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Abstract

We unify different broad-coverage semantic
parsing tasks under a transduction paradigm,
and propose an attention-based neural frame-
work that incrementally builds a meaning rep-
resentation via a sequence of semantic rela-
tions. By leveraging multiple attention mecha-
nisms, the transducer can be effectively trained
without relying on a pre-trained aligner. Ex-
periments conducted on three separate broad-
coverage semantic parsing tasks – AMR, SDP
and UCCA – demonstrate that our attention-
based neural transducer improves the state of
the art on both AMR and UCCA, and is com-
petitive with the state of the art on SDP.

1 Introduction

Broad-coverage semantic parsing aims at map-
ping any natural language text, regardless of its
domain, genre, or even the language itself, into
a general-purpose meaning representation. As a
long-standing topic of interest in computational
linguistics, broad-coverage semantic parsing has
targeted a number of meaning representation
frameworks, including CCG (Steedman, 1996,
2001), DRS (Kamp and Reyle, 1993; Bos, 2008),
AMR (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013), SDP (Oepen et al., 2014,
2015), and UDS (White et al., 2016).1 Each of
these frameworks has their specific formal and
linguistic assumptions. Such framework-specific
“balkanization” results in a variety of framework-
specific parsing approaches, and the state-of-the-
art semantic parser for one framework is not al-
ways applicable to another. For instance, the state-
of-the-art approaches to SDP parsing (Dozat and

1Abbreviations respectively denote: Combinatory Cat-
egorical Grammar, Discourse Representation Theory, Ab-
stract Meaning Representation, Universal Conceptual Cog-
nitive Annotation, Semantic Dependency Parsing, and Uni-
versal Decompositional Semantics.

Manning, 2018; Peng et al., 2017a) are not directly
transferable to AMR and UCCA because of the
lack of explicit alignments between tokens in the
sentence and nodes in the semantic graph.

While transition-based approaches are adapt-
able to different broad-coverage semantic parsing
tasks (Wang et al., 2018; Hershcovich et al., 2018;
Damonte et al., 2017), when it comes to represen-
tations such as AMR whose nodes are unanchored
to tokens in the sentence, a pre-trained aligner
has to be used to produce the reference transi-
tion sequences (Wang et al., 2015; Damonte et al.,
2017; Peng et al., 2017b). In contrast, there are
attempts to develop attention-based approaches in
a graph-based parsing paradigm (Dozat and Man-
ning, 2018; Zhang et al., 2019), but they lack pars-
ing incrementality, which is advocated in terms
of computational efficiency and cognitive model-
ing (Nivre, 2004; Huang and Sagae, 2010).

In this paper, we approach different broad-
coverage semantic parsing tasks under a uni-
fied framework of transduction. We propose an
attention-based neural transducer that extends the
two-stage semantic parser of Zhang et al. (2019)
to directly transduce input text into a meaning
representation in one stage. This transducer has
properties of both transition-based approaches and
graph-based approaches: on the one hand, it
builds a meaning representation incrementally via
a sequence of semantic relations, similar to a
transition-based parser; on the other hand, it lever-
ages multiple attention mechanisms used in recent
graph-based parsers, thereby removing the need
for pre-trained aligners.

Requiring only minor task-specific adaptations,
we apply this framework to three separate broad-
coverage semantic parsing tasks: AMR, SDP, and
UCCA. Experimental results show that our neural
transducer outperforms the state-of-the-art parsers
on AMR (77.0% F1 on LDC2017T10 and 71.3%
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F1 on LDC2014T12) and UCCA (76.6% F1 on
the English-Wiki dataset v1.2), and is competitive
with the state of the art on SDP (92.2% F1 on the
English DELPH-IN MRS dataset).

2 Background and Related Work

We provide summary background on the meaning
representations we target, and review related work
on parsing for each.
Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) encodes sentence-level se-
mantics, such as predicate-argument information,
reentrancies, named entities, negation and modal-
ity, into a rooted, directed, and usually acyclic
graph with node and edge labels. AMR graphs ab-
stract away from syntactic realizations, i.e., there
is no explicit correspondence between elements
of the graph and the surface utterance. Fig. 1(a)
shows an example AMR graph.

Since its first general release in 2014, AMR
has been a popular target of data-driven seman-
tic parsing, notably in two SemEval shared tasks
(May, 2016; May and Priyadarshi, 2017). Graph-
based parsers build AMRs by identifying con-
cepts and scoring edges between them, either in a
pipeline (Flanigan et al., 2014), or jointly (Zhou
et al., 2016; Lyu and Titov, 2018; Zhang et al.,
2019). This two-stage parsing process lim-
its the parser incrementality. Transition-based
parsers either transform dependency trees into
AMRs (Wang et al., 2015, 2016; Goodman et al.,
2016), or employ transition systems specifically
tailored to AMR parsing (Damonte et al., 2017;
Ballesteros and Al-Onaizan, 2017). Transition-
based parsers rely on pre-trained aligner produce
the reference transitions. Grammar-based parsers
leverage external semantic resources to derive
AMRs compositionally based on CCG rules (Artzi
et al., 2015), or SHRG rules (Peng et al., 2015).
Another line of work uses neural model transla-
tion models to convert sentences into linearized
AMRs (Barzdins and Gosko, 2016; Peng et al.,
2017b), but has relied on data augmentation to
produce effective parsers (van Noord and Bos,
2017; Konstas et al., 2017). Our parser differs
from the previous ones in that it has incrementality
without relying on pre-trained aligners, and can be
effectively trained without data augmentation.
Semantic Dependency Parsing (SDP) was in-
troduced in 2014 and 2015 SemEval shared
tasks (Oepen et al., 2014, 2015). It is cen-

tered around three semantic formalisms – DM
(DELPH-IN MRS; Flickinger et al., 2012; Oepen
and Lønning, 2006), PAS (Predicate-Argument
Structures; Miyao and Tsujii, 2004), and PSD
(Prague Semantic Dependencies; Hajič et al.,
2012) – representing predicate-argument relations
between content words in a sentence. Their an-
notations have been converted into bi-lexical de-
pendencies, forming directed graphs whose nodes
injectively correspond to surface lexical units, and
edges represent semantic relations between nodes.
In this work, we focus on only the DM formalism.
Fig. 1(b) shows an example DM graph.

Most recent parsers for SDP are graph-based:
Peng et al. (2017a, 2018) use a max-margin clas-
sifier on top of a BiLSTM, with the factored
score for each graph over predicates, unlabeled
arcs, and arc labels. Multi-task learning ap-
proaches and disjoint data have been used to im-
prove the parser performance. Dozat and Man-
ning (2018) extend an LSTM-based syntactic de-
pendency parser to produce graph-structured de-
pendencies, and carefully tune it to state of the art
performance. Wang et al. (2018) extend the transi-
tion system of Choi and McCallum (2013) to pro-
duce non-projective trees, and use improved ver-
sions of stack-LSTMs (Dyer et al., 2015) to learn
representation for key components. All of these
are specialized for bi-lexical dependency parsing,
whereas our parser can effectively produce both
bi-lexical semantics graphs, and graphs that are
less anchored to the surface utterance.

Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013) targets a
level of semantic granularity that abstracts away
from syntactic paraphrases in a typologically-
motivated, cross-linguistic fashion. Sentence rep-
resentations in UCCA are directed acyclic graphs
(DAG), where terminal nodes correspond to sur-
face lexical tokens, and non-terminal nodes to se-
mantic units that participate in super-ordinate re-
lations. Edges are labeled, indicating the role of a
child in the relation the parent represents. Fig. 1(c)
shows an example UCCA DAG.

The first UCCA parser is proposed by Hersh-
covich et al. (2017), where they extend a transi-
tion system to produce DAGs. To leverage other
semantic resources, Hershcovich et al. (2018) is
one of the few attempts to present (lossy) conver-
sion from AMR, SDP and Universal Dependen-
cies (UD; Nivre et al., 2016) to a unified UCCA-
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Figure 1: Meaning representation in the task-specific format – (a) AMR, (b) DM, and (c) UCCA – for an ex-
ample sentence “Pierre Vinken expressed his concern”. Meaning representation (d), (e) and (f) are in the unified
arborescence format, which are converted from (a), (b) and (c) respectively.

based DAG format. They explore multi-task learn-
ing under the unified format. While multi-task
learning improves UCCA parsing results, it shows
poor performance on AMR, SDP and UD parsing.
In contrast, different semantic parsing tasks are
formalized in our unified transduction paradigm
with no loss, and our approach achieves state-of-
the-art or competitive performance on each task,
using only single-task data.

3 Unified Transduction Problem

3.1 Unified Arborescence Format

We first introduce a unified target format for differ-
ent broad-coverage semantic parsing tasks. Mean-
ing representation in the unified format is an ar-
borescence (aka, a directed rooted tree), which is
converted from its corresponding task-specific se-
mantic graph via the following reversible steps:
AMR Reentrancy is what can make an AMR
graph not an arborescence (it introduces cycles).
Following Zhang et al. (2019), we convert an
AMR graph into an arborescence by duplicating
nodes that have reentrant relations; that is, when-
ever a node has a reentrant relation, we make a
copy of that node and use the copy to participate
in the relation, thereby resulting in an arbores-
cence. Next, in order to preserve the reentrancy
information, we assign a node index to each node.
Duplicated nodes are assigned the same index as

the original node. Fig. 1(d) shows an AMR ar-
borescence converted from Fig. 1(a): two “per-
son” nodes have the same node index 2. The origi-
nal AMR graph can be recovered by merging iden-
tically indexed nodes.
DM We first break the DM graph into a set of
weakly connected subgraphs. For each subgraph,
if it has the top node, we treat top as root; other-
wise, we treat the node with the max outdegree as
root. We then run depth-first traversal over each
subgraph from its root to yield an arborescence,
and repeat the following three steps until no more
edges can be added to the arborescence: (1) we run
breadth-first traversal over the arborescence from
the root until we find a node that has an incoming
edge not belonging to the arborescence; (2) we re-
verse the edge and add a -of suffix to the edge
label; (3) we run depth-first search from that node
to include more edges to the arborescence. During
the whole process, we add node indices and du-
plicate reentrant nodes in the same way as AMR
conversion. Finally, we connect arborescences by
adding a null edge from top to other arbores-
cence roots. Fig. 1(e) shows a DM arborescence
converted from Fig. 1(b). The original DM graph
can be recovered by removing null edges, merg-
ing identically indexed nodes, and reversing edges
with -of suffix.
UCCA To date, official UCCA evaluation only
considers UCCA’s foundational layer, which is al-
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Figure 2: The encoder-decoder architecture of our attention-based neural transducer. An encoder encodes the input
text into hidden states. A decoder is composed by three modules: a target node module, a relation type module,
and a source node module. At each decoding time step, the decoder takes the previous semantic relation as input,
and outputs a new semantic relation in a factorized way: firstly, the target node module produces a new target
node; secondly, the source node module points to a preceding node as a new source node; finally, the relation type
module predicts the relation type between source and target nodes.

ready an arborescence. We convert it to the uni-
fied arborescence format by first collapsing sub-
graphs of pre-terminal nodes: we replace each
pre-terminal node with its first terminal node; if
the pre-terminal node has other terminals, we add
a special phrase edge from the first terminal
node to other terminal nodes. The collapsing step
largely reduces the number of terminal nodes in
UCCA. We then add labels to the remaining non-
terminal nodes. Each node label is simply the
same as its incoming edge label. We find that
adding node labels improves performance of our
neural transducer (See Section 6.2 for the experi-
mental results). Lastly, we add node indices in the
same way as AMR conversion. Fig. 1(f) shows a
DM arborescence converted from Fig. 1(c). The
original UCCA DAG can be recovered by expand-
ing pre-terminal subgraphs, and removing non-
terminal node labels.

3.2 Problem Formalization

For any broad-coverage semantic parsing task, we
denote the input text by X , and the output mean-
ing representation in the unified arborescence for-
mat by Y , where X is a sequence of tokens
〈x1, x2, ..., xn〉 and Y can be decomposed as a se-
quence of semantic relations 〈y1, y2, ..., ym〉. A
relation y is a tuple 〈u, du, r, v, dv〉, consisting of
a source node label u, a source node index du, a
relation type r, a target node label v, and a target
node index dv.

LetY be the output space. The unified transduc-
tion problem is to seek the most-likely sequence of
semantic relations Ŷ given X:

Ŷ = argmax
Y ∈Y

P(Y | X)

= argmax
Y ∈Y

m∏
i

P(yi | y<i, X)

4 Transducer

To tackle the unified transduction problem, we
introduce an attention-based neural transducer
that extends Zhang et al. (2019)’s attention-based
parser. Their attention-based parser addresses se-
mantic parsing in a two-stage process: it first em-
ploys an extended variant of pointer-generator net-
work (See et al., 2017) to convert the input text
into a list of nodes, and then uses a deep biaffine
graph-based parser (Dozat and Manning, 2016)
with a maximum spanning tree (MST) algorithm
to create edges. In contrast, our attention-based
neural transducer directly transduces the input text
into a meaning representation in one stage via a se-
quence of semantic relations. A high-level model
architecture of our transducer is depicted in Fig. 2:
an encoder first encodes the input text into hidden
states; and then conditioned on the hidden states,
at each decoding time step, a decoder takes the
previous semantic relation as input, and outputs
a new semantic relation, which includes a target
node, a relation type, and a source node.
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Specifically, there a significant difference be-
tween Zhang et al. (2019) and our model: Zhang
et al. (2019) first predicts nodes, and then edges.
These two stages are done separately (except that
a shared encoder is used). At the node predic-
tion stage, their model has no knowledge of edges,
and therefore node prediction is performed purely
based previous nodes. At the edge prediction
stage, their model predicts the head of each node
in parallel. Head prediction of one node has no
constrains or impact on another. As a result, MST
algorithms have to be used to search for a valid
prediction. In comparison, our model does not
have two separate stages for node and edge pre-
diction. At each decoding step, our model predicts
not only a node, but also the incoming edge to the
node, which includes a source and a relation type.
See Fig. 2 for an example. The predicted node and
incoming edge together with previous predictions
form a partial semantic graph, which is used as
input of the next decoding step for the next node
and incoming edge prediction. Our model there-
fore makes predictions based on the partial seman-
tic graph, which helps prune the output space for
both nodes and edges. Since at each decoding step,
we assume the incoming edge is always from a
preceding node (see Section 4.3 for the details),
the predicted semantic graph is guaranteed to be
a valid arborescence, and a MST algorithm is no
longer needed.

4.1 Encoder

At the encoding stage, we employ an encoder em-
bedding module to convert the input text into vec-
tor representations, and a BiLSTM is used to en-
code vector representations into hidden states.
Encoder Embedding Module concatenates
word-level embeddings from GloVe (Pennington
et al., 2014) and BERT2 (Devlin et al., 2018),
char-level embeddings from CharCNN (Kim
et al., 2016), and randomly initialized embeddings
for POS tags.

For AMR, it includes extra randomly initialized
embeddings for anonymization indicators that tell
the encoder whether a token is an anonymized to-
ken from preprocessing.

For UCCA, it includes extra randomly initial-
ized embeddings for NER tags, syntactic depen-
dency labels, punctuation indicators, and shapes

2 We use average pooling in the same way as Zhang et al.
(2019) to get word-level embeddings from BERT.

that are provided in the UCCA official dataset.
Multi-layer BiLSTM (Hochreiter and Schmidhu-
ber, 1997) is defined as:

slt =

[ −→s l
t←−s l
t

]
=

[ −−−→
LSTM(sl−1t , slt−1)←−−−
LSTM(sl−1t , slt+1)

]
, (1)

where slt is the l-th layer hidden state at time step
t; sti is the embedding module output for token xt.

4.2 Decoder
Decoder Embedding Module at decoding time
step i converts elements in the input semantic rela-
tion 〈ui, dui , ri, vi, dvi 〉 into vector representations
〈ui,d

u
i , ri,vi,d

v
i 〉:3

ui and vi are concatenations of word-level
embeddings from GloVe, char-level embeddings
from CharCNN, and randomly initialized embed-
dings for POS tags. POS tags for source and target
nodes are inferred at runtime: if a node is copied
from input text, the POS tag of the correspond-
ing token is used; if it is copied from a preceding
node, the POS tag of the preceding node is used;
otherwise, an UNK tag is used.

du
i ,d

v
i and ri are randomly initialized embed-

dings for source node index, target node index, and
relation type.

Next, the decoder outputs a new semantic rela-
tion in a factorized way depicted in Fig. 2: First, a
target node module takes vector representations of
the previous semantic relation, and predicts a tar-
get node label as well as its index. Then, a source
node module predicts a source node via pointing to
a preceding node. Lastly, a relation type module
takes the predicted source and target nodes, and
predicts the relation type between them.
Target Node Module converts vector representa-
tions of the input semantic relation into a hidden
state zi in the following way:

zi = FFN(relation)([hl
i; ci; ri;ui;d

u
i ]) (2)

hl
i = LSTM(hl−1

i ,hl
i−1) (3)

FFN(x) = Wx+ b (4)

where an l-layer LSTM generates contextual rep-
resentation hl

i for target node vi (for initialization,
h0
i = [vi;d

v
i ], h

l
0 = [←−s l

1;
−→s l

n]). A feed-forward
neural network FFN(relation) generates the hidden

3While training, the input semantic relation is from the
reference sequence of relations; at test time, it is the previous
decoder output semantic relation.
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state zi of the input semantic relation by combin-
ing contextual representation hl

i for target node vi,
encoder context vector ci, and vector representa-
tions ri,ui,d

u
i for relation type ri, source node

label ui and source node index dui .
Encoder context vector ci is a weighted-sum of

encoder hidden states sl1:n. The weight is atten-
tion a

(enc)
i from the decoder at decoding step i to

encoder hidden states:

a
(enc)
i = softmax

(
MLP(enc)([hl

i; s
l
1:n])

)
(5)

MLP(x) = ELU(Wx+ b) (6)

Given the hidden state zi for input semantic
relation, we use an extended variant of pointer-
generator network to compute the probability dis-
tribution of next target node label vi+1:

P(vi+1) = pgenp
(vocab)
i ⊕ penca

(enc)
i ⊕ pdeca

(dec)
i

(7)

p
(vocab)
i = softmax

(
FFN(vocab)(zi)

)
(8)

a
(dec)
i = softmax

(
MLP(dec)([zi; z1:i−1])

)
(9)

[pgen, penc, pdec] = softmax
(

FFN(switch)(zi)
)
(10)

P(vi+1) is a hybrid of three parts: (1) emitting
a new node label from a pre-defined vocabulary
via probability distribution p

(vocab)
i ; (2) copying

a token from the encoder input text as node la-
bel via encoder-side attention a

(enc)
i ; and (3) copy-

ing a node label from preceding target nodes via
decoder-side attention a

(dec)
i . Scalars pgen, penc

and pdec act as a soft switch to control the produc-
tion of target node label from different sources.

The next target node index dvi+1 is assigned
based on the following rule:

dvi+1 =

{
dvj , if vi+1 copies its antecedent vj .

i+ 1, otherwise.

Source Node Module produces the next source
node label ui+1 via pointing to a node label among
preceding target node labels (the dotted arrows
shown in Fig. 2). The probability distribution of
next source node label ui+1 is defined as

P(ui+1) = softmax
(

BIAFFINE(h
(start)
i+1 ,h

(end)
1:i )

)
(11)

where BIAFFINE is a biaffine function (Dozat and
Manning, 2016). h

(start)
i+1 is the vector representa-

tion for the start of the pointer. h
(end)
1:i are vec-

tor representations for possible ends of the pointer.

They are computed by two multi-layer percep-
trons:

h
(start)
i+1 = MLP(start)(hl

i+1) (12)

h
(end)
1:i = MLP(end)(hl

1:i) (13)

Note that hl
i+1 is the LSTM hidden state for tar-

get node vi+1, generated by Equation (3) in the
target node module. We reuse LSTM hidden states
from the target node module such that we can train
the decoder modules jointly.

Then, the next source node index dui+1 is the
same as the target node the module points to.
Relation Type Module also reuses LSTM hidden
states from the target node module to compute the
probability distribution of next relation type ri+1.
Assuming that the source node module points to
target node label vj as the next source node label,
The next relation type probability distribution is
computed by:

P(ri+1) = softmax
(

BILINEAR(h
(rel-src)
i+1 ,h

(rel-tgt)
i+1 )

)
(14)

h
(rel-src)
i+1 = MLP(rel-src)(hl

j) (15)

h
(rel-tgt)
i+1 = MLP(rel-tgt)(hl

i+1) (16)

4.3 Training
To ensure that at each decoding step, the source
node can be found in the preceding nodes, we cre-
ate the reference sequence of semantic relations
by running a pre-order traversal over the reference
arborescence. The pre-order traversal only deter-
mines the order between a node and its children.
As for the order of its children, we sort them in al-
phanumerical order in the case of AMR, following
Zhang et al. (2019). In the case of SDP, we sort the
children based on their order in the input text. In
the case of UCCA, we sort the children based on
their UCCA node ID.

Given a training pair 〈X,Y 〉, the optimization
objective is to maximize the decomposed con-
ditional log likelihood

∑
i log

(
P(yi | y<i, X)

)
,

which is approximated by:∑
i

log
(
P(ui)

)
+log

(
P(ri)

)
+log

(
P(vi)

)
(17)

We also employ label smoothing (Szegedy
et al., 2016) to prevent overfitting, and include a
coverage loss (See et al., 2017) to penalize repet-
itive nodes: covlossi =

∑
t min(a(enc)

i [t], covi[t]),
where covi =

∑i−1
j=0 a

(enc)
j .
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4.4 Prediction
Our transducer at each decoding time step looks
for the source node from the preceding nodes,
which ensures that the output of a greedy search
is already a valid arborescence Ŷ :

P(Ŷ | X) =
∏
i

max
ui

P(ui)max
ri

P(ri)max
vi

P(vi)

Therefore, a MST algorithm such as the Chu-Liu-
Edmonds algorithm atO(EV ) used in Zhang et al.
(2019) is no longer needed,4 and the decoding
speed of our transducer is O(V ). Moreover, since
our transducer builds the meaning representation
via a sequence of semantic relations, we imple-
ment a beam search over relation in Algo. 1. Com-
pared to the beam search of Zhang et al. (2019)
that only returns top-k nodes, our beam search
finds the top-k relation scores, which includes
source nodes, relation types and target nodes.

Algorithm 1: Beam Search over Semantic Relations.
Input : The input text X .
Output: A sequence of relations Y = {y1, ...ym}.
// Initialization.
i, score← 0, 0;
Y,finished← {}, {};
beam← {{Y, score}};
// Encoding.
encode(X);

// Decoding.
for i← 1 to MaxLength do

new beam← {};
{Y, score} = beam.pop();
for vi in topK(P(vi)) do

if vi = EOS then
finished.push({Y, score});

else
for ui ← v0 to vi−1 do

for ri in RelationTypeSet do
Y ← Y ∪ {〈ui, ri, vi〉};
score← score + log

(
P(ui)

)
+

log
(
P(ri)

)
+ log

(
P(vi)

)
;

new beam.push({Y, score});
end

end
end

end
beam← new beam.topK();

end
// Finishing.
while beam.not empty() do
{Y, score} ← beam.pop();
finished.push({Y, score});

end
{Y, score} ← finished.topK(k=1);

return Y ;

4E denotes the number of edges. V the number of nodes.

5 Data Pre- and Post-processing

AMR Pre- and post-processing steps are similar to
those of Zhang et al. (2019): in preprocessing, we
anonymize subgraphs of entities, remove senses,
and convert resultant AMR graphs into the uni-
fied format; in post-processing, we assign the most
frequent sense for nodes, restore Wikipedia links
using the DBpedia Spotlight API (Daiber et al.,
2013), add polarity attributes based on rules ob-
served from training data, and recover the original
AMR format from the unified format.
DM No pre- or post-processing is done to DM ex-
cept converting them into the unified format, and
recovering them from predictions.
UCCA During training, multi-sentence input text
and its corresponding DAG are split into single-
sentence training pairs based on rules observed
from training data. At test time, we split multi-
sentence input text, and join the predicted graphs
into one. We also convert the original format to
the unified format in preprocessing, and recover
the original DAG format in post-processing.

Hidden Size
Glove 300
BERT 1024
POS / NER / Dep / Shapes 100
Anonymization / Node index 50
CharCNN kernel size 3
CharCNN channel size 100
Encoder 2@512
Decoder 2@1024
Biaffine input size 256

Bilinear input size
AMR 128
DM 256
UCCA 128

Optimizer
Type ADAM
Learning rate 0.001
Maximum gradient norm 5.0
Coverage loss weight λ 1.0
Label smoothing ε 0.1
Beam size 5
Batch size 64

Dropout rate
AMR 0.33
DM 0.2
UCCA 0.33

Vocabulary

Encoder-side vocab size

AMR 1.0 9200
AMR 2.0 18000
DM 11000
UCCA 10000

Decoder-side vocab size

AMR 1.0 7300
AMR 2.0 12200
DM 11000
UCCA 10000

Table 1: Hyperparameter settings
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6 Experiments

6.1 Data and Setup

We evaluate our approach on three separate broad-
coverage semantic parsing tasks: (1) AMR 2.0
(LDC2017T10) and 1.0 (LDC2014T12); (2) the
English DM dataset from SemEval 2015 Task 18
(LDC2016T10); (3) the UCCA English Wikipedia
Corpus v1.2 (Abend and Rappoport, 2013). The
train/dev/test split follows the official setup. Our
model is trained on two GeForce GTX TITAN X
GPUs with early stop based on the dev set. We fix
BERT parameters similar to Zhang et al. (2019)
due to the limited GPU memory. Hyperparameter
setting for each task is provided in Table 1.

6.2 Results

Data Parser F1(%)

AMR
2.0

Cai and Lam (2019) 73.2
Lyu and Titov (2018) 74.4±0.2
Lindemann et al. (2019) 75.3±0.1
Naseem et al. (2019) 75.5
Zhang et al. (2019) 76.3±0.1

- w/o beam search 75.3±0.1

Ours 77.0±0.1
- w/o beam search 76.4±0.1

AMR
1.0

Flanigan et al. (2016) 66.0
Pust et al. (2015) 67.1
Wang and Xue (2017) 68.1
Guo and Lu (2018) 68.3±0.4
Zhang et al. (2019) 70.2±0.1

- w/o beam search 69.2±0.1

Ours 71.3±0.1
- w/o beam search 70.4±0.1

Table 2: SMATCH F1 on AMR 2.0 and 1.0 test sets.
Standard deviation is computed over 3 runs.

AMR Table 2 compares our neural transducer to
the previous best results (SMATCH F1, Cai and
Knight, 2013) on AMR test sets. The transducer
improves the state of the art on AMR 2.0 by 0.7%
F1. On AMR 1.0 where training data is much
smaller than AMR 2.0, it shows a larger improve-
ment (1.1% F1) over the state of the art.

In Table 2, we also conduct ablation study on
beam search to investigate contributions from the
model architecture itself and the beam search algo-
rithm. The transducer model without beam search

is already better than the previous best parser that
is equipped with beam search. When compared
with the previous best parser without beam search,
our model still has around 1.0% F1 improvement.

Metric L’18 N’19 Z’19 Ours

SMATCH 74 75 76 77

Unlabeled 77 80 79 80
No WSD 76 76 77 78
Reentrancies 52 56 60 61
Concepts 86 86 85 86
Named Ent. 86 83 78 79
Wikification 76 80 86 86
Negation 58 67 75 77
SRL 70 72 70 71

Table 3: Fine-grained F1 scores on the AMR 2.0 test
set. L’18 is Lyu and Titov (2018); N’19 is Naseem
et al. (2019); Z’19 is Zhang et al. (2019).

Table 3 summarizes the parser performance on
each subtask using Damonte et al. (2017) evalua-
tion tool. Our transducer outperforms Zhang et al.
(2019) on all subtasks, but is still not close to Lyu
and Titov (2018) on named entities due to the dif-
ferent preprocessing methods for anonymization.

Parser ID OOD

Du et al. (2015) 89.1 81.8
Almeida and Martins (2015)(open) 89.4 83.8
Wang et al. (2018) 90.3 84.9
Peng et al. (2017a): BASIC 89.4 84.5
Peng et al. (2017a): FREDA3 90.4 85.3
Peng et al. (2018) 91.2 86.6
Dozat and Manning (2018) 93.7 88.9

Ours 92.2 87.1

Table 4: Labeled F1 (%) scores on the English DM in-
domain (WSJ) and out-of-domain (Brown corpus) test
sets. (open) denotes results from the open track.

DM Table 4 compares our neural transducer to the
state of the art (labeled F1) on the English DM in-
domain (ID) and out-of-domain (OOD) data. Ex-
cept Dozat and Manning (2018), our transducer
outperforms all other baselines, including FREDA3
of Peng et al. (2017a) and Peng et al. (2018),
which leverage multi-task learning from different
datasets. The best parser (Dozat and Manning,
2018) is specifically designed for bi-lexical depen-
dencies, and is not directly applicable to other se-
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mantic parsing tasks such as AMR and UCCA.
In contrast, our transducer is more general, and is
competitive to the best SDP parser.

Parser F1 (%)

Hershcovich et al. (2017) 71.1
Hershcovich et al. (2018): single 71.2
Hershcovich et al. (2018): MTL 74.3

Ours 76.6±0.1
- w/o non-terminal node labels 75.7±0.1

Table 5: Labeled F1 (%) scores for all edges including
primary edges and remote edges. Standard deviation is
computed over 3 runs.

UCCA Table 5 compares our results to the pre-
vious best published results (labeled F1 for all
edges) on the English Wiki test set. Hershcovich
et al. (2018) explore multi-task learning (MTL)
to improve UCCA parsing, using AMR, DM and
UD parsing as auxiliaries. While improvement is
achieved UCCA parsing, their MTL model shows
poor results on the auxiliary tasks: 64.7% unla-
beled F1 on AMR, 27.2% unlabeled F1 on DM,
and 4.9% UAS on UD. In comparison, our trans-
ducer improves the state of the art on AMR, and
shows competitive results on DM. At the same
time, it also outperforms the best published UCCA
results by 2.3% F1. When converting UCCA
DAGs to the unified format, we adopt a simple rule
(Section 3.1) to add node labels to non-terminals.
Table 5 shows that these node labels do improve
the parsing performance from 75.7% to 76.6%.

6.3 Analysis

Validity Graph-based parsers like Dozat and Man-
ning (2018); Zhang et al. (2019) make indepen-
dent decisions on edge types. As a result, the same
outgoing edge type can appear multiple times to a
node. For instance, a node can have more than
one ARG1 outgoing edge. Although F1 scores can
be computed for graphs with such kind of nodes,
these graphs are in fact invalid mean representa-
tions. Our neural transducer incrementally builds
meaning representations: at each decoding step, it
takes a semantic relation as input, and has memory
of preceding edge type information, which implic-
itly places constraints on edge type prediction. We
compute the number of invalid graphs predicted
by the parser of Zhang et al. (2019) and our neu-
ral transducer on the AMR 2.0 test set, and find

that our neural transducer reduces the number of
invalid graphs by 8%.
Speed Besides the improvement on parsing accu-
racy, we also significantly speed up parsing. Ta-
ble 6 compares the parsing speed of our transducer
and Zhang et al. (2019) on the AMR 2.0 test set,
under the same environment setup. Without rely-
ing on MST algorithms to produce a valid arbores-
cence, our transducer is able to parse at 1.7x speed.

Speed (tokens/sec)

Zhang et al. (2019) 617
Ours 1076

Table 6: Parsing speed on the AMR 2.0 test set.

7 Conclusion

We cast three broad-coverage semantic parsing
tasks into a unified transduction framework, and
propose a neural transducer to tackle the problem.
Given the input text, the transducer incrementally
builds a meaning representation via a sequence
of semantic relations. Experiments conducted on
three tasks show that our approach improves the
state of the art in both AMR and UCCA, and is
competitive to the best parser in SDP.

This work can be viewed as a starting point for
cross-framework semantic parsing. Also, com-
pared with transition-based parsers (e.g. Damonte
et al., 2017) and graph-based parsers (e.g. Dozat
and Manning, 2018), our transductive framework
does not require a pre-trained aligner, and it is ca-
pable of building a meaning representation that
is less anchored to the input text. These advan-
tages make it well suited to semantic parsing in
cross-lingual settings (Zhang et al., 2018). In the
future, we hope to explore its potential in cross-
framework and cross-lingual semantic parsing.
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