Global Reasoning over Database Structures for Text-to-SQL Parsing

Ben Bogin'

Matt Gardner?

Jonathan Berant'2

1School of Computer Science, Tel-Aviv University
2 Allen Institute for Artificial Intelligence

ben.bogin@cs.tau.ac.il, mattg@allenai.org,

Abstract

State-of-the-art semantic parsers rely on auto-
regressive decoding, emitting one symbol at a
time. When tested against complex databases
that are unobserved at training time (zero-
shot), the parser often struggles to select the
correct set of database constants in the new
database, due to the local nature of decoding.
In this work, we propose a semantic parser
that globally reasons about the structure of
the output query to make a more contextually-
informed selection of database constants. We
use message-passing through a graph neural
network to softly select a subset of database
constants for the output query, conditioned on
the question. Moreover, we train a model to
rank queries based on the global alignment
of database constants to question words. We
apply our techniques to the current state-of-
the-art model for SPIDER, a zero-shot seman-
tic parsing dataset with complex databases, in-
creasing accuracy from 39.4% to 47.4%.

1 Introduction

The goal of zero-shot semantic parsing (Krishna-
murthy et al., 2017; Xu et al., 2017; Yu et al.,
2018b,a; Herzig and Berant, 2018) is to map lan-
guage utterances into executable programs in a new
environment, or database (DB). The key difficulty
in this setup is that the parser must map new lexi-
cal items to DB constants that weren’t observed at
training time.

Existing semantic parsers handle this mostly
through a local similarity function between words
and DB constants, which considers each word and
DB constant in isolation. This function is com-
bined with an auto-regressive decoder, where the
decoder chooses the DB constant that is most simi-
lar to the words it is currently attending to. Thus,
selecting DB constants is done one at a time rather
than as a set, and informative global considerations
are ignored.

joberant@cs.tau.ac.il

x: What is the name and nation of artists with a song
with the word 'Hey' in its name?

$: SELECT ? (a) singer.name 48%
(b) song.name 48%

(c) singer.country 2%

Local similarities: name | nation | song ‘Hey’
singer.name 48% 3% 3% 2%
singer.country | 2% 94% 2% 1%
song.name 48% 3% 91% 77%

Figure 1: An example where choosing a DB constant
based on local similarities is difficult, but the ambiguity
can be resolved through global reasoning (see text).

Consider the example in Figure 1, where a ques-
tion is mapped to a SQL query over a complex
DB. After decoding SELECT, the decoder must
now choose a DB constant. Assuming its attention
is focused on the word ‘name’ (highlighted), and
given local similarities only, the choice between the
lexically-related DB constants (singer.name
and song.name) is ambiguous. However, if we
globally reason over the DB constants and ques-
tion, we can combine additional cues. First, a sub-
sequent word ‘nation’ is similar to the DB column
country which belongs to the table singer,
thus selecting the column singer.name from
the same table is more likely. Second, the next ap-
pearance of the word ‘name’ is next to the phrase
"Hey’, which appears as the value in one of the cells
of the column song.name. Assuming a one-to-
one mapping between words and DB constants,
again singer.name is preferred.

In this paper, we propose a semantic parser that
reasons over the DB structure and question to make
a global decision about which DB constants should
be used in a query. We extend the parser of Bogin
et al. (2019), which learns a representation for the
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DB schema at parsing time. First, we perform
message-passing through a graph neural network
representation of the DB schema, to softly select
the set of DB constants that are likely to appear
in the output query. Second, we train a model
that takes the top-K queries output by the auto-
regressive model and re-ranks them based on a
global match between the DB and the question.
Both of these technical contributions can be applied
to any zero-shot semantic parser.

We test our parser on SPIDER, a zero-shot seman-
tic parsing dataset with complex DBs. We show
that both our contributions improve performance,
leading to an accuracy of 47.4%, well beyond the
current state-of-the-art of 39.4%.

Our code is available at
//github.com/benbogin/
spider-schema-gnn-global.

https:

2 Schema-augmented Semantic Parser

Problem Setup We are given a training set
{(x®), y®) SENIN  where 2(¥) is a question,
y¥) is its translation to a SQL query, and S*) is
the schema of the corresponding DB. We train a
model to map question-schema pairs (z, S) to the
correct SQL query. Importantly, the schema S was
not seen at training time.

A DB schema S includes : (a) A set of DB tables,
(b) a set of columns for each table, and (c) a set of
foreign key-primary key column pairs where each
pair is a relation from a foreign-key in one table
to a primary-key in another. Schema tables and
columns are termed DB constants, denoted by V.

We now describe a recent semantic parser from

Bogin et al. (2019), focusing on the components
relevant for selecting DB constants.
Base Model The base parser is a standard top-
down semantic parser with grammar-based decod-
ing (Xiao et al., 2016; Yin and Neubig, 2017; Kr-
ishnamurthy et al., 2017; Rabinovich et al., 2017;
Lin et al., 2019). The input question (1, ..., Z|y)
is encoded with a BILSTM, where the hidden states
e; of the BILSTM are used as contextualized rep-
resentations for the word z;. The output query y
is decoded top-down with another LSTM using a
SQL grammar, where at each time step a grammar
rule is decoded. Our main focus is decoding of DB
constants, and we will elaborate on this part.

The parser decodes a DB constant whenever the
previous step decoded the non-terminals Table or
Column. To select the DB constant, it first com-

putes an attention distribution over the question
words {a; } llel in the standard manner (Bahdanau
et al., 2015). Then the score for a DB constant v is
Sy = Y ; @;Slink (V, ;), Where sy is a local sim-
ilarity score, computed from learned embeddings
of the word and DB constant, and a few manually-
crafted features, such as the edit distance between
the two inputs and the fraction of string overlap
between them. The output distribution of the de-
coder is simply softmax({s,},cy). Importantly,
the dependence between decoding decisions for
DB constants is weak — the similarity function is in-
dependent for each constant and question word, and
decisions are far apart in the decoding sequence,
especially in a top-down parser.

DB schema encoding In the zero-shot setting, the
schema structure of a new DB can affect the out-
put query. To capture DB structure, Bogin et al.
(2019) learned a representation h,, for every DB
constant, which the parser later used at decoding
time. This was done by converting the DB schema
into a graph, where nodes are DB constants, and
edges connect tables and their columns, as well as
primary and foreign keys (Figure 2, left). A graph
convolutional network (GCN) then learned repre-
sentations h,, for nodes end-to-end (De Cao et al.,
2019; Sorokin and Gurevych, 2018).

To focus the GCN’s capacity on important nodes,
a relevance probability p,, was computed for every
node, and used to “gate” the input to the GCN,
conditioned on the question. Specifically, given a
learned embedding 7, for every database constant,
the GCN input is hl()o) = py - Ty. Then, the GCN
recurrence is applied for L steps. At each step,
nodes re-compute their representation based on the
representation of their neighbors, where different
edge types are associated with different learned pa-
rameters (Li et al., 2016). The final representation
of each DB constant is h, = th).

Importantly, the relevance probability p,,, which
can be viewed as a soft selection for whether the
DB constant should appear in the output, was com-
puted based on local information only: First, a
distribution pyink (v | ;) o< exp(Sink(v, T;)) was
defined, and then p,, = max; pjink (v | ;) was com-
puted deterministically. Thus, p, doesn’t consider
the full question or DB structure. We address this
next.
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Figure 2: High-level overview, where our contributions are in thick orange boxes. First, a relevance score is
predicted for each of the DB constants using the gating GCN. Then, a learned representation is computed for each
DB constant using the encoder GCN, which is then used by the decoder to predict K candidates queries. Finally,
the re-ranking GCN scores each one of these candidates, basing its score only on the selected DB constants. The
dashed line and arrow indicate no gradients are propagated from the re-ranking GCN to the decoder, as the decoder
outputs SQL queries. Names of loss terms are written below models that are trained with a loss on their output.
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Figure 3: The re-ranking GCN architecture (see text).

3 Global Reasoning over DB Structures

Figure 2 gives a high-level view of our model,
where the contributions of this paper are marked
by thick orange boxes. First, the aforementioned
relevance probabilities are estimated with a learned
gating GCN, allowing global structure to be taken
into account. Second, the model discriminatively
re-ranks the top- K queries output by the generative
decoder.
Global gating Bogin et al. (2019) showed that an
oracle relevance probability can increase model per-
formance, but computed p,, from local information
only.

We propose to train a GCN to directly predict p,,
from the global context of the question and DB.

The input to the gating GCN is the same graph
described in §2, except we add a new node vgjgbal,
connected to all other nodes with a special edge
type. To predict the question-conditioned rele-

vance of a node, we need a representation for
both the DB constant and the question. Thus,
we define the input to the GCN at node v to
be g) = FF([ry; hy;py]), where °; is con-
catenation, F'F(-) is a feed-forward network, and
h, = > Diink(zi | v) - e; is a weighted average
of contextual representations of question tokens.
The initial embedding of vgjobar is randomly initial-
ized. A relevance probability is computed per DB
constant based on the final graph representation:
P — o (FF (gf,L))). This probability replaces
Py at the input to the encoder GCN (Figure 2).
Because we have the gold query y for each
question, we can extract the gold subset of DB
constants U, i.e., all DB constants that appear

in y. We can now add a relevance loss term

— Yeu, log 5" = gy, log(1-p8"™) tothe

objective. Thus, the parameters of the gating GCN
are trained from the relevance loss and the usual de-
coding loss, a ML objective over the gold sequence
of decisions that output the query y.
Discriminative re-ranking Global gating pro-
vides a more accurate model for softly predicting
the correct subset of DB constants. However, pars-
ing is still auto-regressive and performed with a
local similarity function. To overcome this, we sep-
arately train a discriminative model (Collins and
Koo, 2005; Ge and Mooney, 2006; Lu et al., 2008;
Fried et al., 2017) to re-rank the top-K queries in
the decoder’s output beam. The re-ranker scores
each candidate tuple (z, S, y), and thus can glob-
ally reason over the entire candidate query g.

We focus the re-ranker capacity on the main
pain point of zero-shot parsing — the set of DB
constants {{; that appear in §. At a high-level
(Figure 3), for each candidate we compute a logit
sy = w! FF(fy,,e" "), where w is a learned

3661



parameter vector, fi,, is a representation for the
set Uy, and ei#" is a representation for the global
alignment between question words and DB con-
stants. The re-ranker is trained to minimize the
re-ranker loss, the negative log probability of the
correct query y. We now describe the computation
of fu, and €2 based on a re-ranking GCN.

Unlike the gating GCN, the re-ranking GCN
takes as input only the sub-graph induced by the se-
lected DB constants U/;, and the global node vgjopal-
The input is represented by féo) = FF(r,;hy),
and after L propagation steps we obtain f,, =
f (D)oo, Note that the global node representa-
tion is used to describe and score the question-
conditioned sub-graph, unlike the gating GCN
where the global node mostly created shorter paths
between other graph nodes.

The representation f, captures global proper-
ties of selected nodes but ignores nodes that were
not selected and are possibly relevant. Thus, we
compute a representation e?'€", which captures
whether question words are aligned to selected DB
constants. We define a representation for every
node v € V:

L .
%:{fp it € Uy

Ty otherwise

Now, we compute for every question word z; a
representation of the DB constants it aligns to:
17 =3 cypink(v | ;) - ¢, We concatenate
this representation to every word e?lign = [e;;17],
and compute the vector e*'€" using attention over
the question words, where the attention score for
every word is e?hgnTwm for a learned vector wy.
The goal of this term is to allow the model to recog-
nize whether there are any attended words that are
aligned with DB constants, but these DB constants
were not selected in Uy.

In sum, our model adds a gating GCN trained to
softly select relevant nodes for the encoder, and a re-
ranking GCN that globally reasons over the subset
of selected DB constants, and captures whether the

query properly covers question words.

4 Experiments and Results

Experimental setup We train and evaluate on
SPIDER (Yu et al.,, 2018b), which contains
7,000/1,034/2,147 train/development/test exam-
ples, using the same pre-processing as Bogin et al.
(2019). To train the re-ranker, we take K = 40

Model Accuracy
SYNTAXSQLNET 19.7%
GNN 39.4%
GLOBAL-GNN 47.4%

Table 1: Test set accuracy of GLOBAL-GNN compared
to prior work on SPIDER.

SINGLE MULTI
23.1% 7.0%

52.2% 26.8%
58.3% 27.6%
61.6% 40.3%
60.9% 33.8%
58.1% 36.8%
60.9% 36.6%
60.7% 38.3%
55.3% 38.3%

Model Acc. Beam
SYNTAXSQLNET 18.9%
GNN 40.7%
+ RE-IMPLEMENTATION  44.1%
GLOBAL-GNN 52.1%
- NO GLOBAL GATING 48.8%
- NO RE-RANKING 48.3%
- NO RELEVANCE LOSS 50.1%
NO ALIGN REP. 50.8%
QUERY RE-RANKER 47.8%
ORACLE RELEVANCE 56.4%

62.2%
65.9 %
62.2%
65.9%
64.8%
65.9%
65.9 %
73.5%

Table 2: Development set accuracy for various experi-
ments. The column ‘Beam’ indicates the fraction of ex-
amples where the gold query is in the beam (K = 10).

candidates from the beam output of the decoder.
At each training step, if the gold query is in the
beam, we calculate the loss on the gold query and
10 randomly selected negative candidates. At test
time, we re-rank the best K = 10 candidates in
the beam, and break re-ranking ties using the auto-
regressive decoder scores (ties happen since the
re-ranker considers the DB constants only and not
the entire query). We use the official SPIDER script
for evaluation, which tests for loose exact match of
queries.
Results As shown in Table 1, the accuracy of our
proposed model (GLOBAL-GNN) on the hidden
test set is 47.4%, 8% higher than current state-of-
the art of 39.4%. Table 2 shows accuracy results on
the development set for different experiments. We
perform minor modifications to the implementation
of Bogin et al. (2019), improving the accuracy from
40.7% to 44.1% (details in appendix A). We follow
Bogin et al. (2019), measuring accuracy on easier
examples where queries use a single table (SINGLE)
and those using more than one table (MULTI).
GLOBAL-GNN obtains 52.1% accuracy on the
development set, substantially higher than all previ-
ous scores. Importantly, the performance increase
comes mostly from queries that require more than
one table, which are usually more complex.
Removing any of our two main contributions
(NO GLOBAL GATING, NO RE-RANKING) leads
to a 4% drop in performance. Training without
the relevance loss (NO RELEVANCE LOSS) results
in a 2% accuracy degrade. Omitting the represen-
tation e*€" from the re-ranker (NO ALIGN REP.)
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reduces performance, showing the importance of
identifying unaligned question words.

We also consider a model that ranks the entire
query and not only the set of DB constants. We
re-define sy = w! FF( Juy, halign pavery) where
h9"YY is a concatenation of the last and first hid-
den states of a BILSTM run over the output SQL
query (QUERY RE-RANKER). We see performance
is lower, and most introduced errors are minor mis-
takes such as min instead of max. This shows
that our re-ranker excels at choosing DB constants,
while the decoder is better at determining the SQL
query structure and the SQL logical constants.

Finally, we compute two oracle scores to esti-
mate future headroom. Assuming a perfect global
gating, which gives probability 1.0 iff the DB con-
stant is in the gold query, increases accuracy to
63.2%. Adding to that a perfect re-ranker leads to
an accuracy of 73.5%.

Qualitative analysis Analyzing the development
set, we find two main re-occurring patterns, where
the baseline model is wrong, but our parser is cor-
rect. (a) coverage: when relevant question words
are not covered by the query, which results in a
missing joining of tables or selection of columns
(b) precision: when unrelated tables are joined to
the query due to high lexical similarity. Selected
examples are in Appendix B.

Error analysis In 44.4% of errors where the cor-
rect query was in the beam, the selection of U
was correct but the query was wrong. Most of
these errors are caused by minor local errors, e.g.,
min/max errors, while the rest are due to larger
structural mistakes, indicating that a global model
that jointly selects both DB constants and SQL to-
kens might further improve performance. Other
types of errors include missing or extra columns
and tables, especially in complex queries.

5 Conclusion

In this paper, we demonstrate the importance of
global decision-making for zero-shot semantic pars-
ing, where selecting the relevant set of DB con-
stants is challenging. We present two main tech-
nical contributions. First, we use a gating GCN
that globally attends the input question and the en-
tire DB schema to softly-select the relevant DB
constants. Second, we re-rank the output of a gen-
erative semantic parser by globally scoring the set
of selected DB-constants. Importantly, these con-
tributions can be applied to any zero-shot semantic

parser with minimal modifications. Empirically,
we observe a substantial improvement over the
state-of-the-art on the SPIDER dataset, showing
the effectiveness of both contributions.
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