
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 3458–3463,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

3458

Delta-training: Simple Semi-Supervised Text Classification
using Pretrained Word Embeddings

Hwiyeol Jo
Seoul National University
hwiyeolj@gmail.com

Ceyda Cinarel
Seoul National University
snu.ceyda@gmail.com

Abstract

We propose a novel and simple method
for semi-supervised text classification. The
method stems from the hypothesis that a clas-
sifier with pretrained word embeddings always
outperforms the same classifier with randomly
initialized word embeddings, as empirically
observed in NLP tasks. Our method first builds
two sets of classifiers as a form of model en-
semble, and then initializes their word embed-
dings differently: one using random, the other
using pretrained word embeddings. We focus
on different predictions between the two clas-
sifiers on unlabeled data while following the
self-training framework. We also use early-
stopping in meta-epoch to improve the per-
formance of our method. Our method, Delta-
training, outperforms the self-training and the
co-training framework in 4 different text clas-
sification datasets, showing robustness against
error accumulation.

1 Introduction

1.1 Motivation
Classifiers using deep learning algorithms have
performed well in various NLP tasks, but the per-
formance is not always satisfactory when utilizing
small data. It is necessary to collect more data for
acquiring better performance. Although collecting
unlabeled text data is relatively easy, labeling in
and of itself requires a considerable amount of hu-
man labor. In order to incorporate unlabeled data
into a task, we have to label the data in accordance
to class policies of the task, but the labeling pro-
cess requires not only human labor but also do-
main knowledge on the classes.
Semi-supervised learning (Li and Liu, 2003; Zhu,
2006; Chapelle et al., 2009) can be considered a
potential solution that utilizes both labeled data
and unlabeled data when building a classifier. The
simplest form of semi-supervised learning is self-

training (Yarowsky, 1995), which first builds a
classifier using labeled data, and then label the un-
labeled data. After which the most confident label
prediction is added to training set and the process
is repeated. The unlabeled data can help address
data sparsity, but classification errors might be ac-
cumulated along the process.
We combine self-training with the hypothesis
that a classifier with pretrained word embeddings
(memb) is always better than a classifier with ran-
domly initialized word embeddings (mrand), as
empirically observed in various NLP tasks (Turian
et al., 2010). Our method follows the self-training
framework but rather focuses on the different pre-
dictions of two sets of classifiers on unlabeled
data. Therefore we can filter out incorrectly pre-
dicted data and correctly predicted data by both
classifiers, which are less informative to the clas-
sifiers. On the other hand, differently predicted
data are much more informative since much of
the performance gap between the classifiers come
from the different predictions. Although the dif-
ferently predicted data may introduce some noise
like correctly predicted by mrand but incorrectly
predicted by memb, we believe that the noise is
relatively small when compared with benefits.

1.2 Contributions
Our contributions in this paper can be summarized
as follows:

• We propose a variation of self-training frame-
work: Delta(∆)-training, which harnesses
differently predicted labels between two sets
of classifiers.

• Along with early-stopping in iterative train-
ing process, our framework outperforms
the conventional self-training and co-training
framework.



3459

Figure 1: The flow of ∆-training framework. Mrand and Memb are ensembled classifiers using randomly initial-
ized word embeddings and pretrained word embeddings, respectively. (1) We first train the sets of classifiers using
training set, (2) do early-stopping using development set, (3) predict the labels of unlabeled data using the sets
of classifiers trained at (1), and (4) select the high confidence labels differently predicted by each set of classi-
fiers, adding them to training set. While following the framework, we do early-stopping in meta-epoch with the
development set.

2 Preliminary

Self-training. Given labeled data
{(x1, y1), · · · , (xn, yn)} and unlabeled data
{(xn+1), · · · , (xn+l)}, self-training (Yarowsky,
1995) first builds a model m using labeled data.
Next, it simply predicts the unlabeled data using
pretrained model m. If the confidence score of
the predicted label is higher than a predefined
threshold T , then adds the label-by-prediction
data to the training set. This simple approach
has generated variations such as calibration (Guo
et al., 2017), and online learning (Abney, 2007).

Pretrained Word Embeddings. Pretrained
word embeddings are based on the distributed
representation hypothesis that a word can be
represented as an n-dimensional vector (Mikolov
et al., 2013). Most of the algorithms are based
on the basic idea of CBoW and skip-gram. Both
algorithms learn word vectors by maximizing the
probability of occurrence of a center word given
neighbor words or neighbor words given a center
word. With this unsupervised approach, we can
represent semantic and relational information.
The pretrained word vectors from very large
corpus are used to initialize word vectors for
classifiers, performing better than randomly
initialized word vectors (Turian et al., 2010).

Model Ensemble. Model ensemble (Opitz and
Maclin, 1999) is using a combination of mod-
els to increase accuracy and get confidence scores
on predictions. There are two types of ensemble

methods, bagging and boosting. Bagging aver-
ages the predictions over a collection of classifiers
whereas boosting weights the vote with a collec-
tion of classifiers.

3 Proposed Method: ∆-training

The overall process of our framework is illustrated
in Figure 1.

3.1 Different Prediction focused Self-training

Our method consists of two classifiers: one
is randomly initialized (mrand; random net-
work), and the other is using pretrained word
vectors (memb; embedded network). When
ensembling, we duplicate the same classifier,
Mrand = (mrand1 , · · · ,mrandn) and Memb =
(memb1 , · · · ,membn), respectively.
We adopt bagging to increase the cases that (1)
both mrand and memb predict the labels of data
correctly, and (2) mrand predicts incorrectly but
memb predicts correctly. Model ensemble is also
used to pick out label-by-prediction data with high
confidence, which will be used for self-training.
Intuitively, the benefits of ∆-training are maxi-
mized when the performance gap between two sets
of classifiers is large. Also, we can ensure the per-
formance gap not only by using pretrained embed-
dings but also through the ensemble setting.
First, we train the classifiers using the training set
with early-stopping, and return their predictions
on unlabeled data. We consider the predictions of
Memb on the unlabeled data as label-by-prediction
since Memb always outperforms Mrand according



3460

to our hypothesis. The hypothesis will be con-
firmed in Section 7.
After labeling the unlabeled data, we select the
data with conditions that (a) each ensembled clas-
sifiers are predicting the same class, and (b) the
predictions of Mrand and Memb are different.
Condition (a) helps to pick out the data labeled
with high confidence by the classifiers and Con-
dition (b) helps to pick out the data which is in-
correct in Mrand but correct in Memb. The ratio
in which labels might be correct in Mrand but in-
correct in Memb is relatively small than vice versa
(will be also presented in Section 7). We add
the selected data and its pseudo-label by Memb

to training set, and then train the classifiers again
from the very first step to validate our hypothe-
sis. If we do not start from the very first step, it
might cause Memb to overfit and perform worse
than Mrand.
We denote one such iterative process, training and
pseudo-labeling, as a meta-epoch.

3.2 Early-Stopping in Meta-Epoch

Using the development set in every meta-epoch,
we do early-stopping during the different predic-
tion focused self-training. As Mrand keeps learn-
ing based on the predictions of Memb, the size of
data which is incorrectly predicted by Mrand but
correctly predicted by Memb will decrease. Like-
wise, the size of data which is correctly predicted
by both Mrand and Memb will increase. Therefore,
after early-stopping in meta-epoch, we simply add
all the unlabeled data with its pseudo-labels to the
training set. In this way, we can fully benefit from
different prediction focused self-training and save
training time.

4 Experiment Data

We use GloVe (Pennington et al., 2014)
glove.42B.300d as word embedding for Memb.
We also perform word vector post-processing
method, extrofitting (Jo, 2018), to improve
the effect of initialization with pretrained word
embeddings on text classification, as described in
their paper.
We use 4 text classification datasets; IMDB
review (Maas et al., 2011), AGNews,
Yelp review (Zhang et al., 2015), and Ya-
hoo!Answers (Chang et al., 2008).

IMDB
Review

AGNews
Yelp

Review
Yahoo

Answer

Train 212 1,020 5,525 1,136

Test 25,000 7,600 50,000 23,595

Dev 38 180 975 201

Unlabed 24,750 118,800 643,500 132,366

#Class 2 4 5 17

Table 1: The data split information of text classification
datasets. We use 1% of the training data and remove
the labels of the remaining training data, using them as
unlabeled data.

5 Experiment

5.1 Data Preparation

To emulate the environment with only a few la-
beled training examples, we take only 1% of the
original training set and remove the label of the re-
maining training set, which will be referred to as
unlabeled data. Next, we assign 15% of the train-
ing set to the development set. The development
set is used to determine early-stopping for every
epoch and meta early-stopping for every meta-
epoch. The split data size is presented in Table 1.
IMDB reviews dataset has own unlabeled data but
we do not use them in order to track and report on
the difference between predicted labels and true
labels.

5.2 Classifier

We select TextCNN (Kim, 2014) as our classifier.
Due to the simple but high performance nature of
TextCNN, the model can represent deep learning
classifiers, and is easy to ensemble as well. We use
the first 100 words of data in 300 dimensional em-
bedding space. The model consists of 2 convolu-
tional layers with the 32 channels and 16 channels,
respectively. We adopt multiple sizes of kernels–2,
3, 4, and 5, followed by ReLU activation (Hahn-
loser et al., 2000) and max-pooled. We concate-
nate them after every max-pooling layer. We train
the model using Adam optimizer (Kingma and Ba,
2014) with 1e-3 learning rate.

5.3 Ensemble Settings

In the experiment, the number of embedded model
ensemble (Memb) is 3 and we do not ensemble ran-
dom model (Mrand = mrand) for simplicity. The
baselines also use the same ensemble settings for
fair comparison.



3461

Figure 2: The training curve and the ratio of differently predicted label during ∆-training. The x-axis indicates a
training process (meta-epoch). TF, FT, and FF denote that correctly predicted by Mrand but incorrectly predicted
by Memb, incorrectly predicted by Mrand but correctly predicted by Memb, and incorrectly predicted by both
Mrand and Memb, respectively. We extend the end of performance lines to indicate final accuracy.

Figure 3: The performance of ∆-training compared with self-training and co-training. Our method largely im-
proves the performance in binary classification but slightly show degraded performance prior to early-stopping in
meta-epoch. Then, ∆-training finally brings significant performance gain after meta-level early stopping, training
on all the remaining pseudo-labeled data.

Figure 4: The performance of ∆-training and other frameworks on unlabeled data. We recover the removed true
labels and track the model performance. ∆-training is robust against error accumulation.

6 Related Works

∆-training is closely related to Self-
training (Yarowsky, 1995), and Tri-training
with Disagreement (Søgaard, 2010). Tri-
training (Zhu, 2006) uses 3 classifiers to vote their
classification results and labels them if all the
classifiers agree with the prediction. Its extension,
Tri-training with Disagreement, also uses 3
classifiers but the method utilizes a disagreement
that pseudo-labels on unlabeled data if two
classifiers agree with the labels but one classifier
disagrees with the labels. The differences with our
method respectively are (1) we harness different
predictions of classifiers, and (2) we use a single
model architecture where word embeddings are
initialized differently.
The existing semi-supervised solutions using
2 classifiers such as Co-training (Blum and
Mitchell, 1998) cannot be fully compared with
ours for (2) that a single architecture should be
used. The method is built on 2 different classifiers

as having different views on data, and harnesses
one’s pseudo-labels to train the other classifier.
Instead, we imitate the co-training as if Mrand

and Memb have different views on the data.
Refer to Ruder and Plank’s work (2018) for
further knowledge on those related works.

7 Result

The training curve and the ratio of differently pre-
dicted labels are presented in Figure 2. The train-
ing curves at x=0, at which point ∆-training is not
applied yet, confirms our hypothesis–a classifier
with pretrained word embeddings always outper-
forms the same classifier with randomly initial-
ized word embeddings. Also, the ratio in which
labels are correct in Mrand but incorrect in Memb

is relatively small (TF<FT) than vice versa. The
ratio in which labels are incorrect both in Mrand

and Memb (FF) changes according to baseline ac-
curacy and the number of classes.
The performance of ∆-training compared with



3462

Figure 5: The performance of ∆-training with respect to initial training data size. ∆-training performs well in
different training data size and is more useful when the training data is scarce.

self-training and co-training is presented in Fig-
ure 3. Our method largely outperforms the con-
ventional self-training and co-training framework
in binary class classification. In multi-class clas-
sification, picking different predictions is less ef-
fective because the data could be incorrectly pre-
dicted by both Memb and Mrand. Therefore, af-
ter the early-stopping in meta-epoch, we simply
add all the unlabeled data with its pseudo-labels to
training set, which finally brings significant per-
formance gain. In Figure 4, we observe that the
performance of self-training and co-training de-
creases in unlabeled data after a few meta-epochs
because of accumulated classification errors. On
the other hand, our method is robust against error
accumulation. As a result, the process of adding
all the unlabeled data with its pseudo-labels to
training set starts from enhanced and robust mod-
els.
We also report the effect of initial training data size
in Figure 5. The result shows that ∆-training is
more useful when the training data is scarce and
also ∆-training works well even when there is rel-
atively more data.

8 Conclusion

In this paper, we propose a novel and simple
approach for semi-supervised text classification.
The method follows the conventional self-training
framework, but focusing on different predictions
between two sets of classifiers. Further, along
with early-stopping in training processes and sim-
ply adding all the unlabeled data with its pseudo-
labels to training set, we can largely improve the
model performance. Our framework, ∆-training,
outperforms the conventional self-training and co-
training framework in text classification tasks,
showing robust performance against error accu-
mulation.

Acknowledgments

The authors would like to thank Sang-Woo Lee,
Woo-Young Kang, Dae-Soo Kim, and Byoung-
Tak Zhang for helpful comments. Also, we greatly
appreciate the reviewers for critical comments.
This work was partly supported by the Korea
government (2015-0-00310-SW.StarLab, 2017-0-
01772-VTT, 2018-0-00622-RMI, 2019-0-01367-
BabyMind, 10060086-RISF, P0006720-GENKO),
and the ICT at Seoul National University.

References
Steven Abney. 2007. Semisupervised learning for com-

putational linguistics. Chapman and Hall/CRC.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory, pages 92–100. ACM.

Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and
Vivek Srikumar. 2008. Importance of semantic rep-
resentation: Dataless classification. In AAAI, vol-
ume 2, pages 830–835.

Olivier Chapelle, Bernhard Scholkopf, and Alexander
Zien. 2009. Semi-supervised learning (chapelle, o.
et al., eds.; 2006)[book reviews]. IEEE Transactions
on Neural Networks, 20(3):542–542.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321–1330.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A
Mahowald, Rodney J Douglas, and H Sebastian Se-
ung. 2000. Digital selection and analogue ampli-
fication coexist in a cortex-inspired silicon circuit.
Nature, 405(6789):947.

Hwiyeol Jo. 2018. Expansional retrofitting
for word vector enrichment. arXiv preprint
arXiv:1808.07337.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.



3463

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xiaoli Li and Bing Liu. 2003. Learning to classify
texts using positive and unlabeled data. In IJCAI,
volume 3, pages 587–592.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

David Opitz and Richard Maclin. 1999. Popular en-
semble methods: An empirical study. Journal of ar-
tificial intelligence research, 11:169–198.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Sebastian Ruder and Barbara Plank. 2018. Strong
baselines for neural semi-supervised learning under
domain shift. arXiv preprint arXiv:1804.09530.

Anders Søgaard. 2010. Simple semi-supervised train-
ing of part-of-speech taggers. In Proceedings of the
ACL 2010 Conference Short Papers, pages 205–208.
Association for Computational Linguistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Pro-
ceedings of the 33rd annual meeting on Association
for Computational Linguistics, pages 189–196. As-
sociation for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Xiaojin Zhu. 2006. Semi-supervised learning literature
survey. Computer Science, University of Wisconsin-
Madison, 2(3):4.


