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Abstract

Most text-to-text generation tasks, for example
text summarisation and text simplification, re-
quire copying words from the input to the out-
put. We introduce copycat, a transformer-
based pointer network for such tasks which
obtains competitive results in abstractive text
summarisation and generates more abstractive
summaries. We propose a further extension
of this architecture for automatic post-editing,
where generation is conditioned over two in-
puts (source language and machine transla-
tion), and the model is capable of decid-
ing where to copy information from. This
approach achieves competitive performance
when compared to state-of-the-art automated
post-editing systems. More importantly, we
show that it addresses a well-known limita-
tion of automatic post-editing — overcorrecting
translations — and that our novel mechanism
for copying source language words improves
the results.

1 Introduction

Text-to-text generation is generally addressed
using sequence to sequence neural models
(Sutskever et al., 2014). While initially pro-
posed for machine translation (Bahdanau et al.,
2015), these models have been shown to perform
very well in monolingual variants of these tasks,
such as text summarisation and text simplification
(Nallapati et al., 2016a; Scarton and Specia, 2018).
One limitation of such models is that they tend to
be “over creative” when generating outputs, i.e.
create a completely new output, which is not what
they should do. Different strategies have been
used to mitigate this issue, primarily in the con-
text of abstractive text summarisation. The most
prominent strategy is the use of pointer networks,
which substantially outperform vanilla sequence
to sequence models (Nallapati et al., 2016b; Gu
et al., 2016; See et al., 2017). Pointer networks

(Vinyals et al., 2015) are an extension of attentive
recurrent neural network (RNN) architectures to
use attention as a pointer to select which tokens of
the input sequence should be copied to the output,
as a switching mechanism between copying and
generating new words.

In this paper we propose copycat, a flexible
pointer network framework for text-to-text gen-
eration tasks. It differs from previous work in
the following main ways: it is based on trans-
former networks (Vaswani et al., 2017), which
have been shown to achieve superior performance
in text generation tasks. While Gehrmann et al.
(2018b) also provide contrastive experiments us-
ing transformers, they however randomly choose
one of the attention heads as the copy-distribution,
while we let the networks learn through all layers
and use the attention heads from the final layer of
the decoder to learn the distribution; thereby the
decision between copying input words and gener-
ating new words is made at the highest level of
abstraction. Further, in our model, we do not use
coverage penalty and achieve similar performance
as Gehrmann et al. (2018b).

For text summarisation, we show that our
copycat model performs competitively with
comparable models, but achieves a much higher
novel n-gram generation rate (wrt original article)
and a low repetition rate (within a summary) with-
out any coverage penalty.

We further extend this architecture to the dual-
source setting, where it is conditioned on two in-
puts and can copy from either of them. We apply
this approach to automatic post-editing, where the
network can generate new words, or copy words
from either the source language or the original ma-
chine translation. We show that this is a promising
approach especially to avoid overcorrecting high
quality machine translations and for text domains
where terminology (or jargon) should be preserved
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across languages, rather than translated.

To sum up, our main contributions are: (i)
copycat networks — a transformer-based pointer
network for text-to-text generation tasks (Section
3.2); ; and (ii) an extension of this model which
can copy from multiple inputs (Section 3.3). Our
models produce SOTA results in summarisation.
Our datasets and settings are described in Section
4, and the experiments with text summarisation
and automatic post-editing, in Section 5.

2 Related work

In this section we highlight the most closely re-
lated work on abstractive summarisation and auto-
matic post-editing.

Abstractive Summarisation SOTA approaches
using sequence to sequence models have evolved
from vanilla attentional models (Rush et al., 2015;
Nallapati et al., 2016a) to more advanced archi-
tectures that include the use of pointer networks
(Nallapati et al., 2016b; See et al., 2017; Gu et al.,
2016; Paulus et al., 2017), reinforcement learn-
ing (Paulus et al., 2017; Li et al., 2018; Pasunuru
and Bansal, 2018; Chen and Bansal, 2018; Hsu
et al.,, 2018) and content selection (Gehrmann
et al., 2018a; Pasunuru and Bansal, 2018; Chen
and Bansal, 2018).

Nallapati et al. (2016b) and Gu et al. (2016)
propose the use of pointer-generator RNN-based
networks to reduce out-of-vocabulary (OOV) rate.
This idea was followed by See et al. (2017), which
incorporates a coverage mechanism to avoid repe-
tition of input words by keeping track of what has
already been covered.

Reinforcement learning (RL) approaches opti-
mise objectives for summarisation in addition to
maximum likelihood. Paulus et al. (2017) com-
bine ROUGE and maximum likelihood as train-
ing objectives, use a pointer network and — to
avoid repetition — introduce intra-attention to the
encoder and decoder that attends over the input
and continuously generated output separately. Li
et al. (2018) use a global summary quality estima-
tor which is a binary classifier aiming to make the
generated summaries indistinguishable from the
human-written ones. Pasunuru and Bansal (2018)
have a loss function based on whether keywords
detected as salient are included in a summary,
while Hsu et al. (2018) modulate the attention
based on how likely a sentence is to be included
in a summary, and Chen and Bansal (2018) fol-

low an extractive-abstractive hybrid architecture to
first extract full sentences from a document using a
sentence-level policy gradient and then compress
them.

Gehrmann et al. (2018a) also perform content
selection, but on the level of phrases by treating
this process as a sequence labelling task, and with-
out RL. They first build a selection mask for the
source document and then constrain a decoder on
this mask.

The latter two represent the best overall ap-
proaches on common datasets, using either an
RNN- or a Transformer- based architecture. We
show that our copycat approach is competitive
and is more abstractive (we describe this in the fol-
lowing sections).

Automatic Post-Editing (APE) (Simard and
Foster, 2013; Chatterjee et al., 2017) aims to au-
tomatically correct errors in machine translation
(MT) outputs in order to reduce the burden of
human post-editors, especially with simple and
repetitive corrections (e.g. typographic errors).

APE is usually addressed by monolingual trans-
lation models that “translate” from the raw MT to
fixed MT (post-edits, PE). Given the high quality
of current neural MT (NMT) outputs, the task has
become particularly challenging. Human correc-
tions to those outputs are rare and very context-
dependent, which makes them difficult to capture
and generalise. This increases the chance of APE
systems to overfit or overcorrect new inputs at test
time.

SOTA APE approaches tackle the task with the
multi-source transformer architectures (Junczys-
Dowmunt and Grundkiewicz, 2018; Tebbifakhr
et al., 2018). Two encoders encode the source and
the raw MT, respectively, and an additional target-
source multi-head attention component is stacked
on top of the original target-source multi-head at-
tention component. These models are trained with
millions of <source, MT, PE> triplets, which
does not fit realistic scenarios where only a hand-
ful of post-editions exist. Special parallel training
corpora with additional MT data are released to
help the development (Negri et al., 2018). Accord-
ing to (Chatterjee et al., 2018), these SOTA sys-
tems modify up to 30% of the NMT input, out of
which only 50% are positive changes, the rest are
unnecessary paraphrases or deteriorate the output.

Our copycat networks address this problem:
they are conservative and make very few careful
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corrections to good quality raw MT — as a result of
learning predominantly to copy, while still making
substantial corrections when the raw MT is not as
good.

3 copycat Networks

3.1 Transformer Architecture

We make use of the SOTA sequence to sequence
modelling framework — the Transformer architec-
ture (Vaswani et al., 2017). Our implementa-
tion is a multi-layer encoder-decoder architecture
that uses the tensor2tensor! (Vaswani et al.,
2018) library. We briefly describe the encoder and
decoder blocks in what follows.

Encoder block (£): The encoder block is made
of 6 layers, each containing two sub-layers of
multi-head self-attention mechanism followed by
a fully connected feed forward neural network.
We follow the standard implementation and em-
ploy residual connections between each layer, as
well as layer normalisation. The output of the en-
coder forms the encoder memory which consists
of contextualised representations for each of the
source tokens (Mg¢).

Decoder block (D): The decoder block is sim-
ilar to the standard transformer architecture and
comprises of 6 layers. It contains an additional
sub-layer that performs multi-head attention over
the outputs of the encoder block. Specifically,
a decoding layer d;, is the result of multi-head
attention over the outputs of the encoder which
in turn is a function of the encoder memory and
the outputs from the previous layer: Ap_,¢ =
f(Mg,d;,_,) where, the keys and values are the
encoder outputs and the queries correspond to the
decoder input.

In all cases we tie the source and target vocabu-
lary. We also use Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) word segmentation approach to
pre-process the data before we fix the vocabulary.
This also helps us in reducing the OOV rate and
makes the models less dependent on the vocabu-
lary of the training data. We train all our models
with the cross entropy loss.

3.2 Pointer-generator Network

We base our pointer-generator on the approach
of See et al. (2017), however we significantly de-

'https://github.com/tensorflow/
tensor2tensor

part from their formulation. We first obtain an at-
tention distribution over the source and decoder
at each time step. We use a simple dot product
a¢ over output of the last decoder layer (A%‘ Le)
and the contextualised encoder representations for
each of the source language tokens (Mg):

ay = softmax(AN, .- M) (1)

where A%‘ ', ¢ comes from final (n = 6) layer, just
before applying layer normalisation and passing
it through feed forward layers as shown in Fig-
ure 1. Ap_,¢ already contains information from
the source encoder. This differs both the RNN-
based implementation in (See et al., 2017) and the
copy-transformer (Gehrmann et al., 2018b) formu-
lation, where a randomly chosen attention-head
forms the basis for the copy-distribution. The gen-
eration probability Prge, for each time step is com-
puted from the output of the decoder layer as:
Prgen = U(Wg—gnA%lag) 2)
where W is learned parameters and o is the
sigmoid function which restricts Prge, € [0, 1].
We then follow (Vinyals et al., 2015) and use
Prgen as the switching function to decide between
generating a word from the decoder vocabulary
or copying the word directly from the source se-
quence by using ag as:

Pr = PI‘genPrd(U)d) + (1 - Prgen)at (3)

where, Prg(wg) is decoder’s probability of gener-
ating output word from the decoder vocabulary.

We empirically observed that getting the new
attention representation over the final layer is ex-
tremely important for obtaining a good estimate of
the attention distribution.

3.3 Dual-source extension

We extend copycat networks for the case
of APE where a dual-source encoder-decoder
architecture has been shown to obtain supe-
rior results (Junczys-Dowmunt and Grundkiewicz,
2018). As previously mentioned, most of the
translations in current APE datasets (Chatterjee
et al., 2018) already have optimal quality, thereby
models that alter these already accurate transla-
tions are sub-optimal. Based on this observa-
tion we propose a dual-source extension to our
copycat model. We add an extra encoder (&)
that encodes the sentence in source language and
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Figure 1: copycat architectures: (a) shows our copycat model for summarisation, where a; is computed on the
final decoder layer and the last encoder layer; (b) is the dual-source extension for APE with an additional encoder;
and (c) further extends (b) with an additional attention mechanism over the source language encoder. Down arrows
indicate attention over encoder states. Last decoder state participates in this dot product computation. Then ag and

aq participate in the final probability computation Pr.

the standard encoder (£) which encodes the ma-
chine translated output. We also add an additional
decoder layer Ay, s = f(Me,, Ap_¢), where
Ap_,¢ is the standard decoding layer.

We maintain the pointer generator over the fi-
nal decoder layer (n = 6) — A, .. similarly to
Equation 3.

Dual-source with double attention We further
extend the dual-source copycat network such
that it now attends over both the source-language
encoder and the translated output encoder, and
therefore words from the source language can also
be copied. We believe that copying words from
source language would especially be useful for
APE. Some corrections may involve retaining the
original words in the source language due to a va-
riety of reasons, including the use of proper nouns
and jargon. Our extension involves modification
in two components:

e Attention over source: We build on Equa-
tion 1 and add a similar attention over the
source encoder as:

ag = softmax(Ag“_)S'Mgs) 4)

where Mg, is the source language encoder
outputs.

e Pointer-generation with multiple sources:
As there are three signals of information that

influence the output decision — copy from
source language, copy from the translated
language and generate from decoder — we
treat them as three different tasks. We thus
modify Equation 2 with a normalised expo-
nential function (softmax) instead of the
sigmoid in the former. This results in:

exp (Wizgen' AB", 5)
> exp(WjApLs)

jEtasks

&)

Prgen =

where tasks = {gen, trg, src}; trg is for at-
tention over the target language encoder, and
src is for attention over the source language
encoder. Notice that we use A'Dﬁl s as this in-
cludes both information from the target lan-
guage encoder and the source language en-
coder.

e Switching function: Based on the probabili-
ties from Equation 5, the new Pr is:

Pr = PreenPra(wg) + Prygag + Prycas

Figure 1 shows the variants of the copycat ar-
chitectures.

4 Data and Settings

Summarisation We use the CNN/Daily Mail
dataset, the most widely use dataset for abstrac-
tive summarisation (Hermann et al., 2015; Nallap-
ati et al., 2016b). It contains online news articles
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(800 tokens on average) and their abstracts (60 to-
kens on average). We used scripts provided by See
et al. (2017) to obtain the same version of the the
data, which has around 300K training pairs, 13K
validation pairs and 11,490 test pairs. We apply
BPE for word segmentation approach with 32K
merge operations (Sennrich et al., 2016). During
training and test we truncate articles to 400 BPE
units as is standard practice (See et al., 2017).

APE Our APE datasets consist of <source,
target, human post-edit> triplets. We use
two variants: (i) the English-German (EN-DE)
dataset from the IT domain provided by the
WMTI18/WMT19 APE shared task, and translated
by a high-performing NMT system (45.8 BLEU).?
It contains 13,442, 1,000 and 1,023 training,
development and test triplets, respectively. (ii)
the English-Latvian (EN-LV) dataset from the life
sciences domain made available by Specia et al.
(2018) containing 12,936 training / 1, 000 devel-
opment / 1,448 test triplets. Here, the outputs
from NMT are of a lower quality (38.4 BLEU).

We use HTER (Snover et al., 2009) as the main
metric and BLEU (Papineni et al., 2002) as the sec-
ondary metric, as in the WMT APE shared tasks
(Chatterjee et al., 2018). HTER is defined as the
minimum number of edits (substitution, insertion,
deletion and shift) required to change an MT hy-
pothesis so that it exactly matches a human post-
edition of this hypothesis. BLEU measures n-gram
precision between MT hypotheses and post-edits.

The EN-DE task is very challenging as the train-
ing data contains very few edits (0.15 HTER) and
contain few context-dependent human corrections
that are difficult to capture with machine learning
methods. The EN-LV dataset has twice more edits
(0.29 HTER). Actually, 36% of the German NMT
data requires no corrections, and only 14% of the
Latvian NMT data requires no correction.

Hyperparameters: For both tasks, we use
Adam as optimiser (Kingma and Ba, 2014)
and train the model until convergence with a
fixed batch size of 50. Across experiments,
we use shared source and target embeddings.
We build on the tensor2tensor implemen-
tation using the transformer base_v2 pa-

http://www.statmt.org/wmt19/ape-task.
html. We also experimented with the additional —
English-Russian — WMT19 dataset, but its quality is very
questionable, as confirmed in personal communication with
the task organisers.

rameters for summarisation as best practise.’
The transformer_base_v1 parameters with a
learning rate of 0.05 with 8K warmup steps are
used for APE. For other hyperparameters we use
the default values in tensor2tensor.

For both tasks we apply early stopping with
the patience of 10 epochs based on the validation
ROUGE-L or BLEU score, for summarisation and
APE respectively. For summarisation, we use a
randomly chosen validation subset of 2k abstracts.
During decoding, we use a beam search of size 5
and tune the « parameter (length penalty) on the
validation subset. During decoding for APE, we
use a beam search of size 10.

5 Results

In this section we present results of our experi-
ments, first for summarisation (Section 5.1) and
then for APE experiments (Section 5.2).

5.1 Summarisation

Table 1 shows results of our summarisation ex-
periments. We report Fl-scores for a standard
set of ROUGE (Lin, 2004) scores: ROUGE-1,
ROUGE-2 and ROUGE-L. They measure unigram,
bigram recall and the longest in-sequence com-
mon to the generated and the reference abstracts,
respectively. The scores are measured with the
pyrouge toolkit.*

We also report results for a range of con-
ceptually different systems, including the
LEAD-3 baseline (the top 3 sentences of the
source). copycat performs on par with the
CopyTransformer. Our generated sentences
for both systems are of 62 tokens on average, with
references of 58 tokens on average.

To understand the model, we look at two aspects
(i) the level of repetition within the generated ab-
stracts, and (ii) the level of transfer from original
to summarised text (i.e. the novelty rate).

Figure 2 reports the results of our analysis of
repetitions in the outputs of our system and the
reference abstracts. For unigrams, our model is
comparable to the coverage mechanism of See
et al. (2017). However, we note that our model is
less effective than the one in See et al. (2017) for
higher order n-grams, where repetitions are almost
completely eliminated. This is done at the cost

*https://github.com/tensorflow/
tensor2tensor#summarization

“We use the following wrapper: https://github.
com/pltrdy/files2rouge
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ROUGE

1 2 L
LEAD-3 Baseline 40.10 15.50 36.30
Pointer-Generator (See et al., 2017) 36.44 15.66 33.42
Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
ML + RL (Paulus et al., 2017) 39.87 15.82 36.90
Saliency + Entailment reward (Pasunuru and Bansal, 2018) 40.43 18.00 37.10
Saliency to guide network (Li et al., 2018) 3895 17.12 35.68
Inconsistency loss (Hsu et al., 2018) 40.68 1797 37.13
Sentence Rewriting (Chen and Bansal, 2018) 40.88 17.80 38.54
Bottom-Up Summarisation (Gehrmann et al., 2018a) 41.22 18.68 38.34
CopyTransformer + Coverage Penalty (Gehrmann et al., 2018a) 39.25 17.54 36.45
copycat 39.15 17.60 36.17

Table 1: Summarisation results on the CNN/Daily Mail dataset according to three standard metrics. LEAD-3 is a
strong baseline which simply copies the first three sentences of the input. The second group contains RNN-based
networks, while the last group contains transformer-based networks. All external results are from the original
papers, which are briefly described in Section 2. Our results are significant with a 95% confidence interval of at

most 0.25 as provided by the official ROUGE script.

Article

... anne frank died of typhus in a nazi concentration camp at the age of 15 ... her older sister
, margot frank , died at least a month earlier than previously thought ... they concluded that
anne and margot probably did not survive to march 1945 ...

copycat

anne frank died of typhus in a nazi concentration camp at the age of 15 . her sister margot
frank died at least a month earlier than previously thought . anne and margot probably did
not survive to march 1945 .

Reference

museum : anne frank died earlier than previously believed . researchers re-examined archives and
testimonies of survivors . anne and older sister margot frank are believed to have died in february
1945 .

Article

... billionaire businessman tony toutouni ... who chronicles his immensely extravagant lifestyle
on the photo-sharing site and is usually seen next to stacks of cash and bikini-clad models -
admits ¢ it ’s not that hard to get any girl you want ’ . his outrageous posts , which have seen
him amass 750,000 followers in eight months ...

copycat

tony toutouni , 42 , chronicles his devotion extravagant lifestyle on the photo-sharing site .
his outrageous posts have seen him amass 750,000 followers in eight months . toutouni says ¢
it ’s not that hard to get any girl you want ’

Reference

tony toutouni has amassed 750,000 followers on photo-sharing site in eight months thanks to
outrageous posts . la-based entrepreneur is endlessly surrounded by supercars , piles of cash and
bikini-clad women in pictures . he ’s friends with controversial instagram playboy dan bilzerian

and says it ’s not hard to get any girl you want ’

Table 2: Examples of articles, their copycat and human reference summaries. Bold highlights segments repeated

by copycat.

of generating fewer novel n-grams, as compared
to the original abstract. Specifically, See et al.
(2017) are only able to generate around 10% novel
quadrigrams, whereas we generate 22%. Figure 3,
which depicts the percentage of novel n-grams and
sentences introduced by our copycat models as
compared to full articles (without truncation).

The percentage of new words (unigrams) in-
troduced by copycat is already in line with or
higher than the percentage reported for other mod-
els (2.2% in (See et al., 2017), 0.5% Gehrmann

et al. (2018a) and 1% in our case). The manual
inspection of newly-introduced words confirmed
their validity. From this inspection, we observed
that the risk of creating new words as a conse-
quence of combining BPE segments is very low
(e.g., constadedmind produced by combining con,
sta, de, d and mind).

We further manually inspect outputs of
copycat systems to gain insights into their per-
formance. Table 2 lists an example of produced
outputs. We notice that the model is capable of
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Figure 2: Percentage of repetitive n-grams (freq > 1)
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Figure 3: Percentage of novel n-grams per sentence
and sentences introduced by reference and copycat.

both to selectively copying relevant parts of an
article, as well as making deductions about the
content, which often results in an abstract different
from the reference abstract. Overall, the model
actively attends to different parts of input and is
capable of efficiently reorganising the information
in the original article.

5.2 APE

We perform experiments with three models:
(a) NO-PNT which is a reimplementation
of the dual-source Transformer model of
(Junczys-Dowmunt and Grundkiewicz, 2018);
(b) PNT-TRG, copycat with attention over the
MT; (¢) PNT-TRG+SRC, copycat with double
attention. Our baseline (BASE) is the standard
“do nothing”, i.e. the raw MT as provided in the
datasets.

As the sizes of the APE datasets are very small,
training only using this data is not successful. We
thus pre-train all our models, as is a common prac-
tise for the APE task (Tebbifakhr et al., 2018).
However, we do not generate new MT data. In-
stead we mimic MT data: we randomly delete, in-
sert, shift or substitute words in the target side of
parallel data to match HTER statistics of a respec-
tive APE dataset. For German, we randomly select

500K parallel data (only source and target) from
the eSCAPE data provided with the task (Negri
et al., 2018). For Latvian, we select those 500K
from a corpus created by merging the Europarl
(version 8)° and EMEA corpora.®

The data is truecased using the Moses toolkit
scripts (Koehn et al.,, 2007). We again apply
the BPE with 32K merge operations (Sennrich
et al., 2016). Parameters of encoders for our dual
copycat are shared. We use the label smoothing
of 0.1. For the fine-tuning experiments, we reduce
the learning rate to 0.001.

Table 4 shows results of our APE experiments.
We compare our three setups to the baseline MT
quality (BASE) without any APE.” We see that
the performance of our copycat systems de-
pends on the difficulty of the task: we observe
an improvement for Latvian (41 absolute HTER
point improvement) with the lowest baseline qual-
ity (HTER= 0.29), and minor improvements for
German with a higher baseline quality (on average
0.14 HTER). As a comparison, the best perform-
ing SOTA systems achieve only up to 0.4 HTER
improvement for the German dataset and this is by
using millions of training data, combined losses
and ensembling techniques, whereas we use min-
imum external resources (Tebbifakhr et al., 2018;
Junczys-Dowmunt and Grundkiewicz, 2018).2

For EN-DE, our PNT-TRG model performs a
small number of corrections (mostly accurate) to
the outputs: only 50 sentences, compared to the
200-300 sentences modified by the SOTA EN-DE
APE systems (Chatterjee et al., 2018). For EN-LV,
given the the raw translations are of lower quality,
our models make more corrections: 330 sentences,
which lead to overall improvements.

As a general observation, for both training
sets, post-edit operations repeated more than once
make around only 10% of all corrections. And
this is not taking into account the fact that correc-
tions also occur in different contexts. The major-
ity of repetitive post-edits are corrections to punc-
tuation (e.g., deletion of a comma) or auxiliary
words (e.g., insertion/deletion of prepositions or
articles). Therefore, we believe that especially in

5http ://www.statmt.org/wmtl17/
translation—-task.html

®http://opus.nlpl.eu/EMEA.php

"Our baseline scores differ from those provided by the
task organisers because of differences in truecasing strategies.

8For instance, Junczys-Dowmunt and Grundkiewicz
(2018) report 16.5/75.44 HTER |/BLEUT for EN-DE over the
16.84/74.73 “do nothing” baseline.
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APE | Photomerge hat weniger Schritte .
MT | die Photomerge hat weniger Schritte .
REF | Photomerge hat weniger Schritte .

APE

weitere Informationen erhalten Sie von Pantone , Inc . , Flamstadt , NJ ( www.pantone.com ) .

MT | weitere Informationen erhalten Sie von Pantone , Inc . , Flamstadt , NJ ( www.poor.com ) .

REF

weitere Informationen erhalten Sie von Pantone , Inc . , Carlstadt , NJ ( www.pantone.com ) .

APE
MT | siehe Ubersicht zu Gradationskurven .
REF | siehe Ubersicht zu Kurven .

siehe ” Ubersicht zu Gradationskurven . ”

Table 3: Examples of correct (two first cases) and incorrect (third case) automatic post-edits produced from the

EN-DE dataset by PNT-TRG+SRC.

lang BASE NO-PNT PNT-TRG PNT-TRG+SRC
LV 30.0/59.5 62.5/233 29.0/59.8 28.6/59.9
DE 17.8/723 185/712 17.9/723 17.8/72.4

Table 4: HTER/ / BLEUTY scores for the APE task.
Boldface values mark statistically significant improve-
ments over BASE, i.e. the raw MT output. We have per-
formed significance testing via bootstrap resampling
using the Multeval tool (Clark et al., 2011), the stan-
dard practice in APE.

the case of Latvian, this is probably the limit of
what can be potentially learned from these small
training datasets.

Furthermore, our intuition of the potential bene-
fit of copying from the source is confirmed and for
Latvian we observe an additional increase of 0.4
HTER for this model as compared to PNT-TRG.

The non-pointer system (NO—PNT) is not com-
petitive and decreases the raw MT quality for both
languages. The highest decrease is observed for
Latvian (over 30 HTER points). We believe that
the performance for Latvian drops so much be-
cause of the noisy original MT with a lot of rep-
etitions that are carried to the output. These are
mostly repetitions of the last word (typical error
of low-quality NMT), that could be observed by
eyeballing the output.

To assess the quality of corrections our systems
perform to MT outputs, we manually analyse the
corrections for German, for which we have in-
house expertise for the type of analysis we present.
For both PNT-TRG and PNT-TRG+SRC, 60% of
the modified sentences are positive changes. The
model is thus able to capture and make use of mod-
ification patterns found in the training data. These
are mostly corrections of punctuation, deletions of
prepositions, articles and auxiliary verbs. Nega-
tive changes are the same types of correction but

in wrong contexts. For PNT-TRG+SRC, relevant
source segments (those that the BASE MT failed to
restore) are copied to the APE output: e.g., a cor-
rect web link, while it is distorted in the raw MT.
Table 3 provides examples of positive and negative
changes for both setups.

6 Conclusions

In this paper we propose copycat networks,
a novel transformer-based pointer-generator net-
work. For summarisation, we observe that
copycat network is not only able to keep the
repetition rate low, but also substantially increases
the rate of novel n-grams. We further extend the
copycat for automatic post-editing by condi-
tioning over dual sources (source language and tar-
get language) and introducing the double-attention
to copy from both sources. copycat is able to
learn (a) more conservative models that copy more
and generate less when the raw translations are al-
ready good, and (b) more aggressive models that
make more corrections when the original transla-
tion quality is not as good. This shows that the ar-
chitectures are flexible and adapt well to different
datasets. Our source code is available at: https:
//github.com/ImperialNLP/CopyCat.
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