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Abstract

In this paper we present a novel approach to si-
multaneously representing multiple languages
in a common space. Procrustes Analysis (PA)
is commonly used to find the optimal orthog-
onal word mapping in the bilingual case. The
proposed Multi Pairwise Procrustes Analysis
(MPPA) is a natural extension of the PA algo-
rithm to multilingual word mapping. Unlike
previous PA extensions that require a k-way
dictionary, this approach requires only pair-
wise bilingual dictionaries that are much easier
to construct in either a supervised or an unsu-
pervised way. The improved performance of
the MPPA algorithm is demonstrated on two
standard multilingual tasks.

1 Introduction

Continuous word embeddings have been proved
effective in numerous NLP applications. In cross-
language tasks, these vector-space representations
have recently emerged as a tool to transfer knowl-
edge from one language to another. Specifically,
several studies have suggested forming cross-
lingual embeddings by learning a linear mapping
from a source-language embedding space to a
target-language one and demonstrated the bene-
fits of this approach for word translation (Mikolov
et al., 2013; Klementiev et al., 2012). Xing et al.
(2015) showed that imposing orthogonality con-
straints on the linear mapping between spaces can
alleviate overfitting. Building on these concepts,
several studies have aimed to improve these bilin-
gual word embeddings using bilingual word dic-
tionaries that are created in either a supervised or
an unsupervised manner (Artetxe et al., 2017a).
Bilingual word embedding were found to be use-
ful in a number of monolingual and cross-lingual
NLP tasks (Vulic and Moens, 2015; Tsai and Roth,
2016).

Bilingual embedding can be extended to a mul-
tilingual setup by jointly learning mappings from
each monolingual word embedding to a shared
vector space. Modeling multiple languages jointly
has been shown to improve modeling accuracy on
bilingual tasks because it can utilize knowledge
learned from the other languages (Ammar et al.,
2016; Duong et al., 2017; Taitelbaum et al., 2019).

Extending the bilingual setup to a multilingual
setting poses new challenges. For bilingual em-
bedding, the word-mapping problem has a closed-
form solution known as Orthogonal Procrustes
Analysis (PA), which can be computed using sin-
gular value decomposition (Schnemann, 1966).
However, there is no similar closed-form solution
for the multi-language case. The standard exten-
sion of PA to multi-set alignment is Generalized
Procrustes Analysis (GPA) (Gower, 1975) which
is an iterative greedy algorithm. GPA was recently
used to jointly transform multiple languages into
a shared vector space (Kementchedjhieva et al.,
2018). However, GPA assumes that a multi-way
word correspondence is available, which is often
not the case. Building a multi-way dictionary is a
challenging task in itself.

In this study, we propose a novel efficient ap-
proach for mapping multiple languages simulta-
neously into a shared vector space, while en-
forcing orthogonality constraints. This approach,
Multi Pairwise Procrustes Analysis (MPPA) can
be viewed as a multilingual extension of the Pro-
crustes Analysis. Unlike GPA-based approaches,
MPPA does not require a multi-way dictionary,
but only bilingual dictionaries which are much
easier to obtain even in an unsupervised man-
ner. We evaluated MPPA on two standard mul-
tilingual tasks and report better results than GPA
based methods and competitive results with gradi-
ent based methods.

Our main contribution is a new, efficient, and
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easy-to-use algorithm for solving the extension of
the Orthogonal Procrustes problem to the multilin-
gual case. Our project code will be publicly avail-
able.

2 A Multi-Pairwise Extension of
Procrustes Analysis

We first briefly review Procrustes Analysis (PA),
a procedure to find the best orthogonal map-
ping between two languages. We then describe
our approach, Multi-Pairwise Procrustes Analy-
sis (MPPA), which extends PA to the multilingual
case.

Assume we are given d-dimensional word em-
bedding data from two languages along with a
dictionary consisting of pairs of corresponding
words. Mikolov et al. (2013) showed that there is a
strong linear correlation between the vector spaces
of two languages and that learning a complex non-
linear neural mapping does not yield better results
than with a linear mapping. Xing et al. (2015) fur-
ther showed that enforcing the linear mappings to
be orthogonal matrices reduces overfitting and im-
proves performance. We can learn the orthogonal
mapping T by minimizing the following cost func-
tion:

S(T ) =
n∑

t=1

‖Txt − yt‖2 , (1)

where xt and yt are embeddings pf corresponding
words from the two languages and n is the dic-
tionary size. Schnemann (1966) proved that the
solution to Eq. (1), obtained as the result of a Pro-
crustes Analysis algorithm, is T = UV >, where
UΣV > is the singular value decomposition (SVD)
of the d × d matrix M =

∑
t ytx

>
t . This method

has been used in many recent cross-lingual studies
(Xing et al., 2015; Artetxe et al., 2016, 2017a,b,
2018a,b; Hamilton et al., 2016; Conneau et al.,
2017; Ruder et al., 2018).

Assume we are given d-dimensional word em-
bedding data from k languages and that each pair
of languages is provided with a dictionary com-
posed of pairs of corresponding words from the
two languages. We could learn a mapping for each
language pair independently as a solution to Eq.
(1). However, this approach does not benefit from
the multilingual setup. Another approach would
be to choose one of the languages as a “pivot” and
learn a mapping from each language to the pivot
separately. A typical choice for the pivot, used
in publicly available aligned vectors, is English

(Conneau et al., 2017; Joulin et al., 2018). This
strategy, however, does not guarantee that the indi-
rect word translation between language pairs will
have high quality. Alternatively, we can enforce a
transitivity constraint by mapping all the embed-
ding spaces to a shared vector space. Our goal in
the multilingual case is thus to find the orthogonal
matrices T1, ..., Tk such that pairs of correspond-
ing words from different languages are mapped
into close vectors in the shared space. Formally,
we want to minimize the following mean-square
error score:

S(T1, ..., Tk) =
∑
i<j

nij∑
t=1

‖Tixij,t − Tjxji,t‖2 (2)

where (xij,t, xji,t) is a pair of corresponding
words in the i and j languages, respectively and
nij is the dictionary size. We use this notation to
emphasize that the vocabularies of the same lan-
guage in different dictionaries are not necessarily
the same.

When more than two languages are involved
there is no closed-form solution to the global min-
imum of (2). We propose an efficient algorithm
for minimizing it. The basic step is optimizing
the score (2) with respect to the mapping Ti while
keeping all other mappings fixed. Viewing the ob-
jective score (2) as a function of Ti we obtain:

S(Ti) =
∑
j 6=i

nij∑
t=1

‖Tixij,t − yj,t‖2 + const. (3)

where yj,t = Tjxji,t is the representation of xji,t
in the common space. This is exactly the Or-
thogonal Procrustes problem (1) of finding a map-
ping from language i into the common space. The
optimal orthogonal matrix Ti is thus obtained by
Ti = UV > s.t. UΣV > is the SVD of the matrix:

Mi =
∑
j 6=i

∑
t

Tjxji,tx
>
ij,t. (4)

Once Ti is updated we move to the next language
in a circular manner. At each step in the iter-
ative algorithm, the score (2) is monotonically
decreased until it converges to a local minimum
point. Hence, we can stop the optimization proce-
dure once there is no significant improvement in
the objective score (2).

Each iteration is very costly since we need to
go over all the dictionary words. To avoid this,
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we can compute cross correlation d× d matrix for
each pair of languages i, j in a preprocessing step:

Cij = C>
ji =

∑
t

xji,tx
>
ij,t. (5)

Substituting (5) in (4) we obtain that

Mi =
∑
j 6=i

TjCij . (6)

Therefore, updating the mapping Ti can be done
in a very efficient way without going over all the
bilingual dictionaries of the i-th language.

Algorithm 1 Multi Pairwise Procrustes Analysis
Required: A set of lexical of word pairs between

each pair of languages.
Task: Find a set of orthogonal mappings T1, .., Tk,
to a common space.
Compute cross-correlation matrices:

Cij = C>
ji =

∑
t

xji,tx
>
ij,t 1 ≤ i < j ≤ k

Initialization: T1 = I ,
for i = 2, ..., k do

UΣV > = SVD(
∑

j<i TjCij)

Ti ← UV >

end
Algorithm:
while not converged do

for i = 1, ..., k do
UΣV > = SVD(

∑
j 6=i TjCij)

Ti ← UV >

end
end

The proposed Multi Pairwise Procrustes Anal-
ysis (MPPA) word mapping training procedure is
depicted in Algorithm box 1. The algorithm de-
scription also contains an initialization procedure
that can help avoid getting stuck at local optima.
The idea of the initialization is aligning each new
language i to the current common space which
was built with languages j < i.

MPPA requires only pairwise bilingual dictio-
naries. It is applicable even if we only have dic-
tionaries for a subset of all the language pairs such
that each language under consideration is repre-
sented in at least one bilingual dictionary. Con-
sider a graph whose vertices are the languages and
an edge indicates the existence of a dictionary be-
tween two languages. It can easily be seen that

he af oc et bs Avg.

PA 37.5 28.9 17.1 30.0 22.4 27.2
MGPA 37.5 28.9 23.8 30.7 21.0 28.4
MPPA 40.2 32.1 25.4 35.5 26.2 31.9

Table 1: p@1 for low resource languages: Hebrew,
Afrikaans, Occitan, Estonian, and Bosnian, trained
with multilingual algorithms over triplets.

if the graph is loop-free (as in the case where we
only have dictionaries for a pivot language) the op-
timization of (2) is decoupled and each bilingual
mapping can be learned separately. The task be-
come really multi-lingual once the graph is loopy,
where mapping transitivity implies that there is
more than a single path between the source and
target languages. We note in passing that we can
consider the word representation in the common
space as a latent variable and the mapping matrices
as unknown parameters. The MPPA algorithm can
be thus viewed as an instance of the EM algorithm
(Dempster et al., 1977). Further discussion regard-
ing the connection between MPPA algorithm and
the EM algorithm can be found in (Goldberger,
1999).

3 Related work

The standard extension of PA to multi-set align-
ment is Generalized Procrustes Analysis (GPA)
(Gower, 1975). Kementchedjhieva et al. (2018)
recently proposed the Multi-support GPA (MGPA)
algorithm for multilingual word translation which
is based on the GPA. Their algorithm requires
a k-way dictionary in the form of (xit) where
(x1t, ..., xkt) are representations of words that
share the same semantic meaning across all
the k languages. This multi-way dictionary is
constructed from the bilingual dictionaries (Ke-
mentchedjhieva et al., 2018). Whereas conflating
multiple senses of a word is already problematic
for bilingual dictionaries, this issue is amplified
in a multilingual vocabulary. In our approach we
avoid this form of error-prone data processing that
consists of finding a joint translation of a single
word across all the languages. Instead, the MPPA
algorithm uses the bilingual dictionaries directly.
Note that MPPA is an extension of the GPA algo-
rithm. In case we are given a multi-way dictionary
GPA and MPPA optimize the same cost function
and MPPA can be viewed as an efficient alterna-
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en-de en-fr en-es en-it en-pt de-en de-fr de-es de-it de-pt fr-en fr-de fr-es fr-it fr-pt

PA 73.5 81.1 81.4 77.3 79.9 72.4 73.3 67.7 69.5 59.1 82.4 69.5 82.6 83.2 78.1
MAT+MPPA 74.5 82.7 82.2 78.5 81.3 72.9 75.2 68.0 70.1 61.1 82.2 69.0 83.6 83.1 78.7
MAT+MPSR 74.8 82.4 82.5 78.8 81.5 72.9 76.7 69.6 72.0 63.2 81.8 71.2 83.9 83.5 79.3
UMH 75.1 82.7 82.5 78.9 82.0 75.5 73.5 67.2 68.7 59.0 83.1 69.8 82.7 82.5 77.5

es-en es-de es-fr es-it es-pt it-en it-de it-fr it-es it-pt pt-en pt-de pt-fr pt-es pt-it Avg.

PA 82.9 68.3 85.8 83.5 87.3 76.9 67.5 87.1 87.3 81.0 80.3 63.7 84.3 91.5 81.1 78.0
MAT+MPPA 83.5 66.5 85.9 83.7 86.8 77.7 67.1 87.7 87.5 81.2 80.2 63.7 84.6 92.2 82.6 78.5
MAT+MPSR 83.7 69.0 86.9 84.5 87.8 77.4 69.5 88.1 88.2 82.3 79.9 65.7 86.3 92.7 82.6 79.3
UMH 85.3 68.7 85.1 83.3 86.3 79.9 67.5 86.7 87.0 80.4 82.1 64.4 83.6 91.7 81.1 78.5

Table 2: Multilingual word translation results for English, German, French, Spanish, Italian and Portuguese. The
reported numbers are precision@1 in percentage.

tive to the GPA optimization procedure.
Another line of research applies stochastic

gradient-based optimization methods to minimize
the mean-square error score (2) jointly with re-
finement of the bilingual dictionaries. The gradi-
ent is approximated by sampling word pairs from
the bilingual dictionaries. Chen and Cardie (2018)
proposed the Multilingual Pseudo Supervised Re-
finement (MPSR) for this minimization task that
uses simple gradient methods in order to mini-
mize (2). For unsupervised setup Chen and Cardie
(2018) used an adversarial initialization step, Mul-
tilingual Adversarial Training (MAT). Alaux et al.
(2019) presented, Unsupervised Multilingual Hy-
peralignment (UMH), a similar algorithm that ex-
tends the bilingual methods proposed by Grave
et al. (2018); Alvarez-Melis and Jaakkola (2018),
to multilingual setup.

A main difference between UMH (Alaux et al.,
2019) and MAT+MPSR (Chen and Cardie, 2018)
is how they treat orthogonality. The first is a
stochastic gradient optimization followed by a
projection on the set of orthogonal matrices. In
the second method orthogonality is a regulariza-
tion term that is optimized by gradient methods.
The matrices are encouraged to be orthogonal by
an orthogonalization update (Cisse et al., 2017)
that yields matrices that are close to orthogonal but
are not necessarily exactly orthogonal. In contrast
to gradient based methods, our approach avoids
word sampling and hyper-parameters that need to
be tuned.

4 Experiments

Datasets and embeddings We used the MUSE
benchmark (Conneau et al., 2017)1, which con-
sist of bilingual dictionaries of 5000 unique source

1https://github.com/facebookresearch/MUSE

word for training and 1500 for testing. The fast-
Text embeddings (Bojanowski et al., 2017) trained
on Wikipedia data, are available online2. Vectors
were normalized to unit length and then zero cen-
tered (Artetxe et al., 2016).

Compared methods We compared MPPA
to MGPA (Kementchedjhieva et al., 2018),
MAT+MPSR (Chen and Cardie, 2018) and UMH
(Alaux et al., 2019). We used the task and results
reported in the corresponding paper (UMH results
are from the appendix). All methods ran several
refinement epochs (Artetxe et al., 2017a), where
after each refinement iteration dictionaries were
re-build, as described in Conneau et al. (2017).
Model selection was done by the best validation
criterion suggested in Conneau et al. (2017) and
extended in Chen and Cardie (2018). All these
methods retrieve word translation using the Cross-
domain Similarity Local Scaling (CSLS) criterion
(Lample et al., 2018).

Results The first experiment was conducted
over language triplets (Kementchedjhieva et al.,
2018). The goal is to translate from English
to a low resource language (like Bosnian) us-
ing a high resource language (like Russian). As
in Kementchedjhieva et al. (2018), 10 refinement
epochs were used, and initial dictionaries for each
language pair were generated by pairs of words
with identical string matching.

Table 1 depicts precision@1 for the triplets task.
MPPA outperformed MGPA and both outperform
PA. Note that MGPA needs a multi-way dictio-
nary constructed from the bilingual dictionaries.
In contrast, MPPA uses directly the raw data (the
bilingual dictionaries).

The second experiment involved multilingual
word translation in six European languages: En-
glish, German, French, Spanish, Italian and Por-

2https://github.com/facebookresearch/fastText
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tuguese (Lample et al., 2018). We compared
MPPA to MAT+MPSR (Chen and Cardie, 2018).
MAT+MPSR is an unsupervised method, so for
a fair comparison we replaced the MPSR algo-
rithm with our MPPA algorithm, thus obtain-
ing MAT+MPPA. We ran 5 refinement epochs,
after the MAT step, as the default option in
MAT+MPSR source code3. MPPA training phase
is 10 times faster than MPSR equivalent phase,
which also have hyper-parameters that needed to
be tuned. UMH (Alaux et al., 2019), was also eval-
uated on this benchmark.

Table 2 shows precision@1 results. MPPA
was comparable to UMH and MPSR performed
slightly better. Note that the MPSR mapping
matrices were not exactly orthogonal. They in-
deed achieved smaller mean-square error (2) on
the training data than our solution, which was re-
stricted to be orthogonal. This suggests that the
orthogonality constraint, especially in the multi-
lingual case where it is combined with transitivity
constraints, can be too restrictive.

5 Conclusion

This paper presents a general approach to map
word embeddings into a common space that can
be viewed as an extension of PA to the multi-
lingual case. The proposed algorithm efficiently
avoids the need to go over the whole dictionary at
each iteration. The optimization is done by enforc-
ing both transitivity and orthogonal constraints. A
possible future research direction would involve
finding efficient optimization methods where the
orthogonality constraint could be slightly relaxed.
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Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety, Series B (Methodological), 39:1–38.

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven
Bird, and Trevor Coh. 2017. Multilingual training
of crosslingual word embeddings. In The Confer-
ence of the European Chapter of the Association for
Computational Linguistics.

Jacob Goldberger. 1999. Registration of multiple point
sets using the EM algorithm. In IEEE International
Conference on Computer Vision.

John C Gower. 1975. Generalized procrustes analysis.
Psychometrika, 40(1):33–51.



3565

Edouard Grave, Armand Joulin, and Quentin Berthet.
2018. Unsupervised alignment of embeddings with
wasserstein procrustes. CoRR, abs/1805.11222.

William L Hamilton, Jure Leskovec, and Dan Juraf-
sky. 2016. Diachronic word embeddings reveal sta-
tistical laws of semantic change. arXiv preprint
arXiv:1605.09096.

Armand Joulin, Piotr Bojanowski, Tomas Mikolov,
Herve Jegou, , and Edouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with
a retrieval criterion. In Empirical Methods in Natu-
ral Language Processing (EMNLP).

Yova Kementchedjhieva, Sebastian Ruder, Ryan Cot-
terell, and Anders Søgaard. 2018. Generalizing pro-
crustes analysis for better bilingual dictionary induc-
tion. In CONLL.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed repre-
sentations of words. In COLING, pages 1459–1474.

Guillaume Lample, Alexis Conneau, Marc-Aurelio
Ranzato, Ludovic Denoyer, and Herv Jgou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representation.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

Sebastian Ruder, Ryan Cotterell, Yova Kementched-
jhieva, and Anders Søgaard. 2018. A discrimina-
tive latent-variable model for bilingual lexicon in-
duction. arXiv preprint arXiv:1808.09334.

Peter Schnemann. 1966. A generalized solution of
the orthogonal procrustes problem. Psychometrika,
31(1):1–10.

Hagai Taitelbaum, Gal Chechik, and Jacob Goldberger.
2019. Multilingual word translation using auxiliary
languages. In Conference on Empirical Methods in
Natural Language Processing.

Chen-Tse Tsai and Dan Roth. 2016. Cross-lingual wik-
ification using multilingual embeddings. In NAACL-
HLT.

Ivan Vulic and Marie-Francine Moens. 2015. Mono-
lingual and cross-lingual information retrieval mod-
els based on (bilingual) word embedding. In ACM
SIGIR Conference on Research and Development in
Information Retrieval, page 363372.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1006–1011.

https://EconPapers.repec.org/RePEc:spr:psycho:v:31:y:1966:i:1:p:1-10
https://EconPapers.repec.org/RePEc:spr:psycho:v:31:y:1966:i:1:p:1-10

