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Abstract
The task of semantic parsing is highly use-
ful for dialogue and question answering sys-
tems. Many datasets have been proposed to
map natural language text into SQL, among
which the recent Spider dataset provides cross-
domain samples with multiple tables and com-
plex queries. We build a Spider dataset for
Chinese, which is currently a low-resource
language in this task area. Interesting research
questions arise from the uniqueness of the lan-
guage, which requires word segmentation, and
also from the fact that SQL keywords and
columns of DB tables are typically written in
English. We compare character- and word-
based encoders for a semantic parser, and dif-
ferent embedding schemes. Results show that
word-based semantic parser is subject to seg-
mentation errors and cross-lingual word em-
beddings are useful for text-to-SQL.

1 Introduction

The task of semantic parsing is highly useful for
tasks such as dialogue (Chen et al., 2013; Gupta
et al., 2018; Einolghozati et al., 2019) and question
answering (Gildea and Jurafsky, 2002; Yih et al.,
2015; Reddy et al., 2016). Among a wide range
of possible semantic representations, SQL offers a
standardized interface to knowledge bases across
tasks (Astrova, 2009; Xu et al., 2017; Dong and
Lapata, 2018; Lee et al., 2011). Recently, Yu et al.
(2018b) released a manually labelled dataset for
parsing natural language questions into complex
SQL, which facilitates related research.

Yu et al. (2018b)’s dataset is exclusive for En-
glish questions. Intuitively, the same semantic
parsing task can be applied cross-lingual, since
SQL is a universal semantic representation and
database interface. However, for languages other
than English, there can be added difficulties pars-
ing into SQL. Take Chinese for example, the addi-
tional challenges can be at least two-fold. First,

structures of relational databases, in particular
names and column names of DB tables, are typi-
cally represented in English. This adds to the chal-
lenges to question-to-DB mapping. Second, the
basic semantic unit for denoting columns or cells
can be words, but word segmentation can be erro-
neous. It is also interesting to study the influence
of other linguistic characteristics of Chinese, such
as zero-pronoun, on its SQL parsing.

We investigate parsing Chinese questions to
SQL by creating a first dataset, and empirically
evaluating a strong baseline model on the dataset.
In particular, we translate the Spider (Yu et al.,
2018b) dataset into Chinese. Using the model of
Yu et al. (2018a), we compare several key model
configurations.

Results show that our human-translated dataset
is significantly more reliable compared to a dataset
composed of machine-translated questions. In
addition, the overall accuracy for Chinese SQL
semantic parsing can be comparable to that for
English. We found that cross-lingual word em-
beddings are useful for matching Chinese ques-
tions with English table columns and keywords
and that language characteristics have a sig-
nificant influence on parsing results. We re-
lease our dataset named CSpider and code at
https://github.com/taolusi/chisp.

2 Related Work

Existing datasets for semantic parsing can be clas-
sified into two major categories. The first uses
logic for semantic representation, including ATIS
(Price, 1990; Dahl et al., 1994) and GeroQuery
(Zelle and Mooney, 1996). The second and
dominant category of datasets uses SQL, which
includes Restaurants (Tang and Mooney, 2001;
Popescu et al., 2003), Academic (Iyer et al., 2017),
Yelp and IMDB (Yaghmazadeh et al., 2017), Ad-
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vising (Finegan-Dollak et al., 2018) and the re-
cently proposed WikiSQL (Zhong et al., 2017)
and Spider (Yu et al., 2018b). One salient differ-
ence between Spider and prior work is that Spider
uses different databases across domains for train-
ing and testing, which can verify the generaliza-
tion power of a semantic parsing model. Com-
pared with WikiSQL, Spider further has multi-
ple tables in each database and correspondingly
more complex queries. We thus consider Spider
for sourcing our dataset. Existing semantic pars-
ing datasets for Chinese include a small corpus for
assigning semantic roles (Sun and Jurafsky, 2004)
and SemEval-2016 Task 9 for Chinese semantic
dependency parsing (Che et al., 2012), but these
data are not related to SQL. To our knowledge,
we are the first to release a Chinese SQL semantic
parsing dataset.

There has been a line of work improving the
model of Yu et al. (2018a) since the release of
the Spider dataset (Guo et al., 2019; Bogin et al.,
2019; Lin et al., 2019). At the time of our inves-
tigation, however, the models are not published.
We thus chose the model of Yu et al. (2018a) as
our baseline. The choice of more different neural
models is orthogonal to our dataset contribution,
but can empirically give more insights about the
conclusions.

3 Dataset

We translate all English questions in the Spider
dataset into Chinese.1 The work is undertaken by
2 NLP researchers and 1 computer science stu-
dent. Each question is first translated by one an-
notator, and then cross-checked and corrected by
a second annotator. Finally, a third annotator ver-
ifies the original and corrected versions. Statistics
of the dataset are shown in Table 1. There are orig-
inally 10181 questions from Spider, but only 9691
for the training and development sets are publicly
available. We thus translated these sentences only.
Following the database split setting of Yu et al.
(2018b), we make training, development and test
sets split in a way that no database overlaps in
them as shown in Table 1.

The translation work is performed on a database
to database basis. For each database, the same
translator translates relevant inquiries sentence by

1Note that we do not translate the database schema (i.e.,
column names) into Chinese because in practice databases
have English schema and Chinese contents in the industry.

# Q # SQL # DB # Table/DB
English all 10181 5693 200 5.1

Chinese

all 9691 5263 166 5.28
train 6831 3493 99 5.38
dev 954 589 25 4.16
test 1906 1193 42 5.69

Table 1: Comparisons between Spider and Chinese
Spider datasets.
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Figure 1: Overall structure of the Model.

sentence. The translator is asked to read the origi-
nal question as well as the SQL query before mak-
ing its Chinese translation. If the literal trans-
lation is possible, the translator is asked to stick
to the original sentence style as much as feasible.
For complex questions, the translator is allowed to
rephrase the English question, so that the most nat-
ural Chinese translation is made. In addition, we
keep the diversity of style in the English dataset by
matching different English expressions to different
Chinese expressions. A sample of our dataset is
shown in Table 2. Our dataset is named CSpider.

4 Model

We use the neural semantic parsing method of Yu
et al. (2018a) as the baseline model, which can be
regarded as a sequence-to-tree model. In particu-
lar, the input question is encoded using an LSTM
sequence encoder, and the output is a SQL query
in its syntactic tree form. The tree is generated in-
crementally top-down, in a pre-order traversal se-
quence. Tree nodes include keyword nodes (e.g.,
SELECT, WHERE, EXCEPT) and table column
name nodes (e.g., ID, City, Surname, which are
defined in specific tables), which are represented
in respective embedding spaces. Each keyword or
column is generated by attention to the embedding
space using the question representation as a key.
A stack is used for incremental decoding, where
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Sample 1: applying only one table in one database.
SQL Query
SELECT area FROM state WHERE state name = ”New Mexico”;
English Question
What is the size of New Mexico?
Translated Chinese Question
新墨西哥州的面积是多少？

Sample 2: applying multiple tables in one database.
SQL Query
SELECT T2.star rating description FROM HOTELS AS T1 JOIN
Ref Hotel Star Ratings AS T2 ON T1.star rating code = T2.star rating code
WHERE T1.price range >10000;
English Question
Give me the star rating descriptions of the hotels that cost more than 10000.
Translated Chinese Question
给出费用超过10000的酒店星级的描述。
Sample 3:with a nested SQL query.
SQL Query
SELECT T1.staff name , T1.staff id FROM Staff AS T1 JOIN Fault Log
AS T2 ON T1.staff id = T2.recorded by staff id EXCEPT SELECT
T3.staff name, T3.staff id FROM Staff AS T3 JOIN Engineer Visits AS
T4 ON T3.staff id = T4.contact staff id”;
English Question
What is the name and ID of the staff who recorded the fault log but has not
contacted any visiting engineers?
Translated Chinese Question
那些记录了错误报告但没有联系任何到访工程师的职工的姓名和ID
是什么？

Table 2: Example questions corresponding to SQL.

the whole output history is leveraged as a feature
for deciding the next term. This method gives the
current released state-of-the-art results while sub-
mitting this paper. We provide a visualization of
the model in Figure 1.

5 Experiments

We focus on comparing different word segmenta-
tion methods and different embedding representa-
tions. As discussed above, column names are se-
lected by attention over column embeddings using
sentence representation as a key. Hence there must
be a link between the embeddings of columns and
those of the questions. Since columns are written
in English and questions in Chinese, we consider
two embedding methods. The first method is to
use two separate sets of embeddings for Chinese
and English, respectively. We use Glove (Pen-
nington et al., 2014)2 for embeddings of English
keywords, column names etc., and Tencent em-
beddings (Song et al., 2018)3 for Chinese. The
second method is to directly use the cross-lingual
word embeddings. To this end, the Tencent multi-
lingual embeddings are chosen, which contain
both Chinese and English words in a multi-lingual
embedding matrix.

Evaluation Metrics. We follow Yu et al.
(2018b), evaluating the results using two major

2https://nlp.stanford.edu/projects/glove/
3https://ai.tencent.com/ailab/nlp/embedding.html

types of metrics. The first is exact matching accu-
racy, namely the percentage of questions that have
exactly the same SQL output as its reference. The
second is component matching F1, namely the F1
scores for SELECT, WHERE, GROUP BY, ORDER

BY and all keywords, respectively.
Hyperparameters. Our hyperparameters are

mostly taken from Yu et al. (2018a), but tuned
on the Chinese Spider development set. We use
character and word embeddings from Tencent em-
bedding; both of them are not fine-tuned during
model training. Embedding sizes are set to 200
for both characters and words. For the different
choices of keywords and column names embed-
dings, sizes are set to 200 and 300, respectively.
Adam (Kingma and Ba, 2014) is used for opti-
mization, with a learning rate of 1e-4. Dropout
is used for the output of LSTM with a rate of 0.5.

For word-based models, segmentation is neces-
sary. We take two segmentors with different per-
formances, including the Jieba segmentor and the
model of Yang et al. (2017), which we name Jieba
and YZ, respectively. To verify their accuracy, we
manually segment the first 100 sentences from the
test set. Jieba and YZ give F1 scores of 89.8% and
91.7%, respectively.

5.1 Overall Results

The overall exact matching results are shown in
Table 3. In this table, ENG represents the re-
sults of Yu et al. (2018a)’s model on their En-
glish dataset but under our split. HT and MT de-
note human translation and machine translation of
questions, respectively. Both HT and MT results
are evaluated on human translated questions. C-
ML and C-S denote the results of our Chinese
models based on characters with multi-lingual em-
beddings and monolingual embeddings, respec-
tively, while WY-ML, WY-S denote the word-
based models applying YZ segmentor with multi-
lingual embeddings and monolingual embeddings,
respectively. Finally, WJ-ML and WJ-S denote the
word model with multi-lingual embeddings and
monolingual embeddings with the Jieba segmen-
tor, respectively.

First, compared to the best results of human
translation (C-ML and WY-ML), machine transla-
tion results show a large disadvantage (e.g. 7.1%
vs 12.1% using C-ML). We further did a man-
ual inspection of 100 randomly picked machine-
translated sentences. Out of the 100 translated
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Easy Medium Hard Extra Hard All
ENG 31.8% 11.3% 9.5% 2.7% 14.1%

HT

C-ML 27.3% 9.9% 7.5% 2.3% 12.1%
C-S 23.1% 7.7% 6.2% 1.7% 9.9%

WY-ML 21.4% 8.1% 8.0% 1.7% 10.0%
WY-S 20.2% 6.4% 6.7% 2.0% 8.9%

WJ-ML 19.8% 8.6% 5.0% 1.3% 9.2%
WJ-S 20.1% 5.0% 5.7% 1.7% 8.2%

MT
C-ML 18.1% 4.6% 5.2% 0.3% 7.9%

WY-ML 17.9% 4.7% 4.5% 0.3% 7.6%

Table 3: Accuracy of Exact Matching on test set.

sentences, 42 have translation mistakes such as se-
mantic changes (28 sentences) and grammar errors
(14 sentences). Both of these facts indicate that
data by machine-translation is not reliable for se-
mantic parsing research.

Second, comparisons among C-ML, WY-ML
and WJ-ML, and among C-S, WY-S and WJ-S
show that multi-lingual embeddings give supe-
rior results compared to monolingual embeddings,
which is likely because they bring a better con-
nection between natural language questions and
database columns.

Third, comparisons between WY-ML and WJ-
ML, and WY-S and WJ-S indicate that better seg-
mentation accuracy has a significant influence on
question parsing. Word-based methods are subject
to segmentation errors.

Moreover, with the current segmentation ac-
curacy of 92%, a word-based model underper-
forms a character-based model. Intuitively, since
words carry more direct semantic information as
compared with database columns and keywords,
improved segmentation may allow a word-based
model to outperform a character-based model.

Finally, for easy questions, the character-based
model shows strong advantages over the word-
based models. However, for medium to extremely
hard questions, the trend becomes less obvious,
which is likely because the intrinsic semantic com-
plexity overwhelms the encoding differences.

Our best Chinese system gives an overall accu-
racy of 12.1%, 4 which is less but comparable to
the English results. This shows that Chinese se-
mantic parsing may not be significantly more chal-
lenging compared to English with text to SQL.

Component matching. Figure 2 shows F1
scores of several typical components, including
SELN (SELECT NO AGGREGATOR), WHEN

4Note that the results are lower than those reported by Yu
et al. (2018a) under their split due to different training/test
splits. Our split has less training data and more test instances
in the “Hard” category and less in “Easy” and “Medium”.
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Figure 2: Component Matching Comparisons.

(WHERE NO OPERATOR) and GBN (GROUP
BY NO HAVING), applying the superior multi-
lingual embeddings. The trends are consistent
with the overall results.

The detailed results are shown in Table 4.
Specifically, the char-based methods achieve
around 41% on SELN and SEL (SELECT), which
are about 5% higher compared to the word-based
methods. This result may be due to the fact
that word-based models are sensitive to the OOV
words (Zhang and Yang, 2018; Li et al., 2019).
Unlike other components, SEL and SELN are con-
fronted with more severe OOV challenges caused
by recognizing the unseen schema during testing.

In addition, the models using multi-lingual
embedding overperform the models using sepa-
rate embeddings on both WHEN and OB (OR-
DERBY), which further demonstrates that embed-
dings in the same dimension distribution benefit
to strengthen the connection between the question
and the schema.

Contrary to the overall result, the models em-
ploying the jieba segmentor perform better than
those using the YZ segmentor on OB. The reason
is that the jieba segmentor has different word seg-
mentation results in terms of the superlative of ad-
jectives. For example, the word “最高” (the high-
est) is segmented as “最”(most) and “高”(high) by
YZ segmentor but “最高” in jieba segmentor. This
again demonstrates the influence of word segmen-
tation. Finally, for GB (GROUPBY) there is not a
regular contrast pattern between different models,
which can be likely because of the lack of suffi-
cient training data.

5.2 Case study

Figure 3 shows the negative influence of segmen-
tation errors. In particular, the incorrect segmen-
tation of the word “店名” (shop name) leads to
incorrect SQL for the whole sentence, since the
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SEL SELN WHE WHEN GB GBN OB
ENG 47.3% 48.2% 19.9% 24.4% 35.0% 40.6% 57.6%

HT C-ML 40.7% 41.2% 19.9% 23.6% 33.6% 36.7% 53.8%
C-S 40.6% 41.0% 15.3% 17.3% 29.2% 32.9% 51.7%

WY-ML 34.8% 35.6% 18.1% 21.4% 26.7% 30.9% 49.8%
WY-S 34.5% 35.6% 16.5% 19.8% 30.2% 34.2% 46.9%

WJ-ML 34.7% 35.4% 15.8% 19.2% 27.9% 31.4% 52.5%
WJ-S 35.7% 36.8% 15.9% 19.6% 24.4% 26.8% 48.0%

MT
C-ML 36.5% 37.2% 11.3% 14.2% 29.1% 33.4% 50.7%

WY-ML 32.1% 32.8% 11.3% 13.4% 24.8% 27.5% 49.1%

Table 4: F1 scores of Component Matching on test set.

Word segmentation error Predicted query

哪些 商店 的 产品 数量 高于 平
均 水平 ？ 把 店 名 给 我 。
Which shops' number products 
is above the average? Give me 
the shop names.

SELECT Manager_name FROM 
shop WHERE Number_products > 
(SELECT AVG(Number_products) 
FROM shop)

哪些 商店 的 产品 数量 高于
平均 水平 ？ 把 店名 给 我 。
Which shops' number products 
is above the average? Give me 
the shop names.

SELECT name FROM shop WHERE 
Number_products > (SELECT 
AVG(Number_products) FROM 
shop)

Figure 3: Word segmentation error.

character “店” (shop) can typically be associated
with “店长” (shop manager).

Figure 4 shows the sensitivity of our model
to sentence patterns. In particular, the word-
based model gives incorrect predictions for many
question sentences frequently. As shown in the
first row, the word “where” confuses the sys-
tem for making a choice between “ORDER BY”
and “GROUP BY”. When we manually change
the sentence pattern into “List the most com-
mon hometown of teachers”, the parser gives
the correct keyword. In contrast, the character-
based model is less sensitive to question sentences,
which is likely because characters are less sparse
compared with words. More training data or con-
textualized embeddings may alleviate the issue for
the word-based method, which we leave for future
work.

Figure 5 shows the sensitivity of the model to
Chinese linguistic patterns. In particular, the first
sentence has a zero pronoun “各党的” (in each
party), which is omitted later. As a result, a seman-
tic parser cannot tell the correct database columns
from the sentence. We manually add the correct
entity for the zero pronoun, resulting in the second
sentence. The parser can correctly identify both
the column name and the table name for this cor-
rected sentence. Since zero-pronouns are frequent

Sentence patterns Predicted query

最 常 见 的 教师 的 家乡 是 哪里 ？
What is the most common 
hometowns for teachers?

SELECT Hometown FROM 
teacher ORDER BY Age DESC 
LIMIT 1

列出 最 常 见 的 教师 的 家乡 。
List the most common hometown of 
teachers.

SELECT Hometown FROM 
teacher GROUP BY Hometown 
ORDER BY COUNT(*) DESC 
LIMIT 1

Figure 4: Sentence pattern.

Chinese zero pronoun Predicted query

代表 的 不同 党派 是 什么 ？ 显示
各 党 的 党名 和 代表 人数 。
What are the different parties of 
representative? Show the party name 
and the number of representatives.

SELECT Date , COUNT(*) FROM 
election GROUP BY Seats

代表 的 不同 党派 是 什么 ？ 显示
各 党 的 党名 和 各 党 的 代表 人数 。
What are the different parties of 
representative? Show the party name 
and the number of representatives in 
each party.

SELECT Party , COUNT(*) FROM 
representative GROUP BY Party

Figure 5: Chinese zero pronoun.

for Chinese (Chen and Ng, 2016), they give added
difficulty for its semantic parsing.

6 Conclusion

We constructed a first resource named CSpider for
Chinese sentence to SQL, evaluating the perfor-
mance of a strong English model on this dataset.
Results show that the input representation, embed-
ding forms and linguistic factors all have the influ-
ence on the Chinese-specific task. Our dataset can
serve as a starting point for further research on this
task, which can be beneficial to the investigation of
Chinese QA and dialogue models.
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