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Abstract

The lack of word boundaries information has
been seen as one of the main obstacles to
develop a high performance Chinese named
entity recognition (NER) system. Fortunate-
ly, the automatically constructed lexicon con-
tains rich word boundaries information and
word semantic information. However, inte-
grating lexical knowledge in Chinese NER
tasks still faces challenges when it comes to
self-matched lexical words as well as the near-
est contextual lexical words. We present a Col-
laborative Graph Network to solve these chal-
lenges. Experiments on various datasets show
that our model not only outperforms the state-
of-the-art (SOTA) results, but also achieves a
speed that is six to fifteen times faster than that
of the SOTA model.!

1 Introduction

Named entity recognition (NER) aims to locate
and classify certain occurrences of words or ex-
pressions in unstructured text into predefined se-
mantic categories such as the person names, lo-
cations, organizations, etc. NER is an essen-
tial pre-processing step for many natural language
processing (NLP) applications, such as relation
extraction (Bunescu and Mooney, 2005), even-
t extraction (Chen et al., 2015), question answer-
ing (Molla et al., 2006) etc. In English NER,
LSTM-CRF models (Lample et al., 2016; Ma and
Hovy, 2016; Chiu and Nichols, 2016; Liu et al.,
2018) leveraging word-level representations and
character-level representations achieve the state-
of-the-art results.

In this paper, we focus on Chinese NER. Com-
pared with English, Chinese has no obvious word
boundaries. Since without word boundaries infor-
mation, it is intuitive to use character information

'The code is available at https://github.com/
DianboWork/Graph4CNER
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Sentence: FH/RABFILTHIAT . (Mr. Hilton has left Beijing airport.)

Matched Lexical Words: #/R(Hill), % /Rifi(Hilton), B FF(leave), L7 (Beijing),
1L HH(Beijing Airport)

Figure 1: An example sentence integrating the near-
est contextual lexical words (red line) and self-matched
lexical words (green line)

only for Chinese NER (He and Wang, 2008; Liu
et al., 2010; Li et al., 2014), although such meth-
ods could result in the disregard of word informa-
tion. However, word information is very useful in
Chinese NER, because word boundaries are usu-
ally the same as named entity boundaries. For ex-
ample, as shown in Figure 1, the boundaries of the
word “Jb 5 H13%” (Beijing airport) are the same as
the boundaries of the named entity “ It H13%”
(Beijing airport). Therefore, making full use of
word information would help to improve the Chi-
nese NER performance.

There are three main ways to incorporate word
information in NER. The first one is the pipeline
method. The way of pipeline method is to apply
Chinese Word Segmentation (CWS) first, and then
to use a word-based NER model. However, the
pipeline method suffers from error propagation, s-
ince the error of CWS may affect the performance
of NER. The second one is to learn CWS and NER
tasks jointly (Xu et al., 2013; Peng and Dredze,
2016; Cao et al., 2018; Wu et al., 2019). How-
ever, the joint models must rely on CWS annota-
tion datasets, which are costly and are annotated
under many diverse segmentation criteria (Chen
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et al., 2017). The third one is to leverage an auto-
matically constructed lexicon, which is pre-trained
on large automatically segmented texts. Lexical
knowledge includes boundaries and semantic in-
formation. Boundaries information is provided by
the lexicon word itself, and semantic information
is provided by pre-trained word embeddings (Ben-
gio et al., 2003; Mikolov et al., 2013). Compared
with joint methods, a lexicon is easy to obtain
and additional annotation CWS datasets are not re-
quired. Recently, Zhang and Yang (2018) propose
a lattice LSTM to integrate lexical knowledge in
NER. However, integrating lexical knowledge in-
to sentences still faces two challenges.

The first challenge is to integrate self-matched
lexical words. A self-matched lexical word of
a character is the lexical word that contains this
character. For instance, “Jb 5T #HL3%” (Beijing Air-
port) and “Hl.3%” (Airport) are the self-matched
words of the character “HL” (airplane). “&
(leave) is not the self-matched word of the char-
acter “f1” (airplane), since “ #1” (airplane) is not
contained in the word * 27 (leave). The lexical
knowledge of self-matched word is useful in Chi-
nese NER. For example, as shown in Figure 1, the
boundaries and semantic knowledge of the self-
matched word “Jb 5T #1377 (Beijing Airport) can
help the character “#1”(airplane) to predict an “I-
LOC” tag, instead of “O” or “B-LOC” tags. How-
ever, due to the limits of the word-character lattice,
the lattice LSTM (Zhang and Yang, 2018) fails to
integrate the self-matched word “Jb =A% (Bei-
jing Airport) into the character “#1” (airplane).

The second challenge is to integrate the nearest
contextual lexical words directly. The nearest con-
textual lexical word of a character is the word that
matches the nearest past or future subsequence in
the given sentence of this character. For instance,
the lexical word “E§F (leave) is the nearest con-
textual word of the character “iii” (-ton), since
the word matches the nearest future subsequence
“BIJF” of the character, while “Jt 51 (Beijing)
is not the nearest contextual lexical word of this
character. The nearest contextual lexical words
are beneficial for Chinese NER. For example, as
shown in Figure 1, by directly using the semantic
knowledge of the nearest contextual words “/Z J1”
(leave), an “I-PER” tag can be predicted instead
of an “I-ORG” tag, since “7y /K §ii” (Hilton Hotel-
s) cannot be taken as the subject of the verb “E5
H (leave). However, a lattice model (Zhang and

Yang, 2018) only implicitly integrate the knowl-
edge of the nearest contextual lexical words via
the previous hidden state. The information of the
nearest contextual lexical word may be disturbed
by other information.

To solve the above challenges, we propose a
character-based Collaborative Graph Network, in-
cluding an encoding layer, a graph layer, a fu-
sion layer and a decoding layer. Specifically,
there are three word-character interactive graphs
in the graph layer. The first one is the Contain-
ing graph (C-graph), which is designed for inte-
grating self-matched lexical words. It models the
connection between characters and self-matched
lexical words. The second one is the Transition
graph (T-graph), which builds the direct connec-
tion between characters and the nearest contextual
matched words. It helps to handle the challenge
of integrating the nearest contextual words direct-
ly. The third one is the Lattice graph (L-graph),
which is inspired by the lattice LSTM (Zhang and
Yang, 2018). L-graph captures partial information
of self-matched lexical words and the nearest con-
textual lexical words implicitly by multiple hops.
These graphs are built without external NLP tools,
which can avoid error propagation problem. Be-
sides, these graphs complement each other nicely
and a fusion layer is designed for collaboration be-
tween these graphs.

We test our model with various Chinese NER
datasets. our model not only significantly outper-
forms the existing state-of-the-art (SOTA) model
but also is six to fifteen times faster than the speed
of the SOTA model.

In summary, our main contributions are as fol-
lows:

e We propose a Collaborative Graph Network
to integrate lexical knowledge directly and
efficiently for Chinese NER.

e To solve the challenges of integrating self-
matched lexical words and the nearest con-
textual lexical words, we propose three word-
character interactive graphs. These inter-
active graphs can capture different lexical
knowledge and are built without external
NLP tools.

e We achieve the state-of-the-art results in var-
ious popular Chinese NER datasets, and our
model achieves a 6-15x speedup over the ex-
isting SOTA model.
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2 Related Work

NER. There is rich literature on NER. This in-
cludes statistic methods, such as SVM (Isozaki
and Kazawa, 2002), HMMs (Bikel et al., 1997)
and CRF (Lafferty et al., 2001), suffering from
feature engineering. There are also a number of
recent neural network approaches applied to NER,
such as (Collobert et al., 2011; Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016; Chiu
and Nichols, 2016; Liu et al., 2018; Akbik et al.,
2018; Jie et al., 2019; Akbik et al., 2019). Com-
pared with English, Chinese is not featured with
obvious word boundaries, but it is important to
leverage word boundaries and semantic informa-
tion in Chinese NER. Many works use word seg-
mentation information as extra features for Chi-
nese NER, such as (Peng and Dredze, 2015; He
and Sun, 2017a; Zhu and Wang, 2019). Peng and
Dredze (2016), Cao et al. (2018) and Wu et al.
(2019) propose joint models to train NER together
with CWS. Our work is inspired by lattice LST-
M (Zhang and Yang, 2018), which can integrate
lexicon in NER.

Graph convolutional networks. There are a
number of recent graph convolutional network
(GCN) architectures (Kipf and Welling, 2017;
Hamilton et al., 2017; Velickovi¢ et al., 2018; Qu
et al., 2019) for learning over graphs. Our work
is closely related to the graph attention network-
s (GAT), introduced by Velickovi¢ et al. (2018),
leveraging masked self-attention layers to assign
different importance to neighbouring nodes. In re-
cent years, there is more and more literature about
the application of GCN in NLP (Bastings et al.,
2017; Marcheggiani and Titov, 2017; Zhang et al.,
2018; Yao et al., 2019; Wang et al., 2018; Mishra
et al., 2019; Cao et al., 2019; Zhang et al., 2019).
Cetoli et al. (2017) use GCN to investigate the role
of the dependency tree in English named entity
recognition. However, most of the works (Bast-
ings et al., 2017; Marcheggiani and Titov, 2017;
Cetoli et al., 2017; Zhang et al., 2018) heavily re-
ly on the dependency tree to construct a single
graph, which suffer from error propagation. To
capture different semantic and boundaries infor-
mation, we propose a Collaborative Graph Net-
work consisting of three automatically constructed
graphs, which can avoid error propagation prob-
lem naturally. To our best knowledge, we are
the first to introduce GAT and automatically con-
structed semantic graphs to Chinese NER tasks.

3 Approach

In this section, we first introduce the construction
of graphs to integrate self-matched lexical words
and the nearest contextual lexical words into sen-
tences. We then introduce the architecture of Col-
laborative Graph Network as a core for solving
Chinese NER tasks.

3.1 The Construction of Graphs

To integrate self-matched lexical words and the n-
earest contextual lexical words, we propose three
word-character interactive graphs. The first is
the word-character Containing graph (C-graph),
which is to assist the character to capture the
boundaries and semantic information of self-
matched lexical words. The second is the word-
character Transition graph (T-graph). The func-
tion of T-graph is to assist the character to capture
the semantic information of the nearest contextu-
al lexical words. The third is the Lattice graph
(L-graph). Zhang and Yang (2018) propose a lat-
tice structure, nested in the LSTM (Hochreiter and
Schmidhuber, 1997), to integrate lexical knowl-
edge. We free the lattice structure from the LSTM
and adopt it as the third graph.

These three graphs share the same vertex set,
but the edge sets of the three graphs are completely
different. The vertex set is made up of the charac-
ters in the sentence and the matched lexical words,
for example, as shown in Figure 1, the vertex set is
V={Fr, R,y T, B /R, AR, ., AEEHLIZ )
To represent the edge set, adjacency matrix needs
to be introduced. The elements of the adjacency
matrix indicate whether pairs of vertices are adja-
cent or not in the graph. Since the edge sets of
the three graphs are totally different, the adjacen-
cy matrices of these three graphs are introduced

below:
® @
Houston

BR RS
leave Houston airport

Figure 2: Word-Character Containing graph
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Word-Character Containing graph

With the C-graph, the characters in the sentence
can capture the boundaries and semantic informa-
tion of self-matched lexical words. As shown in
Figure 2, if a lexical word 7 contains a character j,
the (i, j)-entry of the C-graph corresponding ad-
jacency matrix A® will be assigned a value of 1.

/J\lT!ﬁ

Hilton leave

ETHL

Houston airport

Figure 3: Word-Character Transition graph

Word-Character Transition graph

The T-graph is to assist the character to capture
the semantic information of the nearest contextual
lexical words. As shown in Figure 3, if a lexi-
cal word 7 or a character m matches the nearest
preceding or following subsequence of a character
Jj, the (i, 7) or (m,j)-entry of the T-graph corre-
sponding adjacency matrix A7 will be assigned a
value of 1. Moreover, for capturing the contex-
t relation between lexical words, if a lexical word
1 is the preceding or following context of another
lexical word k, we will assign “A%, = 17. Note
that the T-graph is the same with the word cutting
graph which is used in Chinese Word Segmenta-

tion.
RETIR
Houston
\\ / ~ \\ // \\

® @
Ieave Houston alrpon

Figure 4: Word-Character Lattice graph

Word-Character Lattice graph

Zhang and Yang (2018) propose a lattice structure
LSTM to exploit lexical knowledge for Chinese N-
ER. A lattice structure can capture the information

of the nearest contextual lexical words implicitly
and capture some information of self-matched lex-
ical words. As shown in Figure 4, if a character m
is the nearest preceding or following character of
a character j, the (m, j)-entry of the L-graph cor-
responding adjacency matrix A will be assigned
a value of 1. Moreover, if a character j matches
the lexical word ¢ first character or end character,
we will assign “AiLj =17,

3.2 Model

A character-based Collaborative Graph Network
includes an encoding layer, a graph layer, a fu-
sion layer, and a decoding layer. The encoding
layer is to capture contextual information of the
sentence and to represent the semantic information
of lexical words. The graph layer is based on GAT
(Velickovié et al., 2018) for modeling over three
word-character interactive graphs. A fusion lay-
er is used for fusing different lexical knowledge
captured by these three graphs. Finally, a standard
CRF (Lafferty et al., 2001) model is used for de-
coding labels.

Encoding

The input of the model is a sentence and all lex-
ical words that match consecutive subsequences
of the sentence. We denote the sentence as
s = {ci1,c9,...,cn}, where ¢; is the i-th char-
acter, and denote the matched lexical words as
Il =A{li,la,...,l;, }. By looking up the embedding
vector from a pre-train character embedding ma-
trix, each character c; is represented as a vector,
which denotes as Xx;.

x; = €°(¢;) (1)

e is a character embedding lookup table.

To capture contextual information, A bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
is applied to {x;, X2, ..., X,}. By concatenat-
ing the left-to-right and right-to-left LSTM hid-
den states, we obtain the contextual representation
H = {hy,hy,....,h,}.

h; = STM (xi, hi_1) ()

h; = LSTM (x;, his) (3)
h; = h; & b, )

To represent the semantic information of lexi-
cal words, we look up word embeddings from a
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Sentence: H/RIMEFILTIIGT .
Translation: Mr. Hilton has left Beijing Airport.

Figure 5: Main architecture of a Collaborative Graph Network for integrating lexical knowledge in Chinese NER.
The left side shows the overall architecture, including an encoding layer, a graph layer, a fusion layer, and a
decoding layer. On the right side, we show the details of graph attention networks over three word-character
interactive graphs. We use blue to denote the characters in the sentence and use green to denote the matched

lexicon words.

pre-train word embedding matrix, and each lexi-
cal words I; is represented as a semantic vector,
which denotes as wv;,.

&)

AT e (lz)

e" is a word embedding lookup table. We concate-
nate the contextual representation and the word
embeddings as the output of this layer, denoting
it as Nodey.

Node; = [hy, hy, ... h,, wvi, wva, ..., wv,,,] (6)

Graph Attention Networks over
Word-Character Interactive Graphs

We use Graph Attention Networks (GAT) to mod-
el over three interactive graphs. In an M-layer
GAT, the input of j-th layer is a set of node fea-
tures, NF/ = {f,fy, ..., fy}, together with an ad-
jacency matrix A , f; € R, A € RVXN | where
N denotes the number of the nodes and F is the
the dimension of features at j-th layer. The out-
put of j-th layer is a new set of node features,
NFUHD = {f/ £, ... f\}. A GAT operation with
K independent attention head can be written as :

K
= | ol & of W,
) kll (jEJVi 1) J)

(7

» _ exp(LeakyReLU(aT[W E;[|[WKE]))

(o

97 Sres, exp(LeakyReLU(aT [WHE [WEE,]))
(®)
where || denotes concatenation operation, o is a
nonlinear activation function, ./4; is the neighbor-
hood of node ¢ in the graph, afj are the attention
coefficients, WF € RF'*F and a € R2F' is a
single-layer feed-forward neural network. Note
that, the dimension of the output f; is KF’. At
the last layer, averaging will be adopted, and the
dimension of final output features is F".
. 1 K
(=0l B 2 AW

(&)

To model three totally different word-character
interactive graphs, We build three independen-
t graph attention networks, which are denoted as
GAT,, GAT5, and GAT5. Since three word-
character interactive graphs share the same vertex
set, the input node features of all GAT are matrix
Node, which is shown in Equation 6. The output
node features are denoted as G1, G9 and Gg3,

G; = GAT;(Node;, A) (10)
G2 = GAT,(Node;, AT) (11)
G3 = GAT3(Node, A") (12)
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Extra Resource Models Named Entity Named Mention Overall
P(%) R(%) FL(%) | P(%) R(%) F1(%)]| FL(%)
Automatic word seg | Peng and Dredze (2015) | 74.78 39.81 5196 | 71.92 53.03 61.05 56.05
Word Seg Data Peng and Dredze (2016) | 66.67 47.22 55.28 | 74.48 54.55 62.97 58.99
Automatic word seg He and Sun (2017a) 66.93 40.67 50.60 | 66.46 53.57 59.32 54.82
Other data He and Sun (2017b) 61.68 48.82 54.50 | 74.13 53.54 62.17 58.32
Word Seg Data Cao et al. (2018) 59.51 50.00 5443 | 7143 4790 57.53 58.70
Automatic word seg | Zhu and Wang (2019) - - 55.38 - - 62.98 | 59.31
Lexicon Zhang and Yang (2018) - - 53.04 - - 62.25 58.79
Lexicon \ Ours \ 67.31 48.61 56.45 \ 75.15 62.63 68.32 \ 63.09 \
Table 1: Main results on Weibo NER
where Gk e RF’ X (n+m)’ kL c {1’ 2’ 3}‘ We keep Resource Models P(%) | R(%) | F1(%)
. . Che et al. (2013) 77.71 | 72.51 | 75.02
the first n columns of these matrices and discard Wangetal. 2013) | 7643 | 72.32 | 74.32
the last m columns, because only character repre- Gold Seg |  Yangetal. (2016) | 65.59 | 71.84 | 68.57
sentations are used to decode labels. Yang etal. (2016) | 72.98 | 80.15 | 76.40
Zhu and Wang (2019) | 75.05 | 72.29 | 73.64
. Zhang and Yang (2018) | 76.35 | 71.56 | 73.88
Qi = Gy[:, 0:n], ke {1,2,3}  (13) Lexicon Ours 75.06 | 74.52 | 74.79

Fusion Layer

A fusion layer is used to fuse different lexical
knowledge captured by word-character interactive
graphs. The input of the fusion layer is the contex-
tual representation H and the output of the graph
layer Q;, i € {1,2,3}. The equation of the fusion
layer is introduced below:

R=WH+ WQ; + W3Q, +W,Q; (14)

where W1, Wy, W3 and W, are trainable matri-
ces. Via a fusion layer, we obtain a matrix R,
R € R %" which is a new sentence representa-
tion integrating the contextual information as well
as the lexical knowledge of self-matched lexical
words and the nearest contextual lexical words.

Decoding and Training

We use a standard CRF (Lafferty et al., 2001) lay-
er to capture the dependencies between successive
labels. Given a sentence s = {ci, ca, ..., ¢, }, the
input of the CRF layer is R = {r;,r,...,r,}, and
the probability of the ground-truth tag sequence
Yy = {yla Y2, ayn} is
exp(Q_; (W¥ri + Ty, )
2y exp(32;(W¥r; + Ty )
(15)
Here 3/ is an arbitrary label sequence, WY is used
for modeling emission potential for the ¢-th char-
acter in the sentence, and T is the transition ma-
trix storing the score of transferring from one tag
to another. Viterbi algorithm (Viterbi, 1967) is
used to get the label sequence with the highest s-
core. Given a manually annotated training data

p(yls) =

Table 2: Main results on OntoNotes. Gold seg means
gold-standard segmentation, which is not available in
the real world.

{(si,y:) }|I¥,, we optimize the model by minimiz-
ing the negative log-likelihood loss with Lo regu-
larization. The loss function is defined as:

N
A
L=— Z log(P(yilsi)) + §||@||2 (16)
i—1

where A denotes the Ly regularization parameter
and O is the all trainable parameters set

4 Experiments

In this section, we carry out extensive experiments
to investigate the effectiveness of the Collabora-
tive Graph Network.

4.1 Datasets

We evaluate our model on Weibo NER (Peng and
Dredze, 2015; He and Sun, 2017a), OntoNotes
4 (Weischedel et al., 2011), and MSRA (Levow,
2006), where Weibo NER is in social domain,
OntoNotes and MSRA are in the news domain.
On Weibo NER, we use the same training, devel-
opment and test split as Peng and Dredze (2015).
On OntoNotes, we use the same data split as Che
et al. (2013). Since the MSRA dataset does not
have a development set, we randomly select 10%
samples from the training set as the development
set.
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Models P(%) | R(%) | F1(%)

Chen et al. (2006) 91.22 | 81.71 | 86.20
Zhang et al. (2006) 92.20 | 90.18 | 91.18
Zhou et al. (2013) 91.86 | 88.75 | 90.28
Lu et al. (2016) - - 87.94
Dong et al. (2016) 91.28 | 90.62 | 90.95
Cao et al. (2018) 91.73 | 89.58 | 90.64
Zhu and Wang (2019) | 93.53 | 92.42 | 92.97
Zhang and Yang (2018) | 93.57 | 92.79 | 93.18
Ours 94.01 | 92.93 | 93.47

Table 3: Main results on MSRA

4.2 Experimental Settings

In our experiments, We use the same character em-
beddings as Zhang and Yang (2018), which is pre-
trained on Chinese Giga-Word. We use the lex-
icon provided by Li et al. (2018), including 1.3
million Chinese words. We set the dimensionali-
ty of LSTM hidden states to 300 and set the ini-
tial learning rate to 0.001. Since the scale of each
dataset varies, we set different training batch size
for different datasets. Specifically, we set batch
sizes of MSRA, OntoNotes and Weibo NER as
64, 20 and 10. We use stochastic gradient De-
scent (SGD) algorithm to optimize parameters in
OntoNotes and WeiboNER, and use Adam (King-
ma and Ba, 2014) algorithm to optimize parame-
ters in MSRA. We stop the training when we find
the best result in the development set.

4.3 Overall Performance

Weibo NER. Table 1 shows the results on Wei-
bo NER. Zhu and Wang (2019) propose a Con-
volutional Attention Network using segmentation
information, which is the existing state-of-the-art
(SOTA) model. Our model outperforms SOTA
model by 3.78%, 1.07% and 5.34% in F1 score
on Overall, Named Entity, and Nominal Mention.
Zhang and Yang (2018) propose a lattice LSTM
to integrate lexical knowledge. Our model out-
performs the lattice LSTM by 4.3%, 3.41% and
6.07% in F1 score on Overall, Named Entity, and
Nominal Mention.

OntoNotes. Table 2 shows the results on
OntoNotes. Compared with lattice LSTM (Zhang
and Yang, 2018), Our model gains a 0.91% im-
provement in F1 score. Compared with the best re-
sult (Yang et al., 2016), our model doesn’t rely on
gold-standard segmentation, which is not available
in the real world. Note that our model even outper-
forms the model proposed by (Wang et al., 2013;
Yang et al., 2016; Zhu and Wang, 2019), which us-
es the information of gold-standard segmentation.

Dataset Ours(s) Lattice(s) Speedup
MSRA 344 13723 x15
Training | OntoNotes 188 2561 x13
Weibo NER 64 458 x7
MSRA 52 344 x6
Testing | OntoNotes 27.1 386 x14
Weibo NER 22 23 x10

Table 4: The performance of models in training and
testing time. Time is measured in seconds. Lattice
means the lattice LSTM (Zhang and Yang, 2018).

MSRA. Results on the MSRA dataset are
shown in Table 3. By leveraging hand crafted
features (Chen et al., 2006; Zhang et al., 2006;
Zhou et al., 2013) and character embeddings (Lu
et al., 2016), statistical models achieve good re-
sults on MSRA dataset. Dong et al. (2016) inte-
grate LSTM-CRF with radical features and Zhang
and Yang (2018) propose a lattice LSTM to inte-
grate lexical knowledge. Our model outperforms
the lattice LSTM by 0.29% in F1 score on MSRA
datasets.

Speed. As an essential preprocessing NLP tool,
NER tasks require high speeds of both training
and testing. Since aligning word-character lattice
structure for batch training is usually non-trivial,
the lattice LSTM (Zhang and Yang, 2018) suffers
from slow speeds in training and testing. Howev-
er, both LSTM and GAT in our model can compute
efficiently by batch training.

For fair comparison, both the lattice LSTM and
our model are implemented under PyTorch?. By
using a single NVIDIA GeForce GTX 1080 Ti G-
PU, We randomly select 10 training and testing e-
poch as samples. The average time of training and
testing is shown in Table 4. Our model can achieve
a 6-15x speedup over the lattice LSTM.

4.4 Effectiveness of Three Word-Character
Interactive Graphs

We conduct ablation experiments to demonstrate
the effectiveness of these three word-character in-
teractive graphs.

Comparison Setting. We design ablation stud-
ies as follow: 1) w/o C: without word-character
Containing graph(C-graph). 2) w/o T: without
word-character Transition graph (T-graph). 3)
w/o L: without word-character Lattice graph (L-
graph). 4)w/o C & T: without C-graph and T-
graph, only keep L-graph. 5)w/o C & L : without
C-graph and L-graph, only keep T-graph. 6) w/o

https://pytorch.org/
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Sentence o ) ]
+++// @Xidian University:#good morning-+*

V% PRI AR DR 5 R S FEL A B -

Tencent and Lenovo jointly launched a computer cleaning day-+*

Sentence

TR K (XidianUniversity), i an),
Matched V4% BT RHE K (XidianUniversity), P442(Xi’ an)

lexical word

Casel

5i%2(Good Morning)***

P RHE KRS (UESTC), % Hi(An Dian), Hi-FFH(Electronics Technology),

Case2 Matched

lexical word

5 (Tencent), 48 (Lenovo), Bt % (Joint),
% #2(Launch), Hi(Computer), i #(Clean)-+-

predicted label | FH(I-ORG)H;(I-ORG) K(I-ORG)*:(I-ORG):(O)#(0)(0) %Z(0)-*

Sentence with | ++// (0)@(O)7i( EA ) H( ) T-(I-ORG) Sentence with | 5(B-ORG)(I-ORG)F( ) A( ) TE(0) & (0)
gold label | £HI-ORG)H:(I-ORG) K (I-ORG)#:(I-ORG):(0)#(0) K.(0)%(0) -+ gold label | J(O)i2(0)H(O)li(0)i(0)#E(0) H (0)-++
wlo C-graph | /1 (0)@(0) Pi(B-LOC) Z(I-LOC) H(B-ORG) T-(I-ORG) wlo T-graph | ¥&(B-ORG) R (I-ORG)I(0) E(0)IE(0) & (0)
predicted label | £H(I-ORG)$:(I-ORG) K (I-ORG) %:(I-ORG):(O)#(0)(0)%(0) - predicted label | 5(0) #2(0)HL(0)(0)if(0)E(0) H (0)-+*
with C-graph | -/ (0)@(O)74( B ) L( ) T-(I-ORG) with T-graph | (B-ORG)(I-ORG)( YA Y FE(0) #(0)

predicted label | Z(0) i2(0)HL(0)ili(0)iii (0) F(0) H (0)-+

Table 6: Case study. w/o C-graph predicted label means without C-graph predicted label, and w/o T-graph predict-
ed label means without T-graph predicted label. We use green to denote the correct labels and use red to denote

the wrong labels.

Models Dataset

OntoNotes | Weibo NER | MSRA

Complete model 74.79 63.09 93.47
w/o C 72.24 60.75 93.35

w/o T 71.57 60.94 93.02

w/o L 72.87 60.69 93.21
w/ioC&T 70.53 58.51 92.72
w/ioC&L 65.81 58.65 91.98
w/oT &L 71.41 58.72 92.80
BiLSTM+CRF 61.84 52.77 88.05

Table 5: Ablation study on reducing word-character in-
teractive graphs, For example, "w/o C” means remov-
ing word-character containing graph from the complete
model.

T & L : without T-graph and L-graph, only keep
L-graph. 7) BILSTM+CREF: baseline model.

Comparison Results. Table 5 shows the re-
sults of ablation experiments. We can clearly see
that removing any graph causes obvious perfor-
mance degradation, but the importance of different
graphs varies from dataset to dataset. Specifically,
on OntoNotes and MSRA, *w/o T-graph’ obtains
worse performance than others, showing that T-
graph is important. However, T-graph performs
poorly without cooperating with other graphs. We
guess that “T-graph” graph can only capture the
information of the nearest contextual lexical word-
s, and it is not enough to rely solely on T-graph.
On Weibo NER, these graphs show equal impor-
tance. Since dialects slangs and irregular phrases
are very common in social domain, we must rely
on C-graph, T-graph, and L-graph jointly to handle
the informal and complex contexts. In conclusion,
from ablation experiments, we can find that each
graph can be implemented independent of the oth-
er, but together they can achieve the best result,
showing that all these three graphs are essential to
our model.

5 Case Study

To show visually that our model can solve the
challenges when integrating self-matched lexical
words and the nearest contextual lexical words, a
case study comparing without C-graph, without T-
graph and the complete model is shown in Table
6. In the first case, there is an entity * § % B, 1 £}
$i K22 (Xidian University) with nested “74 %2
(Xi’an) and * B 1 B} K %% (UESTC). These
common entities are all in the lexicon. Without C-
graph, the model can’t integrate the information of
the self-matched lexical word ‘74 % H B K
2#” (Xidian University) into the characters “ Hi”
and “%”. Influenced by another lexical word “ Hj
TR K& (UESTC), the predicted label of the
character “ H” is “B-ORG”, and the label of the
character “%” is predicted to be “I-ORG”, affect
by the lexical word “ifi % (Xi’an). In the second
case, there is an entity “ J¢4H” (Lenovo), which
can also be a common verb (“Associate”) in Chi-
nese. Without T-graph, the model can’t integrate
the information of the nearest contextual lexical
words “ &1 (Tencent) and “BX & (Joint) into
the characters “ X" and “ 287, so the predicted
labels of the characters “lk” and “ #8” are ”O’s.
However, with the help of T-graph, the model can
use the information of the nearest contextual lexi-
cal words “[f& ¥ (Tencent) and *“ Bc&" (Joint) to
predict the correct labels.

6 Conclusion

In this paper, we propose a Collaborative Graph
Network for integrating lexical knowledge in Chi-
nese NER. The core of the network is three lexi-
cal word-character interactive graphs. These inter-
active graphs can capture different lexical knowl-
edge and are built without external NLP tools. We
show through various experiments that our model
has complementary strengths to the SOTA model
and these interactive graphs are effective.
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