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Abstract
When trained effectively, the Variational Au-
toencoder (VAE) is both a powerful language
model and an effective representation learn-
ing framework. In practice, however, VAEs
are trained with the evidence lower bound
(ELBO) as a surrogate objective to the in-
tractable marginal data likelihood. This ap-
proach to training yields unstable results, fre-
quently leading to a disastrous local optimum
known as posterior collapse. In this paper,
we investigate a simple fix for posterior col-
lapse which yields surprisingly effective re-
sults. The combination of two known heuris-
tics, previously considered only in isolation,
substantially improves held-out likelihood, re-
construction, and latent representation learn-
ing when compared with previous state-of-the-
art methods. More interestingly, while our
experiments demonstrate superiority on these
principle evaluations, our method obtains a
worse ELBO. We use these results to argue that
the typical surrogate objective for VAEs may
not be sufficient or necessarily appropriate for
balancing the goals of representation learning
and data distribution modeling.1

1 Introduction

Latent variable models attempt to model observed
data x given latent variables z, both for pur-
poses of modeling data distributions p(x) (e.g.
language modeling) and learning representations
z for a particular x (e.g. sentence embedding).
Variational Autoencoders (VAEs) (Kingma and
Welling, 2014) are a powerful framework for
learning latent variable models using neural net-
works. The generative model of VAEs first sam-
ples a latent vector z from a prior p(z), then ap-
plies a neural decoder p(x|z) to produce x con-
ditioned on the latent code z. VAEs are trained

∗Equal contribution.
1Code is available at https://github.com/

bohanli/vae-pretraining-encoder.

to maximize the evidence lower bound (ELBO) of
the intractable log marginal likelihood:

Ez∼qφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z)),

where qφ(z|x) represents an approximate poste-
rior distribution (i.e. the encoder or inference net-
work) and pθ(x|z) is the generative distribution
(i.e. the decoder).

However, modeling text with VAEs has proven
to be challenging, and is an open research prob-
lem (Yang et al., 2017; Xu and Durrett, 2018; Kim
et al., 2018; Dieng et al., 2018; He et al., 2019;
Pelsmaeker and Aziz, 2019). When a strong de-
coder (e.g. the LSTM (Hochreiter and Schmidhu-
ber, 1997)) is employed, training often falls into
a trivial local optimum where the decoder learns
to ignore the latent variable and the encoder fails
to encode any information. This phenomenon
is referred to as “posterior collapse” (Bowman
et al., 2016). Existing efforts tackling this prob-
lem include re-weighting the KL loss (Bowman
et al., 2016; Kingma et al., 2016; Liu et al., 2019),
changing the model (Yang et al., 2017; Semeniuta
et al., 2017; Xu and Durrett, 2018), and modifying
the training procedure (He et al., 2019).

After conducting an empirical examination of
the state-of-the-art methods (Section 2), we find
that they have difficulty striking a good balance
between language modeling and representation
learning. In this paper, we present a practi-
cally effective combination of two simple heuris-
tic techniques for improving VAE learning: (1)
pretraining the inference network using an au-
toencoder objective and (2) thresholding the KL
term in the ELBO objective (also known as “free
bits” (Kingma et al., 2016)). The former technique
initializes VAE training with an inference network
that encodes useful information about x, biasing
learning away from local optima where x is ig-
nored (i.e. posterior collapse). The latter tech-

https://github.com/bohanli/vae-pretraining-encoder
https://github.com/bohanli/vae-pretraining-encoder
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nique modifies the ELBO objective to prevent the
KL term from dominating the encoder’s role in
reconstruction (Alemi et al., 2018), again biasing
learning to avoid posterior collapse (Chen et al.,
2017; Zhao et al., 2019).

In experiments we find that these two tech-
niques do not perform well in isolation. However,
when combined, they substantially outperform all
baselines across various metrics that evaluate both
language modeling and representation learning ca-
pabilities. Finally, we find that our method tends
to achieve a superior language modeling results in
terms of perplexity but an inferior ELBO value,
and we use these results to argue that ELBO is sub-
optimal for language modeling even though it pro-
vides a formal lower bound on log marginal likeli-
hood. Thus, we suggest that future research in this
direction should be careful to monitor the gap be-
tween ELBO and log marginal likelihood, and re-
consider using ELBO as the surrogate, especially
for evaluation.

2 Analysis of Existing Methods

In this section, we first analyze and compare state-
of-the-art solutions to posterior collapse2 to obtain
a holistic view of current progress and remaining
challenges. Based on these observations, we then
propose and evaluate a method that demonstrates
substantially improved performance.

2.1 Evaluation
In this paper we focus on the standard VAE set-
ting where both the prior p(z) and the poste-
rior pθ(z|x) are factorized Gaussians.3 We con-
duct preliminary experiments on the English Penn
Treebank (PTB) (Marcus and Marcinkiewicz), a
standard dataset for benchmarking VAE that has
been used extensively in previous work (Bowman
et al., 2016; Xu and Durrett, 2018; Liu et al.,
2019). We use 32-dimension latent codes (full
setup details can be found in Appendix A). We
evaluate using the following metrics:

Perplexity (PPL). To compute perplexity, we
first estimate the log marginal likelihood with
1000 importance weighted samples (Burda et al.,
2016). Note that it is inappropriate to estimate

2Here we focus on different training techniques for exist-
ing models, not alternatives which require changing the un-
derlying model (Yang et al., 2017; Xu and Durrett, 2018).

3 Pelsmaeker and Aziz (2019) thoroughly investigate us-
ing more complicated priors/posteriors (Rezende and Mo-
hamed, 2015) but find only marginal improvements.

PPL with ELBO directly since the gap between
ELBO and log marginal likelihood might be large,
particularly when the posterior does not collapse.

Reconstruction loss (Recon). Reconstruction
loss is equivalent to the negative reconstruction
term in ELBO: −Ez∼qφ(z|x)[log pθ(x|z)]. It char-
acterizes how well the latent code can be used to
recover the input.

Number of active units (AU, Burda et al.
(2016)). Active units correspond to the dimen-
sions of z that covary with observations after the
model is trained. More active units usually in-
dicates richer latent representations (Burda et al.,
2016). Specifically, a dimension is “active” when
it is sensitive to the change in observations x. Here
we follow (Burda et al., 2016) and classify a latent
dimension z as active if Cov(x, Ez∼q(z|x)[z])) >
0.01.

In addition to the metrics above, we include
KL between prior and posterior approximation, as
well as the negative ELBO, for reference – though
we find that these quantities are only partially de-
scriptive of model quality. In Section 3.2 we also
evaluate the latent space of learned models with
specialized metrics such as reconstruction BLEU
and classification accuracy.

2.2 Baselines

We experiment with several state-of-the-art tech-
niques to mitigate posterior collapse, including
several KL reweighting methods and the recently
proposed aggressive training (He et al., 2019).

KL annealing (Bowman et al., 2016). KL an-
nealing might be the most common method for
reweighting. During annealing, the weight of the
KL term is increased from a small value to 1.0 in
the beginning of training.

Cyclic annealing (Liu et al., 2019). Cyclic an-
nealing is another reweighting scheme proposed
recently. It changes the weight of the KL term in a
cyclic fashion, rather than monotonically increas-
ing the weight.4

KL Thresholding / Free Bits (FB) (Kingma
et al., 2016). FB replaces the KL term in ELBO
with a hinge loss term that maxes each component

4We use the default cyclic annealing schedule
from https://github.com/haofuml/cyclic_
annealing in our codebase for a fair comparison.

https://github.com/haofuml/cyclic_annealing
https://github.com/haofuml/cyclic_annealing
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of the original KL with a constant:∑
i
max[λ,DKL(qφ(zi|x)‖p(zi))] (1)

Here, λ denotes the target rate, and zi denotes
the ith dimension in the latent variable z. Using
the FB objective causes learning to give up try-
ing to drive down KL for dimensions of z that are
already beneath the target rate. Pelsmaeker and
Aziz (2019) conduct a comprehensive experimen-
tal evaluation of related methods and conclude that
the FB objective is able to achieve comparable or
superior performance (in terms of both language
modeling and reconstruction) in comparison with
other top-performing methods, many of which are
substantially more complex. We notice that Pels-
maeker and Aziz (2019) experiment with a slightly
different version of FB where the threshold is ap-
plied to the entire KL term directly, rather than on
each dimension’s KL separately. We examine both
versions here and refer to the single threshold ver-
sion as “FBP” and the multiple threshold version
(Eq. 1) as “FB”. For both FB and FBP, we vary the
target rate λ and report the setting with the best
validation PPL and the setting with the best bal-
ance between PPL and reconstruction loss.5

Aggressive training (He et al., 2019). He et al.
(2019) observe that when posterior collapse oc-
curs, the inference network often lags behind the
generator during training. In contrast with the KL
reweighting methods described above, He et al.
(2019) propose an aggressive training schedule
which iterates between multiple encoder update
steps and one decoder update step to mitigate pos-
terior collapse.6

Autoencoder (AE). We also include an autoen-
coder7 as a reference for reconstruction loss.

We show the results of these baselines trained
on PTB in Table 1, where we find that it is diffi-
cult to balance language modeling (PPL) and rep-
resentation learning (Recon and AU) – the systems
with relatively good reconstruction (FBP, λ = 7)
or higher AU (FB baselines) have suboptimal PPL,
and the best PPL is achieved with sacrifice of Re-
con and AU. Note that good PPL indicates good
LM, but good recon and AU indicates good repre-
sentation learning. Without both, we do not really

5It is subjective to judge “balance”, thus we also report
complete results for different target rates in Appendix C.

6We use the public code at https://github.com/
jxhe/vae-lagging-encoder.

7Here, AE denotes the VAE trained without the KL term.

Table 1: Results on PTB test set for various baselines.

Method PPL↓ Recon↓ AU↑ KL -ELBO

AE - 70.36 32 - -
VAE 101.39 101.27 0 0.00 101.27
+ anneal 101.40 101.28 0 0.00 101.28
+ cyclic 108.97 101.85 5 1.37 103.22
+ aggressive 99.83 100.26 4 0.93 101.19
+ FBP (λ = 7) 102.82 95.63 4 7.05 102.67
+ FBP (λ = 3) 99.62 98.52 3 2.95 101.48
+ FB (λ = 7) 104.06 98.97 32 6.74 105.72
+ FB (λ = 3) 100.50 99.94 32 2.96 102.90

Table 2: Results on PTB test with encoder pretraining.

Method PPL↓ Recon↓ AU↑ KL -ELBO

AE - 70.36 32 - -
VAE 101.39 101.27 0 0.00 101.27
+ pretrain 102.26 101.46 0 0.00 101.46
+ pretrain + anneal 97.74 99.67 2 1.01 100.68

have a strong probabilistic model of language that
captures latent factors.

We make two observations from the results in
Table 1. First, reconstruction loss for an AE is
substantially better than all VAE methods, which
is intuitive since reconstruction is the only goal
of training an AE. Second, models with high
ELBO do not necessarily have good PPL (e.g.
VAE+anneal); ELBO is not an ideal surrogate for
evaluating language modeling performance.

2.3 Autoencoder-based Initialization
Based on the observations above we hypothesize
that VAEs might benefit from initialization with
an non-collapsed encoder, trained via an AE ob-
jective. Intuitively, if the encoder is providing use-
ful information from the beginning of training, the
decoder is more likely to make use of the latent
code. In Table 2 we show the results of explor-
ing this hypothesis on PTB. Even with encoder
pretraining, we see that posterior collapse occurs
immediately after beginning to update both en-
coder and decoder using the full ELBO objective.
This indicates that the gradients of ELBO point
towards a collapsed local optimum, even with bi-
ased initialization. When pretraining is combined
with annealing, PPL improves substantially. How-
ever, the pretraining and anneal combination only
has 2 active units and has small KL value – the
latent representation is likely unsatisfactory. We
speculate that this is because the annealing sched-
ule eventually returns to the full ELBO objective
which guides learning towards a (nearly) collapsed
latent space. In the next section, we present an al-
ternate approach using the KL thresholding / free
bits method.

https://github.com/jxhe/vae-lagging-encoder
https://github.com/jxhe/vae-lagging-encoder
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2.4 Our Method
In our proposed method, we initialize the infer-
ence network with an encoder that is pretrained us-
ing an autoencoder objective, as described above.
Then, we train the VAE using the FB objective,
also described above. We use the original FB
which thresholds along each dimension.8 Thus,
we combine two approaches so far considered in-
dependently: pretraining and KL thresholding. In
this way, however, the VAE would start with a
large KL and is thus trained with the full ELBO
objective in the initial stage, which is bad as ob-
served in Section 2.3. To remedy this, we apply
an annealing weight to Eq. 1. We use the sim-
plest linear annealing schedule that increases the
weight from 0 to 1 in the first 10 epochs for all of
our experiments. This approach can be viewed in
connection with KL annealing: we train with zero
KL weight until convergence, then reset the de-
coder and start increasing the KL weight with the
free bits objective. Next we conduct comprehen-
sive experiments across different datasets to vali-
date our method.

3 Experiments

In this section we work with three text datasets:
PTB (Marcus and Marcinkiewicz), Yahoo (Yang
et al., 2017), and a downsampled version of
SNLI (Bowman et al., 2015). We demonstrate
the effectiveness of our method through language
modeling, text reconstruction, and quality of the
learned latent space. Complete experimental setup
details can be found in Appendix A.

3.1 Language Modeling
For language modeling, we only report the results
for PTB and Yahoo due to the space limit, but in-
clude the SNLI results in Appendix C. Since we
have already shown that FBP outperforms FB on
PPL in Section 2 (without pretraining), here we
only include FBP as a baseline. For both FBP and
our method we vary the target rate and report the
settings that achieve competitive validation PPL.9

As shown in Table 3, our method with differ-
ent target rates is able to consistently outperform
all the baselines in terms of PPL. Meanwhile, for
representation learning, our method beats all the

8Note that we do not pretrain the decoder and rather ini-
tialize it randomly. In our preliminary experiments, pretrain-
ing the decoder produced worse PPL compared with encoder-
only pretraining.

9Results of all target rates can be found in Appendix C.

Table 3: Language modeling results on PTB and Ya-
hoo test set. We bold the lines that represent the best
average of language modeling and reconstruction loss.
Cyclic? is from (Liu et al., 2019).

Method PPL↓ Recon↓ AU↑ KL -ELBO

PTB
LSTM-LM 100.47 - - - -
VAE 101.39 101.27 0 0.00 101.27
+ anneal 101.40 101.28 0 0.00 101.28
+ cyclic? - 100.51 - 1.96 102.46
+ cyclic 108.97 101.85 5 1.37 103.22
+ aggressive 99.83 100.26 4 0.93 101.19
+ FBP (λ = 3) 99.62 98.52 3 2.95 101.48
+ FBP (λ = 2) 100.96 99.37 2 1.99 101.36

Ours (λ = 8) 98.07 92.60 32 10.95 103.56
Ours (λ = 6) 96.35 94.52 32 8.15 102.67
Ours (λ = 4) 96.17 96.91 32 4.99 101.90

Yahoo
LSTM-LM 60.75 - - - -
VAE 61.52 329.10 0 0.00 329.10
+ anneal 61.21 328.80 0 0.00 328.80
+ cyclic 66.93 333.80 4 2.83 336.63
+ aggressive 59.77 322.70 15 5.70 328.40
+ FBP (λ = 9) 62.59 322.91 6 9.08 331.99
+ FBP (λ = 7) 62.76 324.66 5 7.03 331.69
+ FBP (λ = 5) 62.78 326.26 3 5.07 331.32
+ FBP (λ = 3) 62.88 328.13 2 3.06 331.19

Ours (λ = 6) 59.23 317.39 32 12.09 329.48
Ours (λ = 8) 59.51 315.31 32 15.02 330.33
Ours (λ = 9) 59.60 315.09 32 15.49 330.58

baselines by a large margin on reconstruction loss
with all latent units active. We also note that our
method is not very sensitive to the target rate λ.

It is worth noticing that in some cases our
method (e.g. λ = 8 in PTB and λ = 8, 9 in Yahoo)
is able to outperform all the baselines but produce
a bad ELBO (actually the worst on PTB). This
suggests that ELBO might be a suboptimal surro-
gate for the log marginal likelihood sometimes, es-
pecially when KL is large, where the gap between
ELBO and the marginal tends to be large as well.

3.2 Probing the Latent Space

We assess quality of learned latent space with
SNLI through several metrics. For our method and
FBP, we use the target rate where the best recon-
struction loss is achieved while maintaining com-
parable PPL with aggressive training. 10

Text Reconstruction We use greedy decoding
and compute the BLEU score of the reconstructed
sentence with the original one as the reference.
The result is shown in Table 4. Unsurprisingly,

10Basically we try to tie PPL of different models and com-
pare their latent space. Specifically, aggressive training has
PPL 32.83, and PPL of the selected model for FBP and our
method are 33.07 and 32.88, respectively.
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the autoencoder achieves the highest BLEU score,
meanwhile our method beats other VAE baselines.

Table 4: Reconstruction

Method BLEU

AE 60.80
VAE 1.82
+ anneal 2.51
+ cyclic 4.39
+ aggressive 2.95
+ FBP (λ = 7) 8.07

Ours (λ = 4) 8.62

Table 5: Smoothness

Method PCC

AE 0.620
VAE 0.039
+ anneal 0.009
+ cyclic 0.482
+ aggressive 0.209
+ FBP (λ = 7) 0.242
Ours (λ = 4) 0.683

Smoothness of Latent Space A major differ-
ence between VAE and AE is that VAE can learn
a smooth latent space through the regularization
from the Gaussian prior. In a smooth latent space,
latent codes of similar sentences should be close to
each other and vice versa. Therefore, we randomly
sample 100k sentence pairs and evaluate the Pear-
son Correlation Coefficient (PCC) between the `2
distances of latent codes and edit word distances.
As shown in Table 5, our method achieves a much
higher PCC compared to the baselines.

Zhao et al. (2018) argue that a smooth latent
space is beneficial for reconstructing noisy inputs.
We follow their experiments and introduce noise
to the input by randomly swapping words k times.
As shown in Table 6, while AE achieves the best
reconstruction when the noise is small (k = 1),
its reconstruction deteriorates dramatically when
k > 1, which suggests AE fails to learn a smooth
latent space. In contrast, our method outperforms
all the baselines by a large margin when k > 1.

Interpolation As illustrated in (Bowman et al.,
2016), linear interpolation between latent vari-
ables is an intuitive way to qualitatively evaluate
the smoothness of the latent space. We sample two
latent codes z0 and z1 from the prior p(z) (Table 7)
and do linear interpolation between the two with
evenly divided intervals.11. For each interpolated
point, we decode it greedily. Our method is able
to generate grammatically plausible and semanti-
cally consistent interpolation in both cases.

3.3 Classification
To further evaluate the quality of the latent codes,
we train a Gaussian mixture model (for unsuper-
vised clustering) or a one-layer linear classifier
(for supervised classification) on the pretrained la-
tent codes. We work with a downsampled version

11Interpolation examples from posterior samples qφ(z|x)
are provided in Appendix 13.

Table 6: Noisy reconstruction loss (↓) on SNLI. #swap
denotes the number of word swaps.

#swap 1 2 3 4

AE 26.05 40.46 52.77 63.07
VAE 33.10 33.11 33.11 33.12
+ anneal 32.20 32.65 33.12 33.39
+ cyclic 31.83 32.87 33.73 34.38
+ aggressive 31.78 31.99 32.21 32.32
+ FBP (λ = 7) 29.93 32.59 34.90 36.77
Ours (λ = 4) 27.92 29.12 30.03 30.85

Table 7: Interpolation between prior samples on SNLI.

AE
people on their ground and they sit towards each other .
girls riding their cellphones and other people sit near papers .
girls riding in an area while not talk to dishes .
person riding in an area while carrying bags and papers .
someone riding in an office , selling a button .
three kid riding in <unk> signs a brick advertisement area .
Ours
a man with a cane is walking down the street .
a man with a cane is walking down the street .
a man in a blue shirt is eating food .
people are eating food .
people walk in a city .
people are outside in a city .

Table 8: Accuracy on Yelp of unsupervised and super-
vised classification. Evaluated via accuracy. #labeled
denotes the number of labeled example during training.

#labeled 0 100 500 1k 2k 10k

AE 52.0 78.4 81.1 83.5 83.8 83.8
VAE 56.5 58.9 62.3 62.5 62.9 64.0
+ anneal 56.1 58.7 60.6 61.5 61.4 64.1
+ cyclic 59.3 78.1 79.8 81.1 81.7 83.1
+ aggressive 63.7 65.6 68.6 72.1 76.7 79.4
+ FBP (λ = 9) 60.7 73.3 75.0 76.1 77.6 79.5

Ours (λ = 6) 67.2 83.8 88.3 89.1 89.5 89.5

of Yelp sentiment dataset collected by Shen et al.
(2017). We vary the number of labeled data12 and
the results are shown in Table 8. For FBP and our
method, the target rate is selected in terms of the
average validation accuracy. Our method consis-
tently yields the best results on all settings – re-
markably, its performance with only 100 labeled
samples already surpasses others with 10k labels.

4 Conclusion

In this paper, we propose a simple training fix
to tackle posterior collapse in VAEs. Extensive
experiments demonstrate the effectiveness of our
method on both representation learning and lan-
guage modeling.

12Specifically, we train a VAE model on the Yelp dataset
to obtain the latent codes, then we we use the latent codes of
labeled data to train the classifier.
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A Details of Experimental Setup

For SNLI, we randomly downsample a subset of it, which contains 100K/10K/10K sentences as train-
ing/validation/test. For the Yelp sentiment dataset, we also randomly downsample 100K/10K/10K sen-
tences for training/validation/test, respectively. We use an one-layer LSTM for both the encoder and
decoder and a latent vector size of 32.

We follow Kim et al. (2018); He et al. (2019) and use a single-layer LSTM the encoder and decoder
in all of our experiments. The sizes of word embeddings and hidden states for different datasets are
given in Table 9. We initialize the LSTM parameters with a uniform distribution U(−0.01, 0.01), and
embeddings with another uniform distribution U(−0.1, 0.1).

Just as in Kim et al. (2018); He et al. (2019), for the decoder, we use dropout of 0.5 on both the
input word embedding and the last dense before logits. During training, we use the SGD optimizer
wihout momentum. Initialized with 0.5, the learning rate is decayed by ×0.5 with a patience of 2 if the
validation loss has not improved in the past 2 epochs. The maximum number of epochs is 100, but the
training will stop early after 5 learning rate decays. For our VAE + anneal baseline, we use the simplest
linear annealing schedule that increases the weight from 0 to 1 in the first 10 epochs, just the same as in
our method (stated in Section 2.4).

Table 9: The sizes of word embeddings and hidden states for PTB, SNLI and Yahoo.

PTB SNLI Yahoo

Word Embedding Size 256 128 512
Hidden Size of Encoder 256 512 1024
Hidden Size of Decoder 256 512 1024

B Copying Behaviour

We check to make sure that our model is not simply learning to copy sentences from the training set. We
test for copying behaviour on the PTB dataset. Specifically, we sampled 300 sentences from the prior
and retrieved their nearest neighbors in the training set. The average edit distance between the samples
and their nearest neighbors from our method is 14.11 (the average training sentence length is 22.10),
versus 13.68 from the collapsed VAE. This means that there is no obvious copying behaviour when KL
grows in our method.

C Additional Results of Language Modeling

In Table 10, we provide a more detailed version of the language modeling results on PTB, SNLI and
Yahoo. The full results of all the target rate trial for both FBP and our method are included. In addition
to the metrics in Table 3, we also report NLL, Mutual Information Iq between z and x under qφ(z|x)
(MI)13, and the perplexity computed by ELBO (ELBO PPL).

13For the estimation of Iq , we follow the same method as in He et al. (2019)
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Table 10: Additional results of language modeling on PTB and SNLI.

Dataset Method NLL↓ PPL↓ Recon↓ MI↑ AU↑ -ELBO ELBO PPL KL

PTB

LSTM-LM 101.04 100.47 - - - - - -
AE 70.36 8.22 32 - - -
VAE 101.23 101.39 101.27 0.01 0 101.27 101.58 0.00
+ anneal 101.24 101.40 101.28 0.00 0 101.28 101.62 0.00
+ cyclic (reported) - - 100.51 - - 102.46 107.25 1.96
+ cyclic 102.81 108.97 101.85 1.27 5 103.22 111.03 1.37
+ cyclic (SGD) 102.06 105.28 102.14 0.00 0 102.14 105.67 0.00
+ aggressive 100.89 99.83 100.26 0.83 4 101.19 101.17 0.93
+ pretrained enc 101.42 102.26 101.46 0.0 0 101.46 102.45 0.00

+ anneal enc 100.43 97.74 99.67 0.97 2 100.68 98.88 1.01
+ FBP (λ = 9) 101.95 104.73 94.66 7.22 6 103.59 112.88 8.93
+ FBP (λ = 8) 101.64 103.30 95.39 7.11 6 103.43 112.09 8.04
+ FBP (λ = 7) 101.54 102.82 95.63 6.52 4 102.67 108.26 7.05
+ FBP (λ = 6) 101.68 103.47 96.66 5.76 10 102.67 108.27 6.01
+ FBP (λ = 5) 101.24 101.42 97.12 4.80 4 102.21 106.01 5.10
+ FBP (λ = 4) 101.49 102.58 97.84 3.86 4 101.86 104.31 4.01
+ FBP (λ = 3) 100.85 99.62 98.52 2.86 3 101.48 102.52 2.95
+ FBP (λ = 2) 101.14 100.96 99.37 1.91 2 101.36 101.98 1.99
IWAE (k = 10) 100.86 99.69 100.89 0.05 0 100.89 99.81 0.00
+ pretrained enc 100.92 99.95 100.96 0.01 0 100.96 100.15 0.00
Ours (λ = 9) 101.09 100.71 92.00 7.78 32 104.43 117.32 12.44
Ours (λ = 8) 100.51 98.07 92.60 7.49 32 103.56 112.72 10.95
Ours (λ = 7) 101.06 100.60 93.25 7.46 32 103.74 113.68 10.49
Ours (λ = 6) 100.12 96.35 94.52 6.30 32 102.67 108.25 8.15
Ours (λ = 5) 100.23 96.86 95.87 5.31 32 102.41 106.97 6.54
Ours (λ = 4) 100.08 96.17 96.91 4.08 32 101.90 104.51 4.99
Ours (λ = 3) 100.21 96.75 97.71 3.19 32 101.56 102.90 3.85
Ours (λ = 2) 100.41 97.65 98.73 2.21 32 101.38 102.07 2.65

SNLI

LSTM-LM 32.97 21.44 - - - - - -
AE - - 8.68 9.18 32 - - -
VAE 33.09 21.67 33.08 0.03 1 33.12 21.73 0.04
+ anneal 33.01 21.50 31.66 1.45 2 33.07 21.63 1.42
+ cyclic 34.04 23.67 30.69 3.60 5 34.32 24.29 3.63
+ cyclic (SGD) 33.07 21.62 30.89 2.33 4 33.25 21.99 2.36
+ aggressive 32.83 21.16 31.53 1.38 5 32.95 21.39 1.42
+ FBP (λ = 9) 33.28 22.05 25.26 8.06 6 34.25 24.13 8.99
+ FBP (λ = 8) 33.26 22.02 26.07 7.35 7 34.08 23.75 8.01
+ FBP (λ = 7) 33.07 21.62 26.65 6.76 6 33.78 23.11 7.14
+ FBP (λ = 6) 33.09 21.68 27.54 5.95 5 33.59 22.71 6.06
+ FBP (λ = 5) 33.04 21.58 28.38 4.95 6 33.49 22.48 5.10
+ FBP (λ = 4) 33.04 21.57 29.25 4.06 4 33.36 22.22 4.11
+ FBP (λ = 3) 33.04 21.56 30.19 3.00 4 33.31 22.11 3.11
+ FBP (λ = 2) 32.99 21.46 31.04 2.11 3 33.16 21.80 2.12
Ours (λ = 9) 33.42 22.33 22.30 8.80 32 35.70 27.61 13.40
Ours (λ = 8) 33.47 22.45 22.65 8.76 32 35.62 27.40 12.96
Ours (λ = 7) 33.25 22.00 23.36 8.48 32 35.11 26.14 11.75
Ours (λ = 6) 33.17 21.84 24.06 8.24 32 34.83 25.47 10.77
Ours (λ = 5) 33.07 21.64 24.94 7.71 32 34.47 24.63 9.53
Ours (λ = 4) 32.88 21.24 26.52 6.65 32 34.11 23.83 7.60
Ours (λ = 3) 32.87 21.23 28.02 5.25 32 33.87 23.31 5.86
Ours (λ = 2) 32.79 21.07 29.75 3.32 32 33.42 22.35 3.67
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Table 11: Additional results of language modeling on Yahoo.

Dataset Method NLL↓ PPL↓ Recon↓ MI↑ AU↑ -ELBO ELBO PPL KL

Yahoo

LSTM-LM 328.00 60.75 - - - - - -
AE - - 278.76 9.26 32 - - -
VAE 329.00 61.52 329.10 0.00 0 329.10 61.59 0.0
+ anneal 328.60 61.21 328.80 0.00 0 328.80 61.36 0.0
+ cyclic 335.74 66.93 333.80 2.77 4 336.63 67.69 2.83
+ cyclic (SGD) 332.48 64.26 332.65 0.00 1 332.68 64.42 0.03
+ aggressive 326.70 59.77 322.70 2.9 15 328.40 61.06 5.70
+ FBP (λ = 9) 330.38 62.59 322.91 8.21 6 331.99 63.86 9.08
+ FBP (λ = 8) 330.80 62.92 324.03 7.54 6 332.09 63.94 8.05
+ FBP (λ = 7) 330.60 62.76 324.66 6.76 5 331.69 63.62 7.03
+ FBP (λ = 6) 331.05 63.12 325.87 5.94 5 332.01 63.88 6.13
+ FBP (λ = 5) 330.62 62.78 326.26 5.00 3 331.32 63.33 5.07
+ FBP (λ = 4) 331.06 63.13 327.55 4.00 3 331.66 63.60 4.11
+ FBP (λ = 3) 330.75 62.88 328.13 2.99 2 331.19 63.23 3.06
+ FBP (λ = 2) 331.30 63.32 329.60 1.98 1 331.63 63.58 2.04
Ours (λ = 2) 326.34 59.50 322.55 5.35 32 328.51 61.14 5.96
Ours (λ = 3) 326.12 59.34 321.29 6.41 32 328.73 61.31 7.44
Ours (λ = 4) 326.01 59.26 319.49 7.58 32 329.03 61.54 9.54
Ours (λ = 5) 326.04 59.28 318.55 8.08 32 329.31 61.76 10.76
Ours (λ = 6) 325.97 59.23 317.39 8.51 32 329.48 61.89 12.09
Ours (λ = 7) 326.08 59.31 316.42 8.78 32 329.76 62.10 13.34
Ours (λ = 8) 326.35 59.51 315.31 8.99 32 330.33 62.55 15.02
Ours (λ = 9) 326.47 59.60 315.09 9.03 32 330.58 62.75 15.49
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D Additional Qualitative Examples

D.1 Interpolation between Prior Samples
We randomly sample 10 pair of source and target latent code from the standard Gaussian prior and do
linear interpolation. For the sampled and interpolated latent codes, we do greedy decoding. The results
are shown in Table 12.

D.2 Interpolation between Posterior Samples
We randomly sample 10 pairs of source and target input sentences from the test set of SNLI. For each
input sentence, we randomly sample a latent code from the approximated posterior q(z|x). Then we
linearly interpolate between each pair of sampled source/target latent code. For the sampled and interpo-
lated latent codes, we do greedy decoding. The results are shown in Table 13.
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Table 12: Interpolation between prior samples on SNLI

.

EXAMPLE 1 EXAMPLE 6

the kids are playing hide and seek in the classroom a man is jumping off a rock into the air .
the girl is about to play the drums a man is sitting on a bench with a red umbrella .
the girl is about to play in the sandbox a man is sitting on a bench with a red umbrella .
the girl is about to play in the sandbox a man is sitting on a bench with a red umbrella .
the girls are watching tv in the classroom . a woman is sitting on a bench in front of a building .
the girl is eating cake in the kitchen . a young man is sitting on a bench outside .
the women are watching tv in the bar . a young man is taking pictures of a building .
the women are eating lunch . a large group of people are taking pictures of a building .
the women are eating lunch . a large group of people are taking pictures in the street .
the women are eating dinner . a large group of people are taking pictures in the street .
a woman is eating in a restaurant . a large group of people are taking pictures in the street .

EXAMPLE 2 EXAMPLE 7

a man with a cane is walking down the street . two men are swimming in the ocean .
a man with a cane is walking down the street . two men are swimming in the ocean .
a man with a cane is walking down the street . two men are on the beach .
a man with a cane is walking down a sidewalk . two people are at the beach .
a man in a blue shirt is eating food . two people are at the beach .
man in a hat and jeans is walking down a sidewalk . the man is at the park .
people are eating food . a man is at the beach .
people walk through a city street . a man is at the beach .
people walk in a city . a man is at the beach .
people walk in a city . a man is at the beach .
people are outside in a city . a man is taking pictures of the ocean .

EXAMPLE 3 EXAMPLE 8

the man is going to the bathroom . two people in bathing suits are in a park .
the man is going to the bathroom . two people in bathing suits are in a park .
the man is going to the bathroom . two people in blue shirts are in a field .
the man is going to the bathroom . two people in blue shirts are in a field .
the man is playing music in the living room . two people in a field are playing soccer .
the man is playing with his dog . two people in a field of flowers .
the man is playing with a cat . two people are at a beach .
the man is playing with a ball . a man in a blue shirt is looking at a camera .
the man is playing with a ball . a man in a blue shirt is playing basketball .
the man is playing with a ball . a man in a blue shirt is playing basketball .
the man is playing with a ball . a man sits at a carnival .

EXAMPLE 4 EXAMPLE 9

a person is about to get a picture taken two women are outside .
a person is about to get a picture taken two women are outside .
a person is about to get a picture taken two women are outside .
a person is waiting for a friend to come to work two women are sitting outside .
a person is waiting for a friend to come a couple is sitting outside .
a person is trying to find a speech a couple is sitting outside .
the people are playing monopoly a couple is sitting in a car .
there are people playing monopoly a man is reading a newspaper in a park .
there are people performing a man is reading a book in a park .
there are people performing surgery a man is carrying a bag of food .
there are no people in this picture . a man is carrying a bag of food .

EXAMPLE 5 EXAMPLE 10

a girl sits on a bench in front of a large crowd . the man is climbing the mountain .
a girl sits on a bench in front of a large crowd . the man is making a noise .
a man sits on a bench in front of a large crowd . the man is making a noise .
a man sits on a bench in front of a large crowd . the man is making a noise .
a woman wearing a blue shirt is walking on the beach . the people are enjoying the sunshine .
a woman wearing a blue shirt is walking on the beach . the people are watching a movie .
the woman is wearing a blue shirt . the women are eating a meal .
the woman is wearing a blue shirt . the men are watching a movie .
the woman is wearing a blue shirt . the men are watching a movie .
the woman is wearing a blue shirt . two women sit in a circle together .
the woman is moving her legs . two women sit in a circle together .
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Table 13: Interpolation between posterior samples on SNLI.

EXAMPLE 1 EXAMPLE 6

SOURCE INPUT a child is eating with utensils . a middle-aged man with long , curly red-hair wearing a dark vest ,
shirt and pants is holding a microphone in front of a black backdrop .

TARGET INPUT a youth wearing a blue and red jersey and yellow helmet is people are doing <unk>
crouching in a football position

POSTERIOR-SAMPLED SOURCE a little girl is eating at a restaurant . the two men are wearing jeans and a blue shirt , and a woman
are holding a rope .

INTERPOLATION a little girl is eating at a restaurant . the two men are wearing jeans and a blue shirt .
a little girl is eating at a table . the two men are wearing jeans and a blue shirt .
a little girl is playing with a toy . the two men are wearing white shirts and are playing a sport .
a little girl is playing with a ball . the people are trying to find a cure for cancer .
a little girl is wearing a pink shirt . the people are playing soccer
a little girl is wearing a pink shirt and holding a popsicle . two people are playing baseball
a man is wearing a blue shirt and a hat . two people are playing baseball
a man is wearing a blue shirt and a hat . two people are playing baseball
a man is wearing a black shirt and black pants people are playing baseball

POSTERIOR-SAMPLED TARGET a man wearing a black shirt and black pants is standing on a sidewalk people are playing baseball

EXAMPLE 2 EXAMPLE 7

SOURCE INPUT the men are feeling competetive . both men are wearing similar colors .
TARGET INPUT a young woman is sitting in a field . a huge animal surrounded
POSTERIOR-SAMPLED SOURCE a man is climbing a tree . a man is cutting a cake .
INTERPOLATION a man is climbing a tree . a man is cutting a cake .

a man is eating a pizza . a man is painting a portrait of a woman .
a man is wearing a blue shirt . a man is painting a portrait of a woman .
a man is wearing a blue shirt . a man with a beard is playing guitar .
a man is wearing a blue shirt . a young boy with a blue shirt .
a man is standing in front of a large crowd . a little girl with a pink shirt .
a woman is standing in front of a large crowd . a tall human with a shirt
a woman is standing in front of a large crowd . a tall human with a shirt
a woman is standing in front of a large crowd . a tall human with a shirt

POSTERIOR-SAMPLED TARGET a woman is standing in front of a large crowd . a tall human looking

EXAMPLE 3 EXAMPLE 8

SOURCE INPUT the animals are near the water . a crowded city street in asia .
TARGET INPUT a truck is going to tow an illegally parked white volkswagon . a guy is in front of a business . a tree with flowers is in front .
POSTERIOR-SAMPLED SOURCE two boys are at a beach . a bunch of people are in a store .
INTERPOLATION two boys are at a beach . a bunch of people are in a park .

two men are looking at a man in a wheelchair . a few people are in a park .
the children are at the beach . a few people are in a park .
the children are looking at the sky . a few people are in a park .
a woman is looking at a man in a wheelchair . a few people are in front of a building .
a woman is looking at a man in a wheelchair . a lady is in a store with a man .
a woman is looking at a map . a lady in a blue shirt is looking at a man in a blue shirt .
a woman is waiting for a bus to come out of the road . a lady in a blue shirt is looking at a man in a blue shirt .
a woman is waiting for a bus to come out of the city . a lady in a blue shirt is looking at a man in a blue shirt .

POSTERIOR-SAMPLED TARGET a woman is waiting for a bus . a lady in a blue shirt and black pants is playing in a fountain with
a small child in the background .

EXAMPLE 4 EXAMPLE 9

SOURCE INPUT one young child in a swimsuit jumping off a blue inflatable slide a woman with 5 small children .
with water .

TARGET INPUT a girl swings from a rope swing in front . a man works on <unk> a circuit as he monitors the progress
on a tablet device .

POSTERIOR-SAMPLED SOURCE a young man in a blue shirt and black pants is standing man with blue shirt and blue shirt is playing basketball .
by a large rock formation .

INTERPOLATION a young girl in a pink shirt and blue shorts is jumping into a pool . man with blue shirt and blue shirt is playing basketball .
a woman in a pink shirt and black shorts is jumping into a pool . man with blue shirt and blue shirt is playing basketball .
a woman in a pink shirt and black shorts is playing a game of soccer . man in blue shirt with a blue shirt on his head .
a woman in a pink shirt and black shorts is playing a game of soccer . a man with a hat is playing with a ball .
a woman with a red shirt and a black shirt is sitting in a chair . a man in a blue shirt is looking at a plant .
a woman with a red shirt and a black shirt is sitting in a chair . a man in a blue shirt is sitting on a bench with a shovel .
a woman with a red shirt and a black shirt is sitting in a chair . a man in a blue shirt is sitting on a bench with a shovel .
a woman with a red shirt and a black shirt is looking at a camera . a man is on a skateboard in front of a building .
a woman watches a man play a game of soccer . a man is on a skateboard in front of a building with graffiti on it .

POSTERIOR-SAMPLED TARGET a woman watches a man play a guitar in front of a crowd . a man works on a project on a stove .

EXAMPLE 5 EXAMPLE 10

SOURCE INPUT a girl with glasses next red white and blue flags . a man walking across a bridge near a steak restaurant .
TARGET INPUT three greyhounds are taking a walk with their owner . a woman in a white shirt and shorts is playing a red guitar .
POSTERIOR-SAMPLED SOURCE the girl is drinking milk with the camera . people in a park
INTERPOLATION the girl is drinking milk with the camera . a woman in a blue shirt is eating a sandwich .

the girl is drinking milk with her hands . a woman in a blue shirt is playing a game of tennis .
the girl is drinking water with a bucket . a woman is playing a game of tennis .
the girl is using a camera . a woman is playing a game of tennis .
two girls are outside with a blue umbrella . a man is playing a guitar .
two girls are outside with a blue umbrella . a man is playing a guitar .
two girls are outside with a dog . a man is playing a guitar .
two girls are taking a picture of a tree . a man is playing a guitar .
two guys are on a bench . a man is playing a guitar .

POSTERIOR-SAMPLED TARGET two guys are on a boat . a man is playing a guitar .


