
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 3183–3194,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

3183

Enhancing AMR-to-Text Generation with Dual Graph Representations

Leonardo F. R. Ribeiro†, Claire Gardent‡ and Iryna Gurevych†

†Research Training Group AIPHES and UKP Lab, Technische Universität Darmstadt
www.ukp.tu-darmstadt.de

‡CNRS/LORIA, Nancy, France
claire.gardent@loria.fr

Abstract
Generating text from graph-based data, such as
Abstract Meaning Representation (AMR), is a
challenging task due to the inherent difficulty
in how to properly encode the structure of a
graph with labeled edges. To address this dif-
ficulty, we propose a novel graph-to-sequence
model that encodes different but complemen-
tary perspectives of the structural information
contained in the AMR graph. The model
learns parallel top-down and bottom-up rep-
resentations of nodes capturing contrasting
views of the graph. We also investigate the use
of different node message passing strategies,
employing different state-of-the-art graph en-
coders to compute node representations based
on incoming and outgoing perspectives. In
our experiments, we demonstrate that the dual
graph representation leads to improvements
in AMR-to-text generation, achieving state-of-
the-art results on two AMR datasets1.

1 Introduction
Abstract Meaning Representation (AMR; Ba-
narescu et al. (2013)) is a linguistically-grounded
semantic formalism that represents the meaning of
a sentence as a rooted directed graph, where nodes
are concepts and edges are semantic relations. As
AMR abstracts away from surface word strings
and syntactic structure producing a language neu-
tral representation of meaning, its usage is benefi-
cial in many semantic related NLP tasks, includ-
ing text summarization (Liao et al., 2018) and ma-
chine translation (Song et al., 2019).

The purpose of AMR-to-text generation is to
produce a text which verbalises the meaning en-
coded by an input AMR graph. This is a chal-
lenging task as capturing the complex structural
information stored in graph-based data is not triv-
ial, as these are non-Euclidean structures, which

1Code is available at
https://github.com/UKPLab/emnlp2019-dualgraph

implies that properties such as global parametriza-
tion, vector space structure, or shift-invariance
do not hold (Bronstein et al., 2017). Recently,
Graph Neural Networks (GNNs) have emerged as
a powerful class of methods for learning effec-
tive graph latent representations (Xu et al., 2019)
and graph-to-sequence models have been applied
to the task of AMR-to-text generation (Song et al.,
2018; Beck et al., 2018; Damonte and Cohen,
2019; Guo et al., 2019).

In this paper, we propose a novel graph-to-
sequence approach to AMR-to-text generation,
which is inspired by pre-neural generation algo-
rithms. These approaches explored alternative
(top-down, bottom-up and mixed) traversals of
the input graph and showed that a hybrid traver-
sal combining both top-down (TD) and bottom-up
(BU) information was best as this permits integrat-
ing both global constraints top-down from the in-
put and local constraints bottom-up from the se-
mantic heads (Shieber et al., 1990; Narayan and
Gardent, 2012).

Similarly, we present an approach where the
input graph is represented by two separate struc-
tures, each representing a different view of the
graph. The nodes of these two structures are en-
coded using separate graph encoders so that each
concept and relation in the input graph is assigned
both a TD and a BU representation.

Our approach markedly differs from existing
graph-to-sequence models for MR-to-Text gener-
ation (Marcheggiani and Perez Beltrachini, 2018;
Beck et al., 2018; Damonte and Cohen, 2019) in
that these approaches aggregate all the immedi-
ate neighborhood information of a node in a single
representation. By exploiting parallel and comple-
mentary vector representations of the AMR graph,
our approach eases the burden on the neural model
in encoding nodes (concepts) and edges (relations)
in a single vector representation. It also elimi-

https://www.ukp.tu-darmstadt.de
https://github.com/UKPLab/emnlp2019-dualgraph

3184

nates the need for additional positional informa-
tion (Beck et al., 2018) which is required when
the same graph is used to encode both TD and BU
information, thereby making the edges undirected.

Our main contributions are the following:

• We present a novel architecture for
AMR-to-text generation which explic-
itly encodes two separate TD and BU views
of the input graph.

• We show that our approach outperforms re-
cent AMR-to-text generation models on two
datasets, including a model that leverages
additional syntactic information (Cao and
Clark, 2019).

• We compare the performance of three graph
encoders, which have not been studied so far
for AMR-to-text generation.

2 Related Work

Early works on AMR-to-text generation employ
statistical methods (Flanigan et al., 2016b; Pour-
damghani et al., 2016; Castro Ferreira et al., 2017)
and apply linearization of the graph by means of a
depth-first traversal.

Recent neural approaches have exhibited suc-
cess by linearising the input graph and using a
sequence-to-sequence architecture. Konstas et al.
(2017) achieve promising results on this task.
However, they strongly rely on named entities
anonymisation. Anonymisation requires an ad hoc
procedure for each new corpus. The matching pro-
cedure needs to match a rare input item correctly
(e.g., “United States of America”) with the cor-
responding part in the output text (e.g., “USA”)
which may be challenging and may result in in-
correct or incomplete delexicalisations. In con-
trast, our approach omits anonymisation. Instead,
we use a copy mechanism (See et al., 2017), a
generic technique which is easy to integrate in the
encoder-decoder framework and can be used in-
dependently of the particular domain and applica-
tion. Our approach further differs from Konstas
et al. (2017) in that we build a dual TD/BU graph
representation and use graph encoders to represent
nodes.

Cao and Clark (2019) factor the generation pro-
cess leveraging syntactic information to improve
the performance. However, they linearize both
AMR and constituency graphs, which implies that

important parts of the graphs cannot well be rep-
resented (e.g., coreference).

Several graph-to-sequence models have been
proposed. Marcheggiani and Perez Beltrachini
(2018) show that explicitly encoding the structure
of the graph is beneficial with respect to sequential
encoding. They evaluate their model on two tasks,
WebNLG (Gardent et al., 2017) and SR11Deep
(Belz et al., 2011), but do not apply it to AMR
benchmarks. Song et al. (2018) and Beck et al.
(2018) apply recurrent neural networks to directly
encode AMR graphs. Song et al. (2018) use a
graph LSTM as the graph encoder, whereas Beck
et al. (2018) develop a model based on GRUs.
We go a step further in that direction by develop-
ing parallel encodings of graphs which are able to
highlight different graph properties.

In a related task, Koncel-Kedziorski et al.
(2019) propose an attention-based graph model
that generates sentences from knowledge graphs.
Schlichtkrull et al. (2018) use Graph Convolu-
tional Networks (GCNs) to tackle the tasks of link
prediction and entity classification on knowledge
graphs.

Damonte and Cohen (2019) show that off-the-
shelf GCNs cannot achieve good performance for
AMR-to-text generation. To tackle this issue, Guo
et al. (2019) introduce dense connectivity to GNNs
in order to integrate both local and global features,
achieving good results on the task. Our work is
related to Damonte and Cohen (2019), that use
stacking of GCN and LSTM layers to improve the
model capacity and employ anonymization. How-
ever, our model is substantially different: (i) we
learn dual representations capturing top-down and
bottom-up adjuvant views of the graph, (ii) we em-
ploy more effective graph encoders (with different
neighborhood aggregations) than GCNs and (iii)
we employ copy and coverage mechanisms and do
not resort to entity anonymization.

3 Graph-to-Sequence Model

In this section, we describe (i) the representations
of the graph adopted as inputs, (ii) the model ar-
chitecture, including the Dual Graph Encoder and
(iii) the GNNs employed as graph encoders.

3.1 Graph Preparation

Let G = (V,E,R) denote a rooted and directed
AMR graph with nodes vi 2 V and labeled edges
(vi, r, vj) 2 E, where r 2 R is a relation type.

3185

Figure 1: (a) an example sentence, (b) its original AMR graph (G) and different graph perspectives: (c) top-down
(Gt) and (d) bottom-up (Gb).

Let n = |V | and m = |E| denote the numbers of
nodes and edges, respectively.

We convert each AMR graph into an unlabeled
and connected bipartite graph Gt = (Vt, Et),
transforming each labeled edge (vi, r, vj) 2 E
into two unlabeled edges (vi, r), (r, vj) 2 Et, with
|Vt| = n + m and |Et| = 2m. This process,
called Levi Transformation (Beck et al., 2018),
turns original edges into nodes creating an un-
labeled graph. For instance, the edge between
semester and that with label :mod in Fig-
ure 1(b) is replaced by two edges and one node in
1(c): an edge between semester, and the new
node :mod and another one between :mod and
that. The new graph allows us to directly rep-
resent the relationships between nodes using em-
beddings. This enables us to encode label edge in-
formation using distinct message passing schemes
employing different GNNs.
Gt captures a TD view of the graph. We also

create a BU view of the graph Gb = (Vt, Eb),
where each directed edge ek = (vi, vj) 2 Et be-
comes ek = (vj , vi) 2 Eb, that is, we reverse the
direction of original edges. An example of a sen-
tence, its AMR graph and the two new graphs Gt

and Gb is shown in Figure 1.

3.2 Dual Graph Encoder
We represent each node vi 2 Vt with a node em-
bedding ei 2 Rd, generated from the node label.
In order to explicitly encode structural informa-
tion, our encoder starts with two graph encoders,
denoted by GEt and GEb, that compute represen-
tations for nodes in Gt and Gb, respectively.

Each GE learns node representations based on
the specific view of its particular graph, Gt or Gb.
Since Gt and Gb capture distinct perspectives of
the graph structure, the information flow is prop-

agated throughout TD and BU directions, respec-
tively. In particular, for each node vi, the GE re-
ceives the node embeddings of vi and its neigh-
bors, and computes its node representation:

ht
i = GEt({ei, ej : j 2 Nt(i)}),

hb
i = GEb({ei, ej : j 2 Nb(i)}),

where Nt(i) and Nb(i) are the immediate incom-
ing neighborhoods of vi in Gt and Gb, respec-
tively.

Each node vi is represented by two different
hidden states, ht

i and hb
i . Note that we learn two

representations per relation and node of the orig-
inal AMR graph. The hidden states ht

i and hb
i ,

and embedding ei contain different information
regarding vi. We concatenate them building a final
node representation:

ri =
⇥
ht
i khb

i k ei
⇤
.

This approach is similar to bidirectional RNNs
(Schuster and Paliwal, 1997). Bidirectional RNNs
benefit from left-to-right and right-to-left propa-
gation. They learn the hidden representations sep-
arately and concatenate them at the end. We per-
form a similar encoding: first we learn TD and BU
representations independently, and lastly, we con-
catenate them.

The final representation ri is employed in a se-
quence input of a bidirectional LSTM. For each
AMR graph, we generate a node sequence by
depth-first traversal order. In particular, given a
representation sequence from r1 to rn, the hidden
forward and backward states of ri are defined as:

�!
h i = LSTM f (ri,

�!
h i�1),

 �
h i = LSTM b(ri,

 �
h i�1),

3186

Figure 2: Dual Graph Encoder. The encoder receives
the two graph views and generates structural node rep-
resentations that are used by the decoder. Represen-
tations in blue, yellow and orange are ei, ht

i and hb
i ,

respectively.

where LSTM f is a forward LSTM and LSTM b

is a backward LSTM. Note that, for the backward
LSTM, we feed the reversed input as the order
from rn to r1. Lastly, we obtain the final hidden
state by concatenating them as:

hi = [
�!
h i k
 �
h i].

The resulting hidden state hi encodes the informa-
tion of both preceding and following nodes.

Stacking layers was demonstrated to be effec-
tive in graph-to-sequence approaches (Marcheg-
giani and Perez Beltrachini, 2018; Koncel-
Kedziorski et al., 2019; Damonte and Cohen,
2019) and allows us to test for their contributions
to the system performance more easily. We em-
ploy different GNNs for both graph encoders (Sec-
tion 3.3). Figure 2 shows the proposed encoder
architecture.

3.3 Graph Neural Networks

The GEs incorporate, in each node representation,
structural information based on both views of the
graph. We explore distinct strategies for neighbor-
hood aggregation, adopting three GNNs: Gated
Graph Neural Networks (GGNN, Li et al. (2016)),
Graph Attention Networks (GAT, Veličković et al.
(2018)) and Graph Isomorphic Networks (GIN,
Xu et al. (2019)). Each GNN employs a specific
message passing scheme which allows capturing
different nuances of structural information.

Gated Graph Neural Networks GGNNs em-
ploy gated recurrent units to encode node repre-
sentations, reducing the recurrence to a fixed num-
ber of steps. In particular, the l-th layer of a
GGNN is calculated as:

h(l)
i = GRU

⇣
h(l�1)
i ,

X

j2N (i)

W1h
(l�1)
j

⌘
,

where N (i) is the immediate neighborhood of vi,
W1 is a parameter and GRU is a gated recur-
rent unit (Cho et al., 2014). Different from other
GNNs, GGNNs use back-propagation through
time (BPTT) to learn the parameters. GGNNs also
do not require to constrain parameters to ensure
convergence.

Graph Attention Networks GATs apply atten-
tive mechanisms to improve the exploitation of
non-trivial graph structure. They encode node rep-
resentations by attending over their neighbors, fol-
lowing a self-attention strategy:

h(l)
i = ↵i,iW2h

(l�1)
i +

X

j2N (i)

↵i,jW2h
(l�1)
j ,

where attention coefficients ↵i,j are computed as:

↵i,j = softmax
⇣
�
⇣
a>[W2h

(l�1)
i kW2h

(l�1)
j]

⌘⌘
,

where � is the activation function and k denotes
concatenation. W2 and a are model parameters.
The virtue of the attention mechanism is its ability
to focus on the most important parts of the node
neighborhood. In order to learn attention weights
in different perspectives, GATs can employ multi-
head attentions.

Graph Isomorphic Networks GIN is a GNN
as powerful as the Weisfeiler-Lehman (WL) graph
isomorphism test (Weisfeiler and Lehman, 1968)
in representing isomorphic and non-isomorphic
graphs with discrete attributes. Its l-th layer is de-
fined as:

h(l)
i = hW

⇣
h(l�1)
i +

X

j2N (i)

h(l�1)
j

⌘
,

where hW is a multi-layer perceptron (MLP).
In contrast to other GNNs, which combine node
feature with its aggregated neighborhood feature,
GINs do not apply the combination step and sim-
ply aggregate the node along with its neighbors.

Each of these GNNs applies different ap-
proaches to learn structural features from graph
data and has achieved impressive results on many
graph-based tasks (Li et al., 2016; Veličković
et al., 2018; Xu et al., 2019).

3187

LDC2015E86 LDC2017T10
training, dev and test instances 16,833 1,368 1,371 36,521 1,368 1,371
min, average and max graph diameter 0 6.9 20 0 6.7 20
min, average and max node degree 0 2.1 18 0 2.1 20
min, average and max number of nodes 1 17.7 151 1 16.8 151
min, average and max number of edges 0 18.6 172 0 17.7 172
number of DAG and non-DAG graphs 18,679 893 37,284 1,976
min, average and max length sentences 1 21.3 225 1 20.4 225

Table 1: Data statistics of LDC2015E86 and LDC2017T10 datasets. The values are calculated for all splits (train,
development and test sets). DAG stands for directed acyclic graph.

3.4 Decoder
An attention-based unidirectional LSTM decoder
is used to generate sentences, attending to the hid-
den representations of edges and nodes. In each
step t, the decoder receives the word embedding of
the previous word (during training, this is the pre-
vious word of the reference sentence; at test time
it is the previously generated word), and has the
decoder state st. The attention distribution at is
calculated as in See et al. (2017):

eti = v · tanh(Whhi +Wsst +wcsc + b),

at = softmax(et),

where sc is the coverage vector and v, Wh, Ws,
wc and b are learnable parameters. The coverage
vector is the accumulation of all attention distribu-
tions so far.

Copy and Coverage Mechanisms Previous
works (Damonte and Cohen, 2019; Cao and Clark,
2019) use anonymization to handle names and rare
words, alleviating the data sparsity. In contrast, we
employ copy and coverage mechanisms to address
out-of-vocabulary issues for rare target words and
to avoid repetition (See et al., 2017).

The model is trained to optimize the negative
log-likelihood:

L = �
|Y |X

t=1

log p(yt|y1:t�1, X; ✓),

where Y = y1, . . . , y|Y | is the sentence, X is the
AMR graph and ✓ represents the model parame-
ters.

4 Data
We use two AMR corpora, LDC2015E86 and
LDC2017T102. In these datasets, each instance

2The datasets can be found at
https://amr.isi.edu/download.html

Figure 3: Distribution of the AMR graph diameter
(left) and node degree (right) in the training set for
LDC2015E86 (red) and LDC2017T10 (blue) datasets.

contains an AMR graph and a sentence. Table 1
shows the statistics for both datasets. Figure 3
shows the distribution of the AMR graph diame-
ters and node degrees for both datasets. The AMR
graph structures are similar for most examples.
Note that 90% of AMR graphs in both datasets
have the diameter less than or equal to 11 and 90%
of nodes have the degree of 4 or less. Very struc-
turally similar graphs pose difficulty for the graph
encoder by making it harder to learn the differ-
ences between their similar structures. Therefore,
the word embeddings used as additional input play
an important role in helping the model to deal with
language information. That is one of the reasons
why we concatenate this information in the node
representation ri.

5 Experiments and Discussion

Implementation Details We extract vocabular-
ies (size of 20,000) from the training sets and ini-
tialize the node embeddings from GloVe word em-
beddings (Pennington et al., 2014) on Common
Crawl. Hyperparameters are tuned on the devel-
opment set of the LDC2015E86 dataset. For GIN,
GAT, and GGNN graph encoders, we set the num-
ber of layers to 2, 5 and 5, respectively. To regu-

https://amr.isi.edu/download.html

3188

Model BLEU METEOR
LDC2015E86

Konstas et al. (2017) 22.00 -
Song et al. (2018) 23.28 30.10
Cao et al. (2019) 23.50 -
Damonte et al.(2019) 24.40 23.60
Guo et al. (2019) 25.70 -
S2S 22.55 ± 0.17 29.90 ± 0.31
G2S-GIN 22.93 ± 0.20 29.72 ± 0.09
G2S-GAT 23.42 ± 0.16 29.87 ± 0.14
G2S-GGNN 24.32 ± 0.16 30.53 ± 0.30

LDC2017T10
Back et al. (2018) 23.30 -
Song et al. (2018) 24.86 31.56
Damonte et al.(2019) 24.54 24.07
Cao et al. (2019) 26.80 -
Guo et al. (2019) 27.60 -
S2S 22.73 ± 0.18 30.15 ± 0.14
G2S-GIN 26.90 ± 0.19 32.62 ± 0.04
G2S-GAT 26.72 ± 0.20 32.52 ± 0.02
G2S-GGNN 27.87 ± 0.15 33.21 ± 0.15

Table 2: BLEU and METEOR scores on the test set of
LDC2015E86 and LDC2017T10 datasets.

larize the model, during training we apply dropout
(Srivastava et al., 2014) to the graph layers with a
rate of 0.3. The graph encoder hidden vector sizes
are set to 300 and hidden vector sizes for LSTMs
are set to 900.

The models are trained for 30 epochs with early
stopping based on the development BLEU score.
For our models and the baseline, we used a two-
layer LSTM decoder. We use Adam optimization
(Kingma and Ba, 2015) as the optimizer with an
initial learning rate of 0.001 and 20 as the batch
size. Beam search with the beam size of 5 is used
for decoding.

Results We call the models G2S-GIN (iso-
morphic encoder), G2S-GAT (graph-attention en-
coder), and G2S-GGNN (gated-graph encoder),
according to the graph encoder utilized. As a base-
line (S2S), we train an attention-based encoder-
decoder model with copy and coverage mecha-
nisms, and use a linearized version of the graph
generated by depth-first traversal order as input.
We compare our models against several state-of-
the-art results reported on the two datasets (Kon-
stas et al., 2017; Song et al., 2018; Beck et al.,
2018; Damonte and Cohen, 2019; Cao and Clark,
2019; Guo et al., 2019).

Model External BLEU
Konstas et al. (2017) 200K 27.40
Song et al. (2018) 200K 28.20
Guo et al. (2019) 200K 31.60
G2S-GGNN 200K 32.23

Table 3: Results on LDC2015E86 test set when models
are trained with additional Gigaword data.

We use both BLEU (Papineni et al., 2002) and
METEOR (Denkowski and Lavie, 2014) as evalu-
ation metrics3. In order to mitigate the effects of
random seeds, we report the averages for 4 train-
ing runs of each model along with their standard
deviation. Table 2 shows the comparison between
the proposed models, the baseline and other neural
models on the test set of the two datasets.

For both datasets, our approach substantially
outperforms the baselines. In LDC2015E86,
G2S-GGNN achieves a BLEU score of 24.32,
4.46% higher than Song et al. (2018), who also use
the copy mechanism. This indicates that our archi-
tecture can learn to generate better signals for text
generation. On the same dataset, we have compet-
itive results to Damonte and Cohen (2019). How-
ever, we do not rely on preprocessing anonymisa-
tion not to lose semantic signals. In LDC2017T10,
G2S-GGNN achieves a BLEU score of 27.87,
which is 3.33 points higher than Damonte and Co-
hen (2019), a state-of-the-art model that does not
employ external information. We also have com-
petitive results to Guo et al. (2019), a very recent
state-of-the-art model.

We also outperform Cao and Clark (2019) im-
proving BLEU scores by 3.48% and 4.00%, in
LDC2015E86 and LDC2017T10, respectively. In
contrast to their work, we do not rely on (i)
leveraging supplementary syntactic information
and (ii) we do not require an anonymization pre-
processing step. G2S-GIN and G2S-GAT have
comparable performance on both datasets. In-
terestingly, G2S-GGNN has better performance
among our models. This suggests that graph en-
coders based on gating mechanisms are very ef-
fective in text generation models. We hypothesize
that the gating mechanism can better capture long-
distance dependencies between nodes far apart in
the graph.

3For BLEU, we use the multi-BLEU script from the
MOSES decoder suite (Koehn et al., 2007). For ME-
TEOR, we use the original meteor-1.5.jar script
(https://github.com/cmu-mtlab/meteor).

https://github.com/cmu-mtlab/meteor

3189

Model BLEU METEOR Size
biLSTM 22.50 30.42 57.6M
GEt + biLSTM 26.33 32.62 59.6M
GEb + biLSTM 26.12 32.49 59.6M
GEt + GEb + biLSTM 27.37 33.30 61.7M

Table 4: Results of the ablation study on the
LDC2017T10 development set.

Additional Training Data Following previous
works (Konstas et al., 2017; Song et al., 2018; Guo
et al., 2019), we also evaluate our models employ-
ing additional data from English Gigaword corpus
(Napoles et al., 2012). We sample 200K Gigaword
sentences and use JAMR4 (Flanigan et al., 2016a)
to parse them. We follow the method of Konstas
et al. (2017), which is fine-tuning the model on
the LDC2015E86 training set after every epoch
of pretraining on the Gigaword data. G2S-GGNN

outperforms others with the same amount of Giga-
word sentences (200K), achieving a 32.23 BLEU
score, as shown in Table 3. The results demon-
strate that pretraining on automatically generated
AMR graphs enhances the performance of our
model.

Ablation Study In Table 4, we report the results
of an ablation study on the impact of each com-
ponent of our model on the development set of
LDC2017T10 dataset by removing the graph en-
coders. We also report the number of parame-
ters (including embeddings) used in each model.
The first thing we notice is the huge increase in
metric scores (17% in BLEU) when applying the
graph encoder layer, as the neural model receives
signals regarding the graph structure of the input.
The dual representation helps the model with a
different view of the graph, increasing BLEU and
METEOR scores by 1.04 and 0.68 points, respec-
tively. The complete model has slightly more pa-
rameters than the model without graph encoders
(57.6M vs 61.7M).

Impact of Graph Size, Arity and Sentence
Length The good overall performance on the
datasets shows the superiority of using graph en-
coders and dual representations over the sequential
encoder. However, we are also interested in esti-
mating the performance of the models concerning
different data properties. In order to evaluate how
the models handle graph and sentence features, we

4https://github.com/jflanigan/jamr

Model Graph Diameter
0-7 � 7-13 � 14-20 �

S2S 33.2 29.7 28.8
G2S-GIN 35.2 +6.0% 31.8 +7.4% 31.5 +9.2%
G2S-GAT 35.1 +5.9% 32.0 +7.8% 31.5 +9.51%
G2S-GGNN 36.2 +9.0% 33.0 +11.4% 30.7 +6.7%

Sentence Length
0-20 � 20-50 � 50-240 �

S2S 34.9 29.9 25.1
G2S-GIN 36.7 +5.2% 32.2 +7.8% 26.5 +5.8%
G2S-GAT 36.9 +5.7% 32.3 +7.9% 26.6 +6.1%
G2S-GGNN 37.9 +8.5% 33.3 +11.2% 26.9 +6.8%

Max Node Out-degree
0-3 � 4-8 � 9-18 �

S2S 31.7 30.0 23.9
G2S-GIN 33.9 +6.9% 32.1 +6.9% 25.4 +6.2%
G2S-GAT 34.3 +8.0% 32.0 +6.7% 22.5 -6.0%
G2S-GGNN 35.0 +10.3% 33.1 +10.4% 22.2 -7.3%

Table 5: METEOR scores and differences to the S2S,
in the LDC2017T10 test set, with respect to the graph
diameter, sentence length and max node out-degree.

perform an inspection based on different sizes of
graph diameter, sentence length, and max node
out-degree. Table 5 shows METEOR5 scores for
the LDC2017T10 dataset.

The performances of all models decrease as the
diameters of the graphs increase. G2S-GGNN has
a 17.9% higher METEOR score in graphs with a
diameter of at most 7 compared to graphs with di-
ameters higher than 13. This is expected as encod-
ing a bigger graph (containing more information)
is harder than encoding smaller graphs. Moreover,
71% of the graphs in the training set have a diam-
eter less than or equal to 7 and only 2% have a
diameter bigger than 13 (see Figure 3). Since the
models have fewer examples of bigger graphs to
learn from, this also leads to worse performance
when handling graphs with higher diameters. We
also investigate the performance with respect to
the sentence length. The models have better re-
sults when handling sentences with 20 or fewer to-
kens. Longer sentences pose additional challenges
to the models.

G2S-GIN has a better performance in han-
dling graphs with node out-degrees higher than 9.
This indicates that GINs can be employed in tasks
where the distribution of node degrees has a long

5METEOR score is used as it is a sentence-level metric.

https://github.com/jflanigan/jamr

3190

REF) GEN
Model ENT CON NEU
S2S 38.45 11.17 50.38
G2S-GIN 49.78 9.80 40.42
G2S-GAT 49.48 8.09 42.43
G2S-GGNN 51.32 8.82 39.86

GEN) REF
Model ENT CON NEU
S2S 73.79 12.75 13.46
G2S-GIN 76.27 10.65 13.08
G2S-GAT 77.54 8.54 13.92
G2S-GGNN 77.64 9.64 12.72

Table 6: Entailment (ENT), contradiction (CON)
and neutral (NEU) average percentages for the
LDC2017T10 test set. (Top) The premise and the hy-
pothesis are the generated (GEN) and reference (REF)
sentences, respectively. (Bottom) The hypothesis and
the premise are the generated (GEN) and reference
(REF) sentences, respectively.

tail. Surprisingly, S2S has a better performance
than G2S-GGNN and G2S-GAT when handling
graphs that contain high degree nodes.

Semantic Equivalence We perform an entail-
ment experiment using BERT (Devlin et al., 2019)
fine-tuned on the MultiNLI dataset (Williams
et al., 2018) as a NLI model. We are interested in
exploring whether a generated sentence (hypothe-
sis) is semantically entailed by the reference sen-
tence (premise). In a related text generation task,
Falke et al. (2019) employ NLI models to rerank
alternative predicted abstractive summaries.

Nevertheless, uniquely verifying whether the
reference (REF) entails the generated sentence
(GEN) or vice-versa (GEN entails REF) is not suf-
ficient. For example, suppose that “Today Jon
walks” is the REF and “Jon walks” is the GEN.
Even though REF entails GEN, GEN does not
entail REF, that is, GEN is too general (miss-
ing information). Furthermore, suppose that “Jon
walks” is the REF and “Today Jon walks” is the
GEN, GEN entails REF but REF does not entail
GEN, that is, GEN is too specific (added informa-
tion). Therefore, in addition to verify whether the
reference entails the generated sentence, we also
verify whether the generated sentence entails the
reference.

Table 6 shows the average probabilities for en-
tailment, contradiction and neutral classes on the
LDC2017T10 test set. All G2S models have

Figure 4: Human evaluation of the sentences generated
by S2S and G2S-GGNN models. Results are statisti-
cally significant with p < 0.05, using Wilcoxon rank-
sum test.

higher entailment compared to S2S. G2S-GGNN

has 33.5% and 5.2% better entailment perfor-
mances than S2S, when REF entails GEN and
GEN entails REF, respectively. G2S models also
generate sentences that contradict the reference
sentences less. This suggests that our models are
capable of capturing better semantic information
from the graph generating outputs semantically re-
lated to the reference sentences.

Human Evaluation To further assess the qual-
ity of the generated sentences, we conduct a hu-
man evaluation. We employ the Direct Assessment
(DA) method (Graham et al., 2017) via Amazon
Mechanical Turk. Using the DA method inspired
by Mille et al. (2018), we assess two quality crite-
ria: (i) meaning similarity: how close in meaning
the generated text is to the gold sentence; and (ii)
readability: how well the generated sentence reads
(Is it good fluent English?).

We randomly select 100 sentences generated by
S2S and G2S-GGNN and randomly assign them to
HITs (following Mechanical Turk terminology).
Human workers rate the sentences according to
meaning similarity and readability on a 0-100 rat-
ing scale. The tasks are executed separately and
workers were first given brief instructions. For
each sentence, we collect scores from 5 workers
and average them. Models are ranked according
to the mean of sentence-level scores. We apply a
quality control step filtering workers who do not
score some faked and known sentences properly.

Figure 4 shows the results. In both metrics,
G2S-GGNN has better human scores for mean-
ing similarity and readability, suggesting a higher

3191

(a / agree :ARG0 (a2 / and :op1 (c / country :wiki China :name (n / name :op1

China)) :op2 (c2 / country :wiki Kyrgyzstan :name (n2 / name :op1 Kyrgyzs-

tan))) :ARG1 (t / threaten-01 :ARG0 (a3 / and :op1 (t2 / terrorism) :op2 (s

/ separatism) :op3 (e / extremism)) :ARG2 (a4 / and :op1 (s3 / security :mod

(r / region)) :op2 (s4 / stability :mod r)) :time (s2 / still) :ARG1-of (m /

major-02)) :medium (c3 / communique :mod (j / joint)))

GOLD China and Kyrgyzstan agreed in a joint communique that terrorism, separatism and extremism
still pose major threats to regional security and stability.

S2S In the joint communique, China and Kyrgyzstan still agreed to threaten terrorism, separatism,
extremism and regional stability.

Song et. al (2018) In a joint communique, China and Kyrgyzstan have agreed to still be a major threat to regional
security, and regional stability.

G2S-GGNN At a joint communique, China and Kyrgyzstan agreed that terrorism, separatism and extremism
are still a major threat to region security and stability.

Table 7: An example of an AMR graph and generated sentences. GOLD refers to the reference sentence.

Model ADDED MISS
S2S 47.34 37.14
G2S-GIN 48.67 33.64
G2S-GAT 48.24 33.73
G2S-GGNN 48.66 34.06
GOLD 50.77 28.35

Table 8: Fraction of elements in the output that are not
present in the input (ADDED) and the fraction of ele-
ments in the input graph that are missing in the gener-
ated sentence (MISS), for the test set of LDC2017T10.
The token lemmas are used in the comparison. GOLD

refers to the reference sentences.

quality of the generated sentences regarding S2S.
The Pearson correlations between meaning sim-
ilarity and readability scores, and METEOR6

scores are 0.50 and 0.22, respectively.

Semantic Adequacy We also evaluate the se-
mantic adequacy of our model (how well does the
generated output match the input?) by compar-
ing the number of added and missing tokens that
occur in the generated versus reference sentences
(GOLD). An added token is one that appears in
the generated sentence but not in the input graph.
Conversely, a missing token is one that occurs in
the input but not in the output. In GOLD, added to-
kens are mostly function words while missing to-
kens are typically input concepts that differ from
the output lemma. For instance, in Figure 1, there
and of are added tokens while person is a missing
token. As shown in Table 8, G2S approaches out-
perform the S2S baseline. G2S-GIN is closest to
GOLD with respect to both metrics suggesting that
this model is better able to generate novel words to
construct the sentence and captures a larger range
of concepts from the input AMR graph, covering

6METEOR score is used as it is a sentence-level metric.

more information.

Manual Inspection Table 7 shows sentences
generated by S2S, Song et al. (2018), G2S-GAT,
and the reference sentence. The example shows
that our approach correctly verbalises the subject
of the embedded clause “China and ... agreed
that terrorism, separatism and extremismSUBJ ...
pose major threats to ...”, while S2S and Song
et al. (2018) are fooled by the fact that agree fre-
quently takes an infinitival argument which shares
its subject (“China ...SUBJ agreed to threaten /
have agreed to be a major threat”). While this is a
single example, it suggests that dual encoding en-
hances the model ability to take into account the
dependencies and the graph structure information,
rather than the frequency of n-grams.

6 Conclusion

We have studied the problem of generating text
from AMR graphs. We introduced a novel archi-
tecture that explicitly encodes two parallel and ad-
juvant representations of the graph (top-down and
bottom-up). We showed that our approach out-
performs state-of-the-art results in AMR-to-text
generation. We provided an extensive evalua-
tion of our models and demonstrated that they are
able to achieve the best performance. In the fu-
ture, we will consider integrating deep generative
graph models to express probabilistic dependen-
cies among AMR nodes and edges.

Acknowledgments

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group Adaptive Preparation of Information from
Heterogeneous Sources (AIPHES) under grant
No. GRK 1994/1.

3192

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273–283, Melbourne, Australia. Association
for Computational Linguistics.

Anja Belz, Mike White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The first
surface realisation shared task: Overview and eval-
uation results. In Proceedings of the Generation
Challenges Session at the 13th European Workshop
on Natural Language Generation, pages 217–226,
Nancy, France. Association for Computational Lin-
guistics.

Michael M. Bronstein, Joan Bruna, Yann LeCun,
Arthur Szlam, and Pierre Vandergheynst. 2017. Ge-
ometric deep learning: Going beyond euclidean
data. IEEE Signal Processing Magazine, 34(4):18–
42.

Kris Cao and Stephen Clark. 2019. Factorising AMR
generation through syntax. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2157–2163, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Thiago Castro Ferreira, Iacer Calixto, Sander Wubben,
and Emiel Krahmer. 2017. Linguistic realisation as
machine translation: Comparing different MT mod-
els for AMR-to-text generation. In Proceedings of
the 10th International Conference on Natural Lan-
guage Generation, pages 1–10, Santiago de Com-
postela, Spain. Association for Computational Lin-
guistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Struc-
tural neural encoders for AMR-to-text generation.
In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
3649–3658, Minneapolis, Minnesota. Association
for Computational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
Utama, Ido Dagan, and Iryna Gurevych. 2019.
Ranking generated summaries by correctness: An
interesting but challenging application for natural
language inference. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2214–2220, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016a. CMU at SemEval-2016
task 8: Graph-based AMR parsing with infinite
ramp loss. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1202–1206, San Diego, California. Associa-
tion for Computational Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016b. Generation from abstract
meaning representation using tree transducers. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 731–739, San Diego, California. Association
for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Com-
putational Linguistics.

Yvette Graham, Timohy Baldwin, Alistair Moffat, and
Justin Zobel. 2017. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, 23(1):3–30.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei Lu.
2019. Densely connected graph convolutional net-
works for graph-to-sequence learning. Transactions

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/P18-1026
https://www.aclweb.org/anthology/P18-1026
https://www.aclweb.org/anthology/W11-2832
https://www.aclweb.org/anthology/W11-2832
https://www.aclweb.org/anthology/W11-2832
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.18653/v1/N19-1223
https://doi.org/10.18653/v1/N19-1223
https://doi.org/10.18653/v1/W17-3501
https://doi.org/10.18653/v1/W17-3501
https://doi.org/10.18653/v1/W17-3501
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/P19-1213
https://www.aclweb.org/anthology/P19-1213
https://www.aclweb.org/anthology/P19-1213
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.1017/S1351324915000339
https://doi.org/10.1017/S1351324915000339
https://doi.org/10.1162/tacl_a_00269
https://doi.org/10.1162/tacl_a_00269

3193

of the Association for Computational Linguistics,
7:297–312.

Diederick P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Inter-
national Conference on Learning Representations
(ICLR), San Diego, CA, USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2284–2293, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 146–157, Van-
couver, Canada. Association for Computational Lin-
guistics.

Yujia Li, Richard Zemel, Marc Brockschmidt, and
Daniel Tarlow. 2016. Gated graph sequence neural
networks. In Proceedings of the International Con-
ference on Learning Representations (ICLR), San
Juan, Puerto Rico.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract meaning representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Diego Marcheggiani and Laura Perez Beltrachini.
2018. Deep graph convolutional encoders for struc-
tured data to text generation. In Proceedings of
the 11th International Conference on Natural Lan-
guage Generation, pages 1–9, Tilburg University,
The Netherlands. Association for Computational
Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (SR’18):
Overview and evaluation results. In Proceedings of
the First Workshop on Multilingual Surface Realisa-
tion, pages 1–12, Melbourne, Australia. Association
for Computational Linguistics.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge
Extraction, AKBC-WEKEX ’12, pages 95–100,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Shashi Narayan and Claire Gardent. 2012. Structure-
driven lexicalist generation. In Proceedings of COL-
ING 2012, pages 2027–2042, Mumbai, India. The
COLING 2012 Organizing Committee.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Nima Pourdamghani, Kevin Knight, and Ulf Herm-
jakob. 2016. Generating English from abstract
meaning representations. In Proceedings of the 9th
International Natural Language Generation confer-
ence, pages 21–25, Edinburgh, UK. Association for
Computational Linguistics.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, pages
593–607.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Compu-
tational Linguistics.

Stuart M. Shieber, Gertjan van Noord, Fernando C. N.
Pereira, and Robert C. Moore. 1990. Semantic-
head-driven generation. Computational Linguistics,
16(1):30–42.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using AMR. Transactions of the
Association for Computational Linguistics, 7:19–31.

http://dl.acm.org/citation.cfm?id=1557769.1557821
http://dl.acm.org/citation.cfm?id=1557769.1557821
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
https://www.aclweb.org/anthology/C18-1101
https://www.aclweb.org/anthology/C18-1101
https://www.aclweb.org/anthology/C18-1101
https://www.aclweb.org/anthology/W18-6501
https://www.aclweb.org/anthology/W18-6501
https://doi.org/10.18653/v1/W18-3601
https://doi.org/10.18653/v1/W18-3601
https://doi.org/10.18653/v1/W18-3601
http://dl.acm.org/citation.cfm?id=2391200.2391218
https://www.aclweb.org/anthology/C12-1124
https://www.aclweb.org/anthology/C12-1124
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/J90-1004
https://www.aclweb.org/anthology/J90-1004
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252

3194

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for
AMR-to-text generation. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1616–1626, Melbourne, Australia. Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. In International
Conference on Learning Representations, Vancou-
ver, Canada.

Boris Weisfeiler and A.A. Lehman. 1968. A reduction
of a graph to a canonical form and an algebra aris-
ing during this reduction. Nauchno-Technicheskaya
Informatsia, pages 12–16.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In International Conference on Learning
Representations, New Orleans, LA, USA.

https://www.aclweb.org/anthology/P18-1150
https://www.aclweb.org/anthology/P18-1150
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

