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Abstract

One way to reduce network traffic in multi-
node data-parallel stochastic gradient descent
is to only exchange the largest gradients. How-
ever, doing so damages the gradient and de-
grades the model’s performance. Tranformer
models degrade dramatically while the impact
on RNNs is smaller. We restore gradient qual-
ity by combining the compressed global gradi-
ent with the node’s locally computed uncom-
pressed gradient. Neural machine translation
experiments show that Transformer conver-
gence is restored while RNNs converge faster.
With our method, training on 4 nodes con-
verges up to 1.5x as fast as with uncompressed
gradients and scales 3.5x relative to single-
node training.

1 Introduction

In recent years, neural network models have
grown dramatically in terms of number of pa-
rameters (Wen et al., 2017), so exchanging gradi-
ents during data-parallel training is costly in terms
of both bandwidth and time, especially in a dis-
tributed setting. Communication can be reduced
(possibly at the expense of convergence) by send-
ing only the top 1% of largest gradients in terms of
absolute values, a method known as gradient drop-
ping (Strom, 2015; Dryden et al., 2016; Aji and
Heafield, 2017; Lin et al., 2018). Related meth-
ods are synchronizing less often (McMahan et al.,
2017; Ott et al., 2018; Bogoychev et al., 2018)
and quantization (Seide et al., 2014; Alistarh et al.,
2016).

As these compression methods are lossy, each
node’s locally computed gradient is not immedi-
ately reflected in the global gradient. Our exper-
iments show that gradient compression damages
the model’s performance, especially in the case of
a Transformer model (Vaswani et al., 2017), which
is known to be sensitive to noisy gradients (Chen

et al., 2018; Ott et al., 2018; Aji and Heafield,
2019). We aim to repair the compressed gradi-
ent by combining it with the local gradients to im-
prove the trade-off between convergence and com-
pression rates.

In this paper, we apply gradient dropping to
reduce the inter-node communication during dis-
tributed neural network training, which leads to
faster training speed but reduced model conver-
gence rate. We find that combining the sparse
global gradient with the dense local gradient im-
proves convergence. However, adding local infor-
mation means that nodes’ parameters will diverge
over time. We address this by periodically averag-
ing the model (McMahan et al., 2017), achieving
faster end-to-end training time.

2 Related Work

2.1 Sparse Gradient Compression

Gradients are skewed: most values are near zero
while very few have large absolute value (Aji
and Heafield, 2017). Formally, Pearson’s skew-
ness coefficient is typically 2–4, but up to 262 in
embedding matrices where much of the param-
eters lie. Sparse gradient compression exploits
this by rounding gradients below a threshold to
zero, sending only a sparse matrix of large gra-
dients (Strom, 2015). The threshold can be set
dynamically to the top 1% of gradients, achieving
constant compression (Dryden et al., 2016). Un-
sent gradients are added to the next gradient prior
to compression (Seide et al., 2014).

Gradient dropping is outlined in Algorithm 1.
At each time step t, each node n computes a local
gradient Ln

t on its data. The error feedback mecha-
nism adds unsent gradients from the previous step
Et−1 to the local gradient Ln

t . The combined gra-
dient is then broken into sparse gradient Sn

t and
residual Et. Although the gradient is sparse, all
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Algorithm 1 Gradient dropping on node n

1: procedure SPARSESGD(Ln
t )

2: . Ln
t is local gradient of node n at step t.

3: En
t ← En

t−1 + Ln
t

4: threshold← K-th largest of |En
t |

5: mask ← |En
t | ≥ threshold

6: Sn
t ← mask � En

t

7: En
t ← ¬mask � En

t

8: Gt ← AllReduce(Sn
t )

9: ApplyOptimizer(Gt)
10: end procedure

parameters are updated because Adam (Kingma
and Ba, 2015) has momentum terms. Parameter
updates run redundantly in all nodes so that only
gradients are sent over the network.

The sum of sparse gradients is less sparse. We
can send the summed gradient by itself (Lin et al.,
2018) or again take the top 1% of summed gradi-
ents. Our cluster of 4 nodes is small enough that
there was little speed difference, so we did not re-
compress the summed gradients.

2.2 Federated Averaging
Another way to reduce the bandwidth cost in
multi-node training is by reducing the communi-
cation frequency (McMahan et al., 2017). In fed-
erated averaging, workers do not exchange gradi-
ents. Instead, each worker uses its local gradient
to update its own local parameters. Each worker
updates their local parameters by averaging across
other nodes once every few steps.

In contrast with gradient dropping, federated
averaging mainly uses the worker’s local gradients
for parameter updates. Gradients from other work-
ers are not directly communicated and are there-
fore not taken into account by the optimizer.

3 Combining With Local Gradients

Recent work suggests that the Transformer is sen-
sitive to noisy gradients, resulting in substantially
worse models (Chen et al., 2018; Ott et al., 2018;
Aji and Heafield, 2019). Consistent with these
findings, both gradient sparsification and federated
averaging yield low-quality Transformer models
in our experiments. In gradient sparsification,
noise comes from both thresholding and the error-
feedback mechanism, which causes stale gradi-
ents. Federated averaging also introduces stale
updates as this approach delays model synchro-
nization. Previous work has shown that both

noisy and stale gradients damage the model’s qual-
ity (McMahan and Streeter, 2014; Ott et al., 2018;
Dutta et al., 2018).

To address noisy updates in gradient sparsifi-
cation, we combine the compressed global gradi-
ent and the uncompressed locally computed gra-
dient in an effort to better approximate the true
global gradient. Formally, let Gt be the com-
pressed global gradient at time t and Ln

t be the
gradient computed locally on node n. These will
be combined into Cn

t that will be used to update
the parameters.

An arguably naı̈ve method sums the two gradi-
ents. With a scale-invariant optimizer like Adam,
this is equivalent to averaging.

Cn
t = Gt + Ln

t

However, some of the locally-computed gradi-
ents were sent out and became part of the global
gradient, so they will be double-counted by the
sum. To compensate, we can subtract out the gra-
dients Sn

t sent by node n.

Cn
t = Gt − Sn

t + Ln
t

The term Gt − Sn
t equals to the sum of all sparse

gradients from other nodes (or approximates it
when the all-reduce compresses the result). The
local gradient Ln

t used for updating does not in-
clude the error-feedback term En

t to prevent ap-
plying gradients multiple times while they are
pending in error-feedback.

3.1 Periodic Synchronization
Nodes will diverge because local gradients differ.
Therefore, models are averaged periodically. We
average parameters (McMahan et al., 2017) every
500 steps with minimal impact on speed.

In the limit, a gradient is applied twice. First, a
local update eventually makes its way to the other
nodes via periodic averaging. Second, it accumu-
lates with enough other gradients to be selected for
inclusion in the compressed gradient and applied
as part of a global update.

4 Experimental Setup

We use Marian (Junczys-Dowmunt et al., 2018) to
train on nodes with 4xP100s. Multi-node experi-
ments use 4 of these nodes, each connected with
40Gb Mellanox Infiniband. These scenarios will
be abbreviated as 1x4 (one node with four GPUs)
and 4x4 (four nodes with four GPUs each).
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4.1 Model and Dataset

We perform our neural machine translation exper-
iments on the following architectures.

Transformer: We train a Transformer model
with six encoder and six decoder layers with tied
embeddings. The model has 62M parameters. We
train the model on the WMT 2017 English to Ger-
man dataset with back-translated monolingual cor-
pora (Sennrich et al., 2016b) and byte-pair encod-
ing (Sennrich et al., 2016c), consisting of 19.1M
sentence pairs. Model performance is validated on
newstest2016 and tested on newstest2017.

Deep RNN: We also train a deep RNN model
Sennrich et al. (2017) with eight layers of bidirec-
tional LSTM consisting of 225M parameters. We
train the model with the same English to German
dataset from the Transformer experiment.

Shallow RNN: Our shallow RNN model is
based on the winning system by Sennrich et al.
(2016a) and is a single layer bidirectional encoder-
decoder LSTM with attention consisting of 119M
parameters. We train this model on WMT 2016
Romanian to English dataset, consisting of 2.5M
sentence pairs. We also apply byte-pair encoding
to this dataset. Model performance is validated on
newsdev2016 and tested on newstest2016.

We apply layer normalization (Lei Ba et al.,
2016) and exponential smoothing to train the
model for 8 epochs of training.

4.2 Scaling Hyperparameters

In all our experiments, we use a memory budget
of 10GB per GPU to dynamically fit as many sen-
tences as possible, corresponding to an average
of 450 and 250 sentences per batch per GPU for
Ro-En and En-De, respectively. Hence, we apply
several adjustments to the hyperparameters to ac-
commodate the larger effective batch size of multi-
node synchronous SGD:

Learning rate: The Adam optimizer is scale-
invariant, so the parameters move at the same
magnitude regardless the gradient size. Therefore,
we linearly scale the learning rate in all multi-node
experiments, as suggested by Goyal et al. (2017).
On one node, we use a learning rate of 0.0003 for
Transformer and deep RNN models, and 0.001 for
the shallow RNN model. These values multiplied
by 4 for the 4-node setting. The single-node learn-
ing rates were optimized in the sense that further
increasing them damages performance.

Warm-up: Learning rate warm-up helps over-
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Figure 1: Model convergence per-updates on gradient
dropping with local gradient update. We focus on the
early stage of the training, before the BLEU converged.
Training a Transformer with gradient dropping or fed-
erated averaging yielded 0 BLEU.

come initial model instability when training with
large mini-batches (Goyal et al., 2017). We add a
linear learning rate warm-up for the Transformer,
deep RNNs, and shallow RNNs for the first 16k,
4k, and 2k steps respectively. We apply inverse
square root cool-down following Vaswani et al.
(2017) for Transformer and deep RNN models.

We follow the rest of the hyperparameter set-
tings as suggested in the papers (Vaswani et al.,
2017; Sennrich et al., 2017, 2016a).

5 Results and Analysis

5.1 Restoring Quality

We approximate impact on quality by measur-
ing the BLEU score (Papineni et al., 2002) ob-
tained per update, experimenting with both RNN
and Transformer systems. The baselines are
vanilla 4-node synchronous SGD, gradient drop-
ping (Aji and Heafield, 2017), and federated aver-
aging (McMahan et al., 2017). For gradient drop-
ping, we perform drop ratio warmup, gradually in-
creasing it to 99% after 1000 steps. We average
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Transformer Deep RNN Shallow RNN
Model dev test dev test dev test
Multi-node (4x4) 35.39 28.78 34.45 27.81 35.45 34.45
4x4 + gradient dropping 0.00 0.00 34.38 27.50 35.20 33.89
4x4 + federated averaging 0.00 0.00 34.33 27.42 35.25 33.93
4x4 + gradient dropping + local update 35.07 28.50 34.52 27.68 35.35 34.45

Table 1: Training quality of multi-node training with gradient compression techniques, measured with BLEU.

the model every 20 steps in federated averaging
experiment, and every 500 steps in our proposed
method.

Figure 1 shows BLEU score per update. Gra-
dient dropping and federated averaging reduce
gradient quality and improvement per update is
slower. In the Transformer case, the model is inca-
pable of training at all. Local gradient incorpora-
tion improves the sparse gradient quality and im-
proves convergence per-epoch over gradient drop-
ping. In all architectures, the model achieved a
comparable training curve compared to the un-
compressed multi-node training.

Table 1 summarizes model’s performance in
terms of BLEU. With local gradient incorporation,
the models obtained better final quality, perform-
ing closer to uncompressed multi-node training.
Local gradient incorporation enables the Trans-
former to train with a sparse gradient, albeit with
slight quality degradation (0.28–0.32%). This re-
sult confirms Transformer’s sensitivity to noisy
updates and the ability of local gradients to mostly
repair them.

5.2 Improving Training Speed

We measure the speed improvement of our pro-
posed method by capturing the raw processing
speed and time to reach certain BLEU. We com-
pare it to both gradient dropping and federated av-
eraging. We also measure the training efficiency
by comparing the results with a single-node sys-
tem. For the Transformer, we exclude gradient
dropping and federated averaging as the models
fail to train.

Table 2 summarizes our experiments. Gradi-
ent dropping reduces network traffic 50-fold and
significantly improves the raw training speed in
multi-node setting up to 3.4x over single-node,
and up to 1.6x faster raw speed over uncom-
pressed multi-node setting. Federated averaging
is faster because there is no additional communi-
cation overhead for every step, and no extra com-
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Figure 2: Convergence over time of gradient dropping
with local gradient update.

putational cost for sparse gradients’ compression.
Finally, our method incurs the combined cost of
gradient dropping, occasional federated averag-
ing, and local updates so it is slower than gradient
dropping at raw speed, but still substantially faster
than uncompressed multi-node training.

While vanilla gradient dropping and federated
averaging have better raw speed, there is no clear
improvement on convergence speed as noisy gra-
dients damage the convergence. Local gradient
update restores the gradient and improves the con-
vergence speed. In our RNN experiments, conver-
gence speedup is closer to the raw speedup, up to
3.5x single-node performance.

The Transformer convergence rate increases
more slowly than raw batch processing speed.
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Model Words/ Raw speedup Time to conv. speedup
Transformer (En-De) second (1x4 / 4x4) conv. (1x4 / 4x4)
Single-node (1x4) 36029 - 7.61h -
Multi-node (4x4) 97111 2.7x / - 4.76h 1.6x / -
4x4 + gradient dropping + local update 122914 3.4x / 1.3x 4.03h 1.9x / 1.2x
Deep RNN (En-De)
Single-node (1x4) 18205 - 23.68h -
Multi-node (4x4) 42930 2.4x / - 10.59h 2.2x / -
4x4 + gradient dropping 60090 3.3x / 1.4x 8.94h 2.6x / 1.2x
4x4 + federated averaging 66149 3.6x / 1.5x 9.50h 2.5x / 1.1x
4x4 + gradient dropping + local update 59747 3.3x / 1.4x 6.80h 3.5x / 1.5x
Shallow RNN (Ro-En)
Single-node (1x4) 36466 - 2.37h -
Multi-node (4x4) 75641 2.1x / - 1.05h 2.3x / -
4x4 + gradient dropping 118189 3.2x / 1.6x 0.94h 2.5x / 1.1x
4x4 + federated averaging 124273 3.4x / 1.6x 1.06h 2.2x / 1.0x
4x4 + gradient dropping + local update 117756 3.2x / 1.6x 0.85h 2.8x / 1.2x

Table 2: Speed performance of gradient dropping with local gradient update, compared to several baselines. Time
to convergence is time needed to reach 34.5 BLEU (Transformer & Shallow RNN) or 33.5 BLEU (Deep RNN).

While the rule of thumb is to scale learning rate
linearly with batch size (Goyal et al., 2017), the
Transformer model is also sensitive to high learn-
ing rates (Aji and Heafield, 2019). We obtained
1.6x convergence speedup, instead of the expected
2.7x speedup. Scaling the learning rate sublinearly
can be explored.

Compression results are of course dependent on
the ratio between computation and network band-
width in a system, as well as model size. Because
the method reduces network load, we would ex-
pect to see even larger speed improvement with
commodity hardware instead of the 40 gigabit In-
finiband network used in our experiments.

6 Conclusion

We improve model convergence when training
with sparse gradients by utilizing an additional
locally-computed gradient, while also negates the
quality loss in terms of BLEU caused by gradient
dropping. With gradient dropping and local gra-
dient incorporation, we improve the raw training
speed in terms of word/second by up to 3.4x over
single-node system, and up to 1.6x over uncom-
pressed multi-node system. We also evaluate the
training speed by the time needed to reach a near-
convergence BLEU score. In this case, we im-
prove the training speed by up to 3.5x over single-
node system and up to 1.5x over uncompressed
multi-node system.

7 Acknowledgements

Alham Fikri Aji is funded by the Indone-
sia Endowment Fund for Education scholarship
scheme. This work was performed using re-
sources provided by the Cambridge Service for
Data Driven Discovery (CSD3) operated by the
University of Cambridge Research Computing
Service (http://www.csd3.cam.ac.uk/),
provided by Dell EMC and Intel using Tier-2 fund-
ing from the Engineering and Physical Sciences
Research Council (capital grant EP/P020259/1),
and DiRAC funding from the Science and Tech-
nology Facilities Council (www.dirac.ac.
uk).

References
Alham Fikri Aji and Kenneth Heafield. 2017. Sparse

communication for distributed gradient descent. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
440–445.

Alham Fikri Aji and Kenneth Heafield. 2019. Making
asynchronous stochastic gradient descent work for
transformers. arXiv preprint arXiv:1906.03496.

Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vo-
jnovic. 2016. QSGD: randomized quantization for
communication-optimal stochastic gradient descent.
CoRR, abs/1610.02132.

Nikolay Bogoychev, Kenneth Heafield, Alham Fikri
Aji, and Marcin Junczys-Dowmunt. 2018. Accel-

http://www.csd3.cam.ac.uk/
www.dirac.ac.uk
www.dirac.ac.uk
http://arxiv.org/abs/1610.02132
http://arxiv.org/abs/1610.02132


3631

erating asynchronous stochastic gradient descent for
neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2991–2996.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
et al. 2018. The best of both worlds: Combining
recent advances in neural machine translation. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 76–86.

Nikoli Dryden, Sam Ade Jacobs, Tim Moon, and Brian
Van Essen. 2016. Communication quantization for
data-parallel training of deep neural networks. In
Proceedings of the Workshop on Machine Learn-
ing in High Performance Computing Environments,
pages 1–8. IEEE Press.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh,
Parijat Dube, and Priya Nagpurkar. 2018. Slow
and stale gradients can win the race: Error-runtime
trade-offs in distributed sgd. In International
Conference on Artificial Intelligence and Statistics,
pages 803–812.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. 2017. Ac-
curate, large minibatch sgd: training imagenet in 1
hour. arXiv preprint arXiv:1706.02677.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
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