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Abstract 

Deep neural network models such as long 

short-term memory (LSTM) and tree-

LSTM have been proven to be effective for 

sentiment analysis. However, sequential 

LSTM is a bias model wherein the words in 

the tail of a sentence are more heavily 

emphasized than those in the header for 

building sentence representations. Even 

tree-LSTM, with useful structural 

information, could not avoid the bias 

problem because the root node will be 

dominant and the nodes in the bottom of the 

parse tree will be less emphasized even 

though they may contain salient 

information. To overcome the bias problem, 

this study proposes a capsule tree-LSTM 

model, introducing a dynamic routing 

algorithm as an aggregation layer to build 

sentence representation by assigning 

different weights to nodes according to 

their contributions to prediction. 

Experiments on Stanford Sentiment 

Treebank (SST) for sentiment 

classification and EmoBank for regression 

show that the proposed method improved 

the performance of tree-LSTM and other 

neural network models. In addition, the 

deeper the tree structure, the bigger the 

improvement. 

1 Introduction 

In sentiment analysis, word embeddings (Mikolov 

et al., 2013a; Mikolov et al., 2013b; Pennington et 

al., 2014)  and sentiment embeddings (Tang et al., 

2016; Yu et al., 2018a; Yu et al., 2018b) have 

become a fundamental component to build deep 

neural networks such as convolutional neural 

networks (CNN) (Kalchbrenner et al., 2014; Kim, 

2014), recurrent neural networks (RNN) (Graves, 

2012; Irsoy and Cardie, 2014), gated recurrent unit 

(GRU) (Cho et al., 2014), and long short-term 

memory (LSTM) (Tai et al., 2015; Wang et al., 

2015). Given a variable-length text, one challenge 

of using these neural networks is to compose 

individual word vectors into sentence vectors with 

the same length (Iyyer et al., 2015; Joulin et al., 

2016; Bojanowski et al., 2016). 

    The sequential neural networks such as RNN, 

GRU, and LSTM are commonly used due to their 

ability to capture long-distance dependency in 

sequential texts. However, these methods belong to 

the biased model, where the words in the tail of a 

sentence are more heavily emphasized than those 

in the header for building sentence representations. 

As shown in Fig. 1(a), the priority for each word 

vector will be “fantastic reaall ris rstre 

this”. This prioritization seems satisfactory for this 

sentence, but note that the key components could 

appear anywhere in the sentence rather than 

necessarily at the end. 

    To improve the abovementioned sequential 

models, Tai et al. (2015) and Huang et al. (2017) 

proposed a tree-LSTM model to introduce useful 

structural information from sentence parse trees. 

However, the tree-LSTM also heavily emphasizes 

the root node in the tree to build sentence 

representations. That is, words that are closed to 

the root will be given higher priority than words 

that are far away from the root. As shown in Fig. 

1(b), the priority of word vectors would be “thisr= 

stre r= is eaall r= fantastic”. This example shows 

that the tree-LSTM still could not avoid the bias 

problem because the nodes (e.g., fantastic) that 

contribute more to the prediction but lie in the leaf 

node at the bottom of the parse tree will be less 

emphasized. 

To overcome the bias problem that may arise in 

the tree-LSTM, this study proposes a capsule tree-

LSTM model. In spired by recent promising work 

of capsule network (Sabour et al., 2017), the 
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proposed method introduces a dynamic routing 

algorithm to consider all non-leaf nodes to build 

sentence vectors, instead of using the root alone in 

the tree-LSTM. In addition, different nodes will 

receive different weights according to their 

contributions to the prediction task. Unlike self-

attention (Lin et al., 2017; Yang et al., 2016), which 

applies a fixed policy without considering the state 

of the final sentence vectors, the task of assigning 

weights in the proposed model is considered to be 

a routing issue to iteratively determine how much 

information can be passed from non-leaf nodes in 

the tree to the vector presentation of the sentence, 

according to the state of final output. For example, 

in the aforementioned example text, it would be 

useful for the model to emphasize fantastic that 

contains the most salient information, even when 

the word lies at the bottom of the parser tree. Based 

on the dynamic routing algorithm, the priority of 

the word vector in the proposed model would be 

“fantastic eaall =is this=stre ”. The proposed 

method is evaluated through both sentiment 

classification and regression tasks to determine 

whether dynamic routing can improve the 

performance of the tree-LSTM and other neural 

network models. 

The rest of this paper is organized as follow. 

Section 2 describes the proposed capsule tree-

LSTM model with dynamic routing. Section 3 

summarizes the evaluation results. Conclusions are 

presented in Section 4. 

2 Capsule Tree-LSTM Model 

Figure 1(c) shows the framework of the proposed 

model. First, the given sentence is parsed as a tree-

structured topology. The vector representation of 

this sentence is then generated by composing the 

word vectors of all non-leaf nodes in the tree 

according to their weights learned by the dynamic 

routing algorithm. Finally, the composed sentence 

vector is used for sentiment prediction. 

2.1 Tree-structured LSTM 

Given a binary parser tree, the leaf nodes are words 

and the non-leaf nodes are multi-word phrases. Let 

C(j) denotes the set of left and right child nodes of 

a non-leaf node j. Different from the sequential 

LSTM, the hidden state 1

j

th −  of the non-leaf node j 

is the composition of its left and right child nodes, 

defined as 

 1
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where 1

left

th −   and 1

right

th −   respectively denote the 

hidden states of left and right child nodes, 
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Figure 1: Illustrative examples of different LSTM models for sentiment analysis. A deeper color indicates 

more weight is assigned to the word according to its contribution to the prediction result. 
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2d d
cW  is a composition matrix, and bc is a bias. 

The tree-LSTM transition equations of node j are 

defined as 
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⚫ Input transform 
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where it, ft, rt, and ct respectively denote the input 

gate, forget gate, output gate, and memory cell of 

node j, xt denotes the input word vector at the time 

step t, σ denotes the logistic sigmoid function, W 

and b respectively denote the weights and bias, and 

  denotes element-wise multiplication. To 

integrate the sequence information in the output 

layer, the order of non-leaf hidden states to form 

the input matrix of dynamic routing layer is a key 

consideration. Here, we used the in-order traversal 

of depth-first search algorithm on the tree-

structured topology. The output matrix is 

composed of the hidden states of all non-leaf nodes, 

defined as 1 2=[ , ,..., ] hT d

TH h h h


 , where T and 

dh respectively denote the number and 

dimensionality of the hidden states. The obtained 

hidden matrix is then fed to the aggregation layer. 

2.2 Dynamic Routing 

To compose all word vectors to generate sentence 

vectors, the tree-structured LSTM model uses the 

hidden states of all non-leaf nodes to obtain the 

weights for all nodes through the dynamic routing 

algorithm. 

    Taking the hidden states of all non-leaf nodes as 

the input vectors, the goal of dynamic routing is to 

encode the sentiment information of those vectors 

into a fixed-length sentence vector, 

 1 2[ , ,..., ]cap Js s s s=   (5) 

Inspired by the definition of capsule networks, we 

implement two layers of capsules (i.e., H=[h1, 

h2, …, hI] denotes the input capsules and s=[s1, 

s2, …, sJ] denotes the output capsules) to perform 

dynamic routing. The output capsule sj is produced 

from a non-linear “squashing” function to ensure 

| | (0,1)js   as a probability, 

 

2

2

|| ||

1 || || || ||

j j

j

j j

v v
s

v v
=

+
  (6) 

where sj is the vector output of capsule j, vj is the 

total input, which is a weighted sum over all 

“prediction vectors” |
ˆ

j th   from the capsules in the 

layer below, 

 
|

ˆ
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t
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where coupling coefficientsrctj are the probability 

distributions of capsule j which are computed using 

a softmax function so that all capsules in the layer 

above sum to 1 so that the sentiment information  

|
ˆ

j th  is obtained by multiplying the input vector ht 

by a weighted matrix Wtj, defined as, 

 |
ˆ

j t tj tWh h=   (8) 

Here, the coupling coefficients ctj are determined 

by the iterative dynamic routing process, 
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where btj is the log probabilities, initialized with 

0. The detailed iterative process of learning the 

weights between capsules in two layers for each 

non-leaf node is shown in Fig. 2. 

In Eq. (7), the capsules in the above layer try to 

learn contribution weights ctj (i.e., coupling 

coefficients) for the capsules in the below layer. 

The updated information in btj comes from the 

scalar product |
ˆ

j t jh s  . The coupling coefficients cij 

are iteratively refined by measuring the agreement 

between the current output sj of output capsule j in 

the above layer and the prediction |
ˆ

j th   made by 

input capsule i. If the margin between the two 

vectors and sj is very large, the scalar product of 

hi

sjvj
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bij

cij

|
ˆ
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Figure 2: Detailed dynamic routing process 
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those vectors will be large, which will also result in 

an update on the coupling coefficient ctj. 

3 Experimental Results 

Datasets. This experiment used two datasets for 

evaluation. i) The Stanford Sentiment Treebank 

(SST) (Socher et al., 2013) is used for sentiment  

classification. It contains 6920/872/1821 sentences 

for the train/dev/test sets with binary labels 

(positive/negative) and 8544/1101/2210 sentences 

with fine-grained labels (very negative/negative/ 

neutral/positive/very positive). ii) EmoBank 

(Buechel and Hahn, 2017; Buechel and Hahn, 

2016) is used for sentiment regression to predict 

valence-arousal (VA) values (Wang et al., 2016b; 

Yu et al., 2016). It contains 10,000 sentences with 

real-valued VA ratings in the range of (1, 9), where 

the valence refers to the degree of positive and 

negative sentiment and the arousal refers to the 

degree of calm and excitement. The provided 

ratings have Reader and Writer perspectives, and 

the Reader was adopted as the ground-truth ratings 

due to its superiority reported in (Buechel and 

Hahn, 2017). We performed 5-fold cross-

validation (6:2:2) on the EmoBank dataset. 

Evaluation Metrics. For SST, the evaluation 

metric is accuracy for both binary and fine-grained 

classification. For EmoBank, we used the Pearson 

correlation coefficient (e) and mean absolute error 

(MAE). A higher e or a lower MAE value indicates 

better prediction performance. 

Implementation Details. Several deep neural 

networks were implemented for comparison, 

including CNN, GRU, LSTM, and tree-LSTM. For 

the sequential models (GRU and LSTM), we 

additionally implemented an enhanced version 

using a bi-directional strategy and 2-layer stacked 

architecture. To investigate the performance of 

self-attention, we also implement a self-attention 

layer by taking as input the hidden states of all non-

leaf nodes, to form an attention Tree-LSTM model 

(Kokkinos and Potamianos, 2017). For word 

vectors, we used GloVe pre-trained on the 840B 

Common Crawl corpus (Pennington et al., 2014). 

The respective dimensionality values of the word 

vectors and hidden states were 300 and 120. For 

classification and regression tasks, srftmax and 

linaaer dacrdae (Wang et al., 2016a) activation 

function are respectively applied as the output layer. 

Comparative Results. Tables 1 and 2 

respectively show the comparative results of 

different methods for SST and EmoBank. Both 

the enhanced bi-directional and 2-layer 

GRU/LSTM outperformed the standard GRU, 

LSTM, CNN, and the Tree-LSTM with structural 

information achieved better performance than all 

of them for both classification and regression 

tasks. Once the dynamic routing algorithm was 

introduced, the proposed Capsule Tree-LSTM 

further improved the performance of Tree-LSTM 

EmoBank 

(Regression) 

Valence Arousal 

MAE r MAE r 

CNN 0.581 0.521 0.560 0.519 

GRU 0.523 0.589 0.527 0.532 

LSTM 0.518 0.592 0.528 0.534 

Bi-GRU 0.514 0.591 0.497 0.543 

Bi-LSTM 0.506 0.610 0.498 0.578 

2-Layer Bi-GRU 0.505 0.612 0.485 0.573 

2-Layer Bi-LSTM 0.498 0.615 0.475 0.588 

Tree-LSTM 0.483 0.625 0.468 0.602 

Attention GRU 0.492 0.622 0.477 0.585 

Attention LSTM 0.495 0.620 0.472 0.589 

Attention Tree-LSTM 0.475 0.629 0.465 0.596 

Capsule Tree-LSTM 0.462 0.639 0.454 0.622 

Table 2. Results of different methods on EmoBank. 

SST (Classification) Binary Fine-grained 

CNN 87.2 48.0 

GRU 87.2 48.2 

LSTM 84.9 46.4 

Bi-GRU 87.4 48.5 

Bi-LSTM 87.5 49.1 

2-Layer Bi-GRU 87.1 48.7 

2-Layer Bi-LSTM 87.2 48.5 

Tree-LSTM 87.5 49.7 

Attention GRU 87.8 49.5 

Attention LSTM 87.6 49.2 

Attention Tree-LSTM 88.2 49.8 

Capsule Tree-LSTM 90.2 51.6 

Table 1: Results of different methods on SST. 

 

 

 

Figure 3: Effect of dynamic routing algorithm. 
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(with attention). 

 Figure 3 shows the detailed analysis of the 

effect of dynamic routing. The test sentences were 

first divided into several groups according to their 

depths in the parse trees (e.g., the depth of the 

example sentence in Fig. 1 is three). The 

performance improvement of Capsule Tree-LSTM 

over Tree-LSTM was then calculated for each 

group. The results show that the performance 

improvements increased with the increase of the 

depth. The reason is that the Tree-LSTM may 

suffer from a more serious bias problem for 

sentences with a deeper tree structure because the 

useful nodes in the deeper levels tend to be ignored. 

Conversely, the Capsule Tree-LSTM can assign a 

higher weight to the nodes that contribute more to 

the prediction even though they lie in the leaf node 

at the bottom of the tree. 

4 Conclusion 

This study presents a capsule tree-LSTM model for 

sentiment classification and regression. The 

proposed method uses dynamic routing algorithm 

to automatically learn the weights of each node to 

compose sentence representations. Experimental 

results show that the proposed method yielded 

better results than convolutional (CNN), sequential 

(LSTM and GRU), structural (tree-LSTM) and 

self-attention neural networks. Future work will 

conduct more detailed analysis to continue 

enhancing the proposed method. 
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