was constructed.

5.5 TriviaQA-CP

Data: We construct a changing-prior QA dataset
from TriviaQA (Joshi et al., 2017) by categoriz-
ing questions into three classes, Person, Location,
and Other, based on what kind of entity they are
asking about. During training, we hold out all the
person questions or all the location questions from
the train set, and evaluate on the person or location
questions in the TriviaQA dev set. Details can be
found in Appendix E.

Bias-Only Model: The bias-only model uses NER
tags, identified by running the Stanford NER Tag-
ger (Finkel et al., 2005) on the passage, as input.

4076

Debiasing Method TF-IDF Filtered TF-IDF

AddSent AddSentOne Dev AddSent AddSentOne Dev
None 42.54 53.91 80.61 42.54 53.91 80.61
Reweight 41.55 53.06 80.59 42.74 53.83 80.51
Bias Product 47.17 57.74 78.63 44 .41 55.73 78.22
Learned-Mixin 42.25 53.51 80.39 42.00 53.46 80.46
Learned-Mixin +H 51.84 60.66 75.94 48.30 58.26 74.14

Table 5: F1 scores on Adversarial SQuAD and the standard SQuAD dev set using two different bias-only models.

. Location Person
Debiasing Method cp Dev cp Dev
None 41.23 59.27 39.69 55.26
Reweight 40.14 59.18 3996 55.38
Bias Product 4442 60.02 40.58 55.20
Learned-Mixin 41.15 61.64 4131 56.08
Learned-Mixin +H 47.77 57.74 4437 54.83

Table 6: EM scores on two changing priors TriviaQA
datasets. The CP column shows scores on the changing
priors test set, and Dev shows in-domain scores.

We only apply the model to tokens that have a
NER tag, and assign all other tokens the average
score given to the tokens with NER tags in order
to prevent the model from reflecting a preference
for entity tokens in general.

Main Model: We use a larger version of the model
used for Adversarial SQuAD (see Appendix D), to
account for the larger dataset.

Results: Table 6 shows the results. Similar to ad-
versarial SQuAD, the bias product method is mod-
erately effective, and the ensemble method is su-
perior as long as a suitable regularizer is applied.
We again observe that the learned-mixin method
tends to push g(z;) close to zero without the en-
tropy penalty (average of 0.25 without the penalty
vs. 5.01 with the penalty on the Location dev set).
We see smaller gains on the person dataset. One
possible cause is that differentiating between peo-
ple and other named entities, such as organizations
or groups, is difficult for the main model, and as a
result it does not learn a strong non-person prior
even without the use of a debiasing method.

5.6 Discussion

Despite tackling a diverse range of problems, we
were able to improve out-of-domain performance
in all settings. The bias product method works
consistently, but can almost always be signifi-
cantly out-performed by the learned-mixin method

with an appropriate entropy penalty. The reweight
baseline improved performance on HANS, but
was relatively ineffective in other cases.

Increasing the out-of-domain performance usu-
ally comes at the cost of losing some in-domain
performance, which is unsurprising since the bi-
ased approaches we are removing are helpful on
the in-domain data. TriviaQA-CP stands out as a
case where this trade-off is minimal.

A possible issue is that our methods reduce the
need for the model to solve examples the bias-only
model works well on (since the ensemble’s predic-
tion will already be mostly correct for those ex-
amples), which effectively reduces the amount of
training data. An ideal approach would be to block
the model from using the bias-only method, and
require it to solve examples the bias-only method
solves through other means. We suspect this will
necessitate a more clear-box method since it re-
quires doing fine-grained regularization of how the
model is solving individual examples.

6 Conclusion

Our key contribution is a method of using human
knowledge about what methods will not generalize
well to improve model robustness to domain-shift.
Our approach is to train a robust model in an en-
semble with a pre-trained naive model, and then
use the robust model alone at test time. Extensive
experiments show that our method works well on
two adversarial datasets, and two changing-prior
datasets, including a 12 point gain on VQA-CP.
Future work includes learning to automatically de-
tect dataset bias, which would allow our method to
be applicable with less specific prior knowledge.

Acknowledgements

This work was supported in part by the ARO
(ARO-WO911INF-16-1-0121) and the NSF (IIS-
1252835, 11S-1562364). We thank Sewon Min,
Gabriel Stanovsky, Mandar Joshi and the anony-
mous reviewers for their helpful comments.

4077

References

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t Just Assume;
Look and Answer: Overcoming Priors for Visual
Question Answering. In CVPR.

Ankesh Anand, Eugene Belilovsky, Kyle Kastner,
Hugo Larochelle, and Aaron Courville. 2018.
Blindfold Baselines for Embodied QA. Computing
Research Repository, arXiv:1811.05013. Version 1.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-Up and Top-Down Attention
for Image Captioning and Visual Question Answer-
ing. In CVPR.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. In ICCV.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In /CLR.

Yonatan Belinkov and Yonatan Bisk. 2018. Syn-
thetic and Natural Noise Both Break Neural Ma-
chine Translation. In /CLR.

Yonatan Belinkov, Adam Poliak, Stuart M Shieber,
Benjamin Van Durme, and Alexander M Rush.
2019. On Adversarial Removal of Hypothesis-only
Bias in Natural Language Inference. In StarSem.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A Large Anno-
tated Corpus for Learning Natural Language Infer-
ence. In EMNLP.

Kaylee Burns, Lisa Anne Hendricks, Kate Saenko,
Trevor Darrell, and Anna Rohrbach. 2018. Women
Also Snowboard: Overcoming Bias in Captioning
Models. In ECCV.

Ozan Caglayan, Pranava Madhyastha, Lucia Specia,
and Loic Barrault. 2019. Probing the Need for Vi-
sual Context in Multimodal Machine Translation. In
NAACL.

Nicholas Carlini and David Wagner. 2018. Audio Ad-
versarial Examples: Targeted Attacks on Speech-to-
Text. In 2018 IEEE Security and Privacy Work-
shops.

Jifan Chen and Greg Durrett. 2019. Understanding
Dataset Design Choices for Multi-hop Reasoning.
In NAACL.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
Natural Language Inference. In ACL.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question Answering in Con-
text. In EMNLP.

Christopher Clark and Matt Gardner. 2018. Simple and
Effective Multi-Paragraph Reading Comprehension.
In ACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have Solved Question An-
swering? Try ARC, the AI2 Reasoning Challenge.
Computing Research Repository, arXiv:1803.05457.
Version 1.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Turney, and Daniel
Khashabi. 2016. Combining Retrieval, Statistics,
and Inference to Answer Elementary Science Ques-
tions. In AAAI

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL.

Harrison Edwards and Amos Storkey. 2016. Censoring
Representations with an Adversary. In ICLR.

Shi Feng, Eric Wallace, and Jordan Boyd-Graber. 2019.
Misleading Failures of Partial-input Baselines. In
ACL.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Informa-
tion into Information Extraction Systems by Gibbs
Sampling. In ACL.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI Systems with Sentences that
Require Simple Lexical Inferences. In ACL.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2018. Making the
V in VQA Matter: Elevating the Role of Image Un-
derstanding in Visual Question Answering. IJCV.

Gabriel Grand and Yonatan Belinkov. 2019. Adversar-
ial Regularization for Visual Question Answering:
Strengths, Shortcomings, and Side Effects. In Pro-
ceedings of the Second Workshop on Shortcomings
in Vision and Language.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R Bowman, and
Noah A Smith. 2018. Annotation Artifacts in Natu-
ral Language Inference Data. In NAACL.

He He, Sheng Zha, and Haohan Wang. 2019. Unlearn
Dataset Bias in Natural Language Inference by Fit-
ting the Residual. Computing Research Repository,
arXiv:1908.10763. Version 1.

Geoffrey E. Hinton. 2002. Training Products of Ex-
perts by Minimizing Contrastive Divergence. Neu-
ral Computation.

Allan Jabri, Armand Joulin, and Laurens Van
Der Maaten. 2016. Revisiting Visual Question An-
swering Baselines. In European conference on com-
puter vision.

4078

http://arxiv.org/abs/1811.05013
https://doi.org/10.18653/v1/S19-1028
https://doi.org/10.18653/v1/S19-1028
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/N19-1405
https://doi.org/10.18653/v1/N19-1405
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/D18-1241
https://www.aclweb.org/anthology/P18-1078
https://www.aclweb.org/anthology/P18-1078
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/P19-1554
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/W19-1801
https://doi.org/10.18653/v1/W19-1801
https://doi.org/10.18653/v1/W19-1801
https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/N18-2017
http://arxiv.org/abs/1908.10763
http://arxiv.org/abs/1908.10763
http://arxiv.org/abs/1908.10763

Robin Jia and Percy Liang. 2017. Adversarial Ex-
amples for Evaluating Reading Comprehension Sys-
tems. In EMNLP.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In ACL.

Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin
Kim, and Junmo Kim. 2019. Learning Not to Learn:
Training Deep Neural Networks with Biased Data.
In CVPR.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In ICLR.

Mike Lewis and Angela Fan. 2019. Generative Ques-
tion Answering: Learning to Answer the Whole
Question. In ICLR.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the Wrong Reasons: Diagnosing Syntactic
Heuristics in Natural Language Inference. In ACL.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In LREC.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gard-
ner, Hannaneh Hajishirzi, and Luke Zettlemoyer.
2019. Compositional Questions Do Not Necessitate
Multi-hop Reasoning. In ACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100, 000+ Questions
for Machine Comprehension of Text. In EMNLP.

Sainandan Ramakrishnan, Aishwarya Agrawal, and
Stefan Lee. 2018. Overcoming Language Priors in
Visual Question Answering with Adversarial Regu-
larization. In NeurIPS.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A Conversational Question Answer-
ing Challenge. In TACL.

Roy Schwartz, Maarten Sap, loannis Konstas, Li Zilles,
Yejin Choi, and Noah A Smith. 2017. The Effect of
Different Writing Tasks on Linguistic Style: A Case
Study of the ROC Story Cloze Task. In CoNLL.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. BiDirectional Attention
Flow for Machine Comprehension. In /CLR.

Andrew Smith, Trevor Cohn, and Miles Osborne. 2005.
Logarithmic Opinion Pools for Conditional Random
Fields. In ACL.

Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen
Schmidhuber. 2015. Highway networks. In Deep
Learning Workshop (ICML).

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A Core of Semantic Knowl-
edge. In WWW.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing Properties of Neural
Networks. In ICLR.

Shuohang Wang and Jing Jiang. 2017. Machine
Comprehension Using Match-LSTM and Answer
Pointer. In ICLR.

Tianlu Wang, Jieyu Zhao, Kai-Wei Chang, Mark
Yatskar, and Vicente Ordonez. 2018. Adversar-
ial Removal of Gender from Deep Image Rep-

resentations. Computing Research Repository,
arXiv:1811.08489. Version 2.

Yicheng Wang and Mohit Bansal. 2018. Robust Ma-
chine Comprehension Models via Adversarial Train-
ing. In NAACL.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing Datasets for Multi-hop
Reading Comprehension across Documents. TACL.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A Dataset
for Diverse, Explainable Multi-hop Question An-
swering. In EMNLP.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. Swag: A Large-Scale Adversarial
Dataset for Grounded Commonsense Inference. In
EMNLP.

Brian Hu Zhang, Blake Lemoine, and Margaret
Mitchell. 2018a. Mitigating Unwanted Biases with
Adversarial Learning. In AIES.

Peng Zhang, Yash Goyal, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2016. Yin and Yang:
Balancing and Answering Binary Visual Questions.
In CVPR.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018b.
ReCoRD: Bridging the Gap between Human and
Machine Commonsense Reading Comprehension.
Computing Research Repository, arXiv:1810.12885.
Version 1.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men Also Like
Shopping: Reducing Gender Bias Amplification us-
ing Corpus-level Constraints. In EMNLP.

A Entropy Penalty Weights

The strength of the entropy penalty used for the
learned-mixin +H model can be found in Table 7.

4079

https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://www.aclweb.org/anthology/P19-1334
https://www.aclweb.org/anthology/P19-1334
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/P19-1416
https://www.aclweb.org/anthology/P19-1416
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.3115/1219840.1219843
https://doi.org/10.3115/1219840.1219843
http://arxiv.org/abs/1811.08489
http://arxiv.org/abs/1811.08489
http://arxiv.org/abs/1811.08489
https://doi.org/10.18653/v1/N18-2091
https://doi.org/10.18653/v1/N18-2091
https://doi.org/10.18653/v1/N18-2091
https://doi.org/10.1162/tacl_a_00021
https://doi.org/10.1162/tacl_a_00021
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://arxiv.org/abs/1810.12885
https://arxiv.org/abs/1810.12885
https://doi.org/10.18653/v1/D17-1323
https://doi.org/10.18653/v1/D17-1323
https://doi.org/10.18653/v1/D17-1323

Dataset Experiment Penalty
Synthetic Indicator 0.01
Synthetic Excluder 0.005
Synthetic Dependent 0.005
VQA-CP - 0.36
HANS Recurrent 0.03
HANS BERT 0.03
Adver. SQuUAD | TF-IDF Filtered 2.0
Adver. SQuAD | TF-IDF 2.0
TriviaQA-CP Location 0.4
TriviaQA-CP Person 0.2

Table 7: Entropy penalty weight for the learned-mixin
+H ensemble on all our experiments.

B Co-Attention NLI Model

The model we use for NLI is based on
ESIM (Chen et al., 2017). It has the follow-
ing stages:

Embed: Embed the words using a character
CNN, following what was done by Seo et al.
(2017), and the fasttext crawl word embed-
dings (Mikolov et al., 2018), then run a shared
BiLSTM over the results.

Co-Attention: Compute an attention matrix
using the formulation from Seo et al. (2017),
and use it to compute a context vector for each
premise word (Bahdanau et al., 2015). Then build
an augmented vector for each premise word by
concatenating the word’s embedding, the context
vector, and the elementwise product of the two.
Augmented vectors for the hypothesis are built in
the same way using the transpose of the attention
matrix.

Pool: Run another shared BiLSTM over the
augmented vectors, and max-pool the results.
The max-pooled vectors from the premise and
hypothesis are fed into a fully-connected layer,
and then into a softmax layer with three outputs to
compute class probabilities.

We apply variational dropout at a rate of 0.2
between all layers, and to the recurrent states of
the LSTM, and train the model for 30 epochs
using the Adam optimizer (Kingma and Ba, 2015)
with a batch size of 32. The learning rate is
decayed by 0.999 every 100 steps. We use 200
dimensional LSTMs and a 50 dimensional fully

connected layer.

C Fine-Grained HANS Results

We show the scores our methods achieve for
the various heuristics used in HANS in Table 8.
Our methods reduce the extent to which models
naively guess entailment in all cases. Interest-
ingly, the BERT model shows significantly de-
graded performance on the entailment examples
when using the reweight and bias product method,
but largely maintains its performance on those ex-
amples when using the learned-mixin method.

D Modified BiDAF QA Model

The model we use for QA is based on BiDAF (Seo
et al., 2017). It has the following stages:

Embed: Embed the words using a character
CNN following Seo et al. (2017) and the fasttext
crawl word embeddings (Mikolov et al., 2018).
Then run a BiLSTM over the results to get
context-aware question embeddings and passage
embeddings.

Bi-Attention: Apply the bi-directional atten-
tion mechanism from Seo et al. (2017) to produce
question-aware passage embeddings.

Predict: Apply a fully connected layer, then
two more BiLSTM layers, then a two dimensional
linear layer to produce start and end scores for
each token.

We apply variational dropout at a rate of 0.2
between all layers. We use the Adam opti-
mizer (Kingma and Ba, 2015) with a batch size
of 45, while decaying the learning rate by 0.999
every 100 steps.

For SQuAD, we use a 200 dimensional fully
connected layer and 100 dimensional LSTMs.

For TriviaQA we use a 256 dimensional fully
connected layer and 128 dimensional LSTMs,
with highway connections between each BilL-
STM (Srivastava et al., 2015) and a recurrent
dropout rate of 0.2.

E TriviaQA-CP

In this section we discuss our changing-prior Triv-
1aQA dataset, TriviaQA-CP. This dataset was built
by training a classifier to identify TriviaQA (Joshi
et al., 2017) questions as being about people,

4080

Correct: Entailment

Correct: Non-entailment

Model Debiasing Method ~ MNLI
Lexical Subseq. Const Lexical Subseq. Const
None 78.73 97.83 99.67 97.28 1.37 3.68 3.68
Reweight 77.03 80.10 77.84 7376 15.68 3427 3544
Co-Attention Bias Product 76.63 77.89 76.61 70.95 17.89 35.11 43.71
Learned-Mixin 78.05 94.84 97.25 91.19 3.69 9.57 13.37
Learned-Mixin +H 74.50 67.18 61.05 47.13 2741 56.82 60.53

777777777 None 8424 9630 9958 9930 49.03 7.88° 2230

Reweight 83.54 67.93 8434 8097 7744 4487 59.57
BERT Bias Product 82.97 53.67 6947 70.88 81.34 62.93 69.23
Learned-Mixin 84.29 95.64 99.52 99.14 5541 8.34 25.96
Learned-Mixin +H 83.97 91.98 98.20 9798 64.99 13.25 30.48

Table 8: Scores on individual heuristics in HANS, with scores on the MNLI matched dev set for reference. Results

are an average of 8§ runs.

Statistic Location Person
Num Train 60,133 52,953
Num Test 1,992 2,865
Avg. Passage Length 318 317
Avg. Question Length 16.7 16.0

Table 9: Statistics for the TriviaQA-CP datasets.

locations, or other topics, and then selecting an
answer-containing passage for each question as
context. There are two versions of this dataset:
a person changing-priors dataset that was built
by removing the person questions from the train
set and using only person questions from the dev
set for evaluation, and a location changing-priors
dataset that was built by repeating this process for
location questions. Statistics for these two sets
are shown in Table 9. We review the three-step
procedure we used to construct this dataset below.

Distantly Supervised Classification: We
first train a preliminary question-type classifier
using distant supervision. We noisily label person
and location questions using a manually con-
structed set of patterns (e.g., questions with the
phrase “What is the family name of...” are almost
always about people), and by attempting to look
up the answers in the Yago database (Suchanek
et al., 2007) and checking if the answer belongs to
a person or location category. Questions that did
not match either of these heuristics are labelled as
other.

We use these labels to train a simple recurrent
model that embeds the question using the fasttext
words vectors, applies a 100 dimensional Bil-
STM, max-pools, and then applies a softmax layer
with 3 outputs. We train the model for 3 epochs
using the Adam optimizer (Kingma and Ba,

2015), and apply 0.5 dropout to the embeddings
and 0.2 dropout to the recurrent states and the
output of the max-pooling layer.

Supervised Classification: Next we use higher
quality labels to train a second linear classifier
to re-calibrate the recurrent model’s predictions,
and to integrate its predictions with the distantly
supervised heuristics. An author manually
labelled 1,100 questions, then a classifier was
trained on those questions using the predictions
from the recurrent model as features, as well as
two additional features built from looking up
the category of the answer in Yago as before.
This classifier was then used to decide the final
question classifications.

Table 10 shows the accuracy of these classifiers.
The final model achieves about 95% accuracy.
We find about 25% of the questions are about
people and about 20% of the questions are about
locations.

Paragraph Selection: In TriviaQA, each question
is paired with multiple documents. We simplify
the task by selecting a single answer-containing
paragraph for each question. We use the approach
of Clark and Gardner (2018) to break up the
documents into passages of at most 400 tokens,
and rank the passages for each question using
their linear paragraph ranker. Each question is
then paired with the highest ranking paragraph
that contains an answer.

4081

Location Person

Method Accuracy

Precision Recall F1 Precision Recall F1
Patterns 72.84 98.30 70.61 82.19 99.12 3343 50.00
Yago 88.56 95.87 85.31 90.28 94.70 80.00 86.73
Yago + Patterns 91.73 95.44 93.88 94.65 94.70 85.37 89.80
Dist. Supervised Model 92.73 96.60 92.65 94.58 08.28 85.37 91.37
Supervised Model 94.46 95.08 94.69 94.89 93.31 95.82 94.55

Table 10: Accuracy, and per-class scores, on the manually annotated questions for the various question classifica-
tion methods we used when building TriviaQA-CP.

4082

