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Abstract

Referring Expression Generation (REG) is the
task of generating contextually appropriate
references to entities. A limitation of exist-
ing REG systems is that they rely on entity-
specific supervised training, which means that
they cannot handle entities not seen during
training. In this study, we address this in two
ways. First, we propose task setups in which
we specifically test a REG system’s ability to
generalize to entities not seen during training.
Second, we propose a profile-based deep neu-
ral network model, PROFILEREG, which en-
codes both the local context and an external
profile of the entity to generate reference real-
izations. Our model generates tokens by learn-
ing to choose between generating pronouns,
generating from a fixed vocabulary, or copy-
ing a word from the profile. We evaluate our
model on three different splits of the WebNLG
dataset, and show that it outperforms competi-
tive baselines in all settings according to auto-
matic and human evaluations.

1 Introduction

Entities can be expressed by various types of lin-
guistic expressions, including by their names (e.g.,
Barrack Obama), a definite description (e.g., the
former president of the United States), a pronoun
(e.g., he, him, his), or a demonstrative (e.g., that
person). Many factors play a role in determining
what type of expression is appropriate in a partic-
ular context (Henschel et al., 2000), including in-
formation status, familiarity with the entity, and
referential clarity. In this study, we aim to design
a model that can generate appropriate referring ex-
pressions of entities in an extended passage. Such
a system is useful in a variety of natural language
generation settings, from dialogue systems to au-
tomatic summarization applications (Reiter and
Dale, 2000; Krahmer and Van Deemter, 2012).

Referring expression generation (REG) can be
broken into two steps. The first is to decide the
form of referring expression; that is, what type
of reference should be used (e.g., a proper name).
The second is to determine the content of the re-
ferring expression (e.g., Ernest Hemingway).

Many computational approaches, both rule-
based and machine-learning-based, have been
proposed for REG. Rule-based models use pre-
defined heuristics and algorithms to determine
referential form (Reiter and Dale, 2000; Hen-
schel et al., 2000; Callaway and Lester, 2002).
Machine learning-based approaches require train-
ing on samples to predict referring expressions
(Nenkova and McKeown, 2003; Greenbacker and
McCoy, 2009; Ferreira et al., 2016, 2017), often
as a classification task.

The common limitation of previous REG sys-
tems is that they are incapable of generating refer-
ring expressions for new, unseen entities. Previous
REG setups have tended to focus on form selection
rather than content generation, or else they provide
a static list of attributes or realization options for
models to select from (Belz et al., 2010; Gatt and
Belz, 2008). The recent NeuralREG model gen-
erates referring expressions in an integrated, end-
to-end setup, but it requires seeing instances of the
entity being referred to in the training set (Ferreira
et al., 2018).

In this work, we address this problem by
proposing new REG task setups which test for
REG systems’ ability to handle new entities at test
time. We also develop a REG system which can
handle entities not seen during training using ex-
ternal knowledge about them, generated using ex-
tracts of their Wikipedia page.

From a practical perspective, it is reasonable to
assume that such an entity profile exists for com-
mon entities such as popular locations and celebri-
ties, as well as for targeted entities of interest that
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should be handled by an in-domain NLG system.
We make the minimal assumption that the profile
contains just a few sentences about the entity, so
that these profiles can easily be written by non-
experts or be automatically extracted.

Our model, PROFILEREG, uses a learned
switch variable to decide whether to generate a to-
ken from a fixed vocabulary, generate a pronoun,
or use information from the profile in order to gen-
erate appropriate referring expressions in context.
We evaluate our model on the WebNLG corpus
(Gardent et al., 2017a). Experimental results show
that our model is capable of handling unseen en-
tities that prior work simply cannot handle in our
new evaluation setups, while also outperforming
them in the original setting.1

Our contributions are as follows. First, we ad-
dress an important limitation in prior REG stud-
ies by creating new test setups that evaluate neural
REG models specifically on entities that are not
seen in the training set. Second, we propose a new
REG model, PROFILEREG, which outperforms
existing REG models in all tested settings accord-
ing to automatic and human evaluation measures.

2 Related Work

Previous work in REG can be divided into two
groups: rule-based and machine learning-based.

Rule-based approaches use pre-defined rules or
algorithms to determine the form or content of
generated referring expressions. For example, Re-
iter and Dale (2000) proposed a straightforward
heuristic for REG: a proper name should be used
in the first mention of an entity and a pronomi-
nal form should be used for the subsequent ref-
erences if there is no mention of any other entity
of the same gender between the reference and its
antecedent. Henschel et al. (2000) presented an al-
gorithm for the pronominalization of third person
discourse entities.

Machine learning-based approaches predict the
form or content of referring expressions using fea-
tures extracted from the context. Commonly used
context features include syntactic position, refer-
ential status (initial or a subsequent mention) and
distance. For instance, Nenkova and McKeown
(2003) built a Markov chain model to capture how
the subsequent referring expressions are condi-
tioned by earlier mentions. Frank and Goodman
(2012) proposed a rational speaker-listener model

1https://github.com/mcao610/ProfileREG

based on the assumptions that speakers attempt to
be informative and that listeners use Bayesian in-
ference to recover the speakers’ intended referents.
Orita et al. (2015) extended the previous model by
introducing the referent’s discourse salience and a
cost term. Ferreira et al. (2016) proposed a naive
Bayes model to predict the probability of a par-
ticular referential form given a set of feature val-
ues, including syntactic position, referential status
and recency of references. Similarly, Ferreira et al.
(2017) used a naive Bayes model based on syn-
tactic position and referential status to predict the
form of a proper name reference.

In recent years, deep neural networks have
achieved great success in a variety of NLP appli-
cations (e.g., machine translation (Bahdanau et al.,
2014) and automatic summarization (Rush et al.,
2015; See et al., 2017)). To the best of our knowl-
edge, there have only been two models that use
deep neural networks for REG. The first is by Fer-
reira et al. (2016), who use recurrent neural net-
works (RNNs) to predict the form of referring ex-
pressions. They use RNNs to encode a sequence
of discourse features and apply a softmax layer to
generate referential form distribution.

The other is the NeuralREG model proposed by
Ferreira et al. (2018), an end-to-end system that
predicts both the form and content of the referring
expression. NeuralREG has an encoder-decoder
structure, using LSTM units to encode contextual
information and to decode referring expressions.
Since each entity is represented as an embedding
vector in the model, it cannot handle new entities
that are outside the training set.

Generating entity descriptions based on source
data has also been explored in the context of
concept-to-text generation Lebret et al. (2016).
We focus here on generating referring expressions
from unstructured source data, which may be more
readily available in some settings.

3 Data

The WebNLG corpus (Gardent et al., 2017a) was
initially introduced in the WebNLG challenge
2017 (Gardent et al., 2017b). The WebNLG
dataset is made up of (data, text) pairs where the
data is a set of triples that consists of entities and
their relationships and the text is a verbalisation of
these triples. In this challenge, the participants are
asked to map the triple data to text.

In this study, we use a delexicalized version
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Triples:
Elliot See | almaMater | University of Texas at Austin
Elliot See | deathPlace | St. Louis
Elliot See | birthPlace | Dallas
...
Text: Elliot See was born on July 23 , 1927 in Dallas . He
attended the U of Texas at Austin which is part of the U of
Texas system . See was a test pilot . He died on Feb 28 ,
1966 in St. Louis .
Wikipedia ID: elliot see
Referring expression: He
Delexicalized text: elliot see was born on 1927-
07-23 in dallas . elliot see attended the univer-
sity of texas at austin which is part of univer-
sity of texas system . elliot see was a test pilot .
elliot see died on 1966-02-28 in st. louis .
Pre-context: elliot see was born on 1927-07-23 in dallas .
Post-context: attended the u of texas at austin which is
part of the U of texas system . see was a test pilot . he
died on 1966-02-28 in st. louis .

Table 1: A sample in the original WebNLG dataset
(above) and the delexicalized dataset (below). In this
case, referring expression “He”, which refers to El-
liot See, is first delexicalized as elliot see and then ex-
tracted from the text.

of WebNLG corpus introduced by Ferreira et al.
(2018). The authors manually extracted each re-
ferring expression in the text and kept only the
ones referring to Wikipedia entities. As a result,
each sample of the delexicalized dataset consists
of a Wikipedia ID, a true-cased tokenized refer-
ring expression (extracted from the text) and a
lowercased, tokenized discourse context preced-
ing and following the target reference (referred
as the pre- and post-context). Table 1 shows one
sample from the corpus. The dataset consists of
78,901 referring expressions for 1,501 Wikipedia
entities. Among the expressions, 71.4% (56,321)
are proper names, 5.6% (4,467) are pronouns,
22.6% (17,795) are descriptions and 0.4% (318)
are demonstratives.

In the delexicalized version of WebNLG cor-
pus, references to other discourse entities in the
pre- and pos-contexts are represented by their one-
word ID removing quotes and replacing white
spaces with underscores. Since our model does
not rely on any entity ID, we replaced each ID with
its corresponding referring expression.

3.1 Profile Generation

We create a profile for each entity that appears in
the corpus as a form of external knowledge for
REG. The profile consists of the first three sen-

tences of the entity’s Wikipedia page, which is re-
trieved automatically using the entity’s Wikipedia
ID and the Python wikipedia 1.4.0 library. We
choose the first three sentences of the Wikipedia
page since they usually contain the most impor-
tant information about an entity such as its name,
country, or occupation.

We tokenized the crawled Wikipedia sentences
and removed all phonetic symbols as well as other
special characters. For the Wikipedia IDs that are
ambiguous (e.g., New York may refer to New York
City or New York (State)), we manually checked
the discourse context to determine which entry
was appropriate. For the entities that are constant
numbers or dates which have no meaningful pro-
files, we make the profile content the same as the
entity ID but replaced each underscore in the ID
with white spaces. We generated a total of 1,501
profiles, one per entity in the dataset.

3.2 Setups

In the current way that WebNLG is set up for REG,
entities in the training set and test set are over-
lapped, which makes it impossible to examine the
effect that previously unseen entities have on REG
performance. To address this limitation, we split
the dataset in three different ways as follows:

Original. The original split of data from Ferreira
et al. (2018). There are 63,061, 7,097 and 8,743
referring expressions in the training, development
and test set respectively. In this dataset, all entities
in the development and test set also appear in the
training set.

Entity-separated. We separated the entities in
the training, development and test set by splitting
the delexicalized WebNLG dataset by entity IDs.
The ratio of the number of entities in the training
set, validation set, and test set is 8:1:1. As a re-
sult, there are 63,840, 7,978 and 7,083 referring
expressions of different entities in each dataset.

Random. We randomly split all referring ex-
pressions in WebNLG with ratio 8:1:1. The fi-
nal training, development and test set contains
63,121, 7,890 and 7,890 referring expressions re-
spectively. In this dataset, some entities in the test
set appear in training, but not all. We also test our
models on this dataset since we believe it better
reflects a realistic setting in which a REG model
might be applied.
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Figure 1: Our PROFILEREG model. The model uses two bi-directional LSTMs (green) to encode the pre- and
post-context and one bi-directional LSTM (yellow) to encode the profile. At the decoding step, we calculate three
distributions: attention distribution, pronoun distribution and vocabulary distribution. These three distributions
together with the switch variable are used to determine the final distribution.

4 Model

In this section, we present our model, PROFIL-
EREG (Figure 1). In our task setup, the input of
the model consists of pre- and post-context texts
of lengthsH andN , and an entity profile of length
L. The output is a sequence of tokens that make
up the referring expression. We use three bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
encoders to encode the pre- and post-context and
the profile, and a unidirectional LSTM decoder to
generate the output at inference time. We also ap-
ply an attention mechanism and a switch variable
to calculate the final output distribution. We now
introduce each component in more detail.

4.1 Context Encoders

We use two bi-directional LSTMs to encode the
pre- and post-contexts, which are the entire se-
quences of tokens before and after the referring ex-
pression in the discourse context. The pre-context,
a sequence of tokens {w(pre)

1 , ..., w
(pre)
H }, is first

mapped to a distributed vector space through an
embedding layer, resulting in a sequence of vec-
tors {x(pre)1 , ..., x

(pre)
H }. Then, the word embed-

dings are given to a bidirectional LSTM. We call
the forward and backward hidden-state vectors at
time t

−→
h

(pre)
t and

←−
h

(pre)
t respectively. We ex-

tract the two hidden-state vectors at the last step
time H , and concatenate them to form the final
vector representation h

(pre)
H = [

−→
h

(pre)
H ;

←−
h

(pre)
H ],

which summarizes the information in the entire
pre-context. The same process is repeated for the
post-context using another bi-directional LSTM.
This results in h

(post)
N = [

−→
h

(post)
N ;

←−
h

(post)
N ]. Fi-

nally, we concatenate the pre- and post-context
vector representations and pass them through a
hidden layer:

dc = tanh(Wd[h
(pre)
H ;h

(post)
N ]) (1)

whereWd is a weight matrix mapping the concate-
nated hidden state vectors into a joint vector rep-
resentation dc, which is used as the initial state of
the decoder.

4.2 Profile Encoder

The profile encoder is another bi-directional
LSTM that receives a series of profile words
{w1, ..., wL} as input. All words in the pro-
file are first converted to lowercase and mapped
to a sequence of word embeddings {x1, ..., xL}
through the same embedding layer as for the pre-
and post-contexts. Then the embedded sequence
are passed through the bi-directional LSTM, re-
sulting in forward and backward hidden states
{
−→
h 1, ...,

−→
h L} and {

←−
h 1, ...,

←−
h L}. At each word

position t, the forward and backward representa-
tions are concatenated as the final representation
ht = [

−→
h t;
←−
h t].

We also calculate a character-level embedding
for each word using another bidirectional LSTM
encoder. The last hidden-state vector of the for-
ward and backward LSTMs are concatenated and
given to a separate non-linear layer to form an out-
put vector. This output vector is concatenated with
the word-level embedding as our final word repre-
sentation.
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4.3 Attention-based Decoder
Our referring expression decoder is a unidirec-
tional LSTM. At each decoding step t, the decoder
receives the word embedding of the previous word
and generates a decoder hidden state st. Then, we
calculate the attention distribution at over the en-
tity profile using the attention mechanism intro-
duced by Bahdanau et al. (2014):

eti = vT tanh(Whhi +Wsst + battn) (2)

at = softmax(et), (3)

where hi is the sequence of profile encoder hid-
den states, Wh,Ws, v

T and battn are all trainable
parameters. The attention distribution, at, deter-
mines the degree of contribution of each token in
the profile at expression generation step t. A final
summary h∗t is calculated by summing the profile
encoder states hi weighted by the attention proba-
bilities at:

h∗t =
∑
i

atihi (4)

Then, h∗t is concatenated with the decoder hidden
state st and passed through a linear layer, produc-
ing the vocabulary distribution Pvoc:

Pvoc = softmax(V [st;h
∗
t ] + b) (5)

where V and b are both trainable parameters in
the model. Pvoc contains the generation probabil-
ity of each word in the vocabulary. We will actu-
ally modify this distribution to account for out-of-
vocabulary items and pronouns by introducing a
copying mechanism, which we will discuss in the
next section. This results in the final generation
probability, P (w∗

t ) of the target (gold-standard)
word at time t.

During training, we take the negative log likeli-
hood of the target word in the gold standard, ŵ∗

t ,
as the loss of the model at step t. The overall loss
is the sum of the loss at each time step:

loss =
1

T

T∑
t=0

− logP (ŵ∗
t ) (6)

At test time, the word with the highest gener-
ation probability will be the output at the current
time step and the input to the next step.

4.4 Switch Mechanism
In PROFILEREG, we apply a switch mechanism
that allows the model to generate different refer-
ential forms, inspired by the pointer-generator net-
work of See et al. (2017). In particular, our model

can choose to: i) copy a word from the profile,
which is especially useful for named entities with
rare names which are not part of a fixed vocabu-
lary, ii) generate a pronoun, or iii) generate from
a fixed vocabulary. Although pronouns are part
of our fixed vocabulary, we choose to distinguish
them as a separate category to model, due to their
importance and frequency in the REG task.

We define a switch variable Σ which can take
on one of three values, COPY, PRO, and GEN,
corresponding to the three decoder actions. Let
the associated probabilities be σCOPY, σPRO, and
σGEN. After computing h∗t and vocabulary distri-
bution Pvoc at time step t, we compute these prob-
abilities using the summary vector h∗t , the encoder
final state dc, the decoder hidden state st and the
input xt:

[σCOPY, σPRO, σGEN] = softmax(

Hh∗h∗t +Hddc +Hsst +Hxxt + bs),
(7)

where Hh∗ , Hd, Hs, Hx and bs are learnable pa-
rameters with output dimension of three. The fi-
nal generation probability of the target word w∗

t is
then computed as follows:

if w∗
t is a pronoun then
P (w∗

t ) = σPROPvoc(w
∗
t ) + σCOPY

∑
i:wi=w∗

t

ati

else if w∗
t is a vocabulary word then

P (w∗
t ) = σGENPvoc(w

∗
t ) + σCOPY

∑
i:wi=w∗

t

ati

else
P (w∗

t ) = σCOPY

∑
i:wi=w∗

t

ati

end if

In the formula, at is the attention distribution
computed in the previous section. When w∗

t is
a pronoun or vocabulary word, the probability
P (w∗

t ) consists of two terms since the word in the
vocabulary could also be in the profile. P (w∗

t ) will
be used in the Equation 6.

One important difference between our model
and the pointer-generator network is that the
pointer-generator model only computes one gen-
eration probability pgen ∈ [0, 1], which is used
to decide whether generate a word or copy a token
from the source document. In our model, however,
we compute a probability distribution Sswitch over
three values. Our intention is that the model can
better distinguish between different forms of re-
ferring expressions, especially between pronouns
and demonstrative or definite description forms.
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5 Experiments

We evaluate our model and the baselines on three
different data splits mentioned in Section 3.2:
Original, Entity-separated and Random, where
the entities are overlapped, all separated and ran-
domly mixed in training, validation and test set.

5.1 Baselines

We compared our model against three baselines:
OnlyName, Ferreira and NeuralREG. In our first
OnlyName baseline, we use the name of the entity
as the final realization regardless of the context.
This baseline is inspired by the fact that 71.4% of
the referring expressions in WebNLG are proper
names. Given the Wikipedia profile of an entity,
we obtain the name of the entity by extracting the
first few capitalized words in that profile. If the
name cannot be found in this way, we will use the
first word of the profile (except articles).

Our second baseline makes use of the Naive
Bayes model proposed by Ferreira et al. (2016),
dubbed Ferreira. This model takes features in-
cluding syntactic position, referential status (ini-
tial or a subsequent mention at the level of text
and sentence) and recency (distance between ref-
erences) as input. The original model is only used
to determine the form of the referring expression.
We adapt the model by adding a content gener-
ation component. Once the form of the referent
is decided, the content of the referential expres-
sion is decided as follows: we use the OnlyName
model to get the name of the entity and find the
most frequent pronoun expressions in the profile
as the content for pronoun form (using “it” if no
pronoun expressions can be found). We use the
gold-standard content for the demonstrative and
description categories from the WebNLG dataset,
which provides an upper bound on the potential
performance of this system.

Our third baseline is the NeuralREG model pro-
posed by Ferreira et al. (2018). NeuralREG is a
sequence-to-sequence neural network model with
an attention mechanism. All words and entities in
NeuralREG are represented as embeddings which
are randomly initialized and learned during train-
ing. We tested the best-performing CAtt version
of NeuralREG.

5.2 Metrics

Following prior work, we calculate the overall ac-
curacy and the String Edit Distance (SED) be-

tween the generated and the reference expressions.
The overall accuracy is calculated by comparing
the generated string with the real referring ex-
pression. We post-processed the output to ig-
nore differences in capitalization, accent and cer-
tain non-alphabetic characters (e.g., “Desteapta-
te” vs. “Deşteaptă-te”, and “Tranmere Rovers FC”
vs. “Tranmere Rovers F.C.”).

We also evaluate the performance of our model
with regard to a particular referential form. We
computed name accuracy, pronoun accuracy, pre-
cision, recall and F1-score. The name and pro-
noun accuracy are computed by comparing names
and pronouns in the test set with the generated re-
ferring expressions. Pronoun classification evalu-
ation takes all generated referring expressions as
two forms: pronoun or non-pronoun and do not
consider the actual content.

5.3 Experiment Setting

For all experiments, our model has 100-
dimensional hidden states for the encoder and de-
coder LSTMs and 50 dimensional for the charac-
ter LSTM. The word and character embeddings
are both set to 100-dimensional. We initialize the
word embeddings using pre-trained GloVe vectors
(Pennington et al., 2014) and all character em-
beddings are randomly initialized. The model is
trained for up to 35 epochs, or until the perfor-
mance on the development set does not improve
for 5 epochs. We set the learning rate to 0.0037
and the batch size to 64. We apply gradient clip-
ping with a maximum gradient norm of 5. We
adopt dropout training with a dropout rate of 0.5.
At test time, all referring expressions are gener-
ated using greedy decoding. These settings were
selected by tuning on the development set.

6 Results

6.1 Automatic Evaluation

As shown in Table 2 PROFILEREG outperforms
the three baselines in all experiments. Our model
in particular excels at the measures of pronoun ac-
curacy and pronoun classification.

On the Original dataset, our model is slightly
better than NeuralREG in total accuracy and SED.
This result indicates that our model is as good as or
better than NeuralREG model when dealing with
previously seen entities. On pronoun classifica-
tion, OnlyName model has a performance of zero
since it cannot generate any pronouns.
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Dataset Models SED Total Acc. Name Acc. Pronoun
Acc.

Pronoun Classif.
Prec. Rec. F1

Original

OnlyName 5.57 53.47% 66.22% 0.00% 0.00 0.00 0.00
Ferreira 4.56 56.50% 65.11% 63.58% 0.60 0.96 0.74

NeuralREG 2.33 74.13% 81.64% 74.92% 0.77 0.78 0.78
PROFILEREG 2.22 74.67% 80.51% 87.17% 0.72 0.89 0.80

Entity-
separated

OnlyName 6.28 54.71% 61.44% 0.00% 0.00 0.00 0.00
Ferreira 5.91 55.67% 60.11% 64.25% 0.45 0.97 0.61

NeuralREG – – – – – – –
PROFILEREG 5.17 60.60% 67.20% 75.57% 0.53 0.80 0.64

Random

OnlyName 5.59 53.21% 67.02% 0.00% 0.00 0.00 0.00
Ferreira 4.72 55.63% 65.59% 61.37% 0.58 0.95 0.72

NeuralREG 2.61 71.62% 77.49% 75.03% 0.61 0.89 0.71
PROFILEREG 2.11 75.33% 81.85% 83.89% 0.76 0.85 0.80

Table 2: REG performance on the original, entity separated and random dataset. PROFILEREG is the model
proposed in this work. Note that NeuralREG cannot be applied to the entity-separated dataset.

Entity-separated demonstrates our model’s
ability to handle new entities, compared to the
baselines. There is a clear drop on most metrics
compared to the original dataset, but this is ex-
pected since the test set consists of unseen entities.
As previously explained, the NeuralREG model
cannot be applied to this dataset without exten-
sive modifications. On Random, PROFILEREG
outperforms NeuralREG. For the unseen entities,
NeuralREG generates a random string, since the
embeddings of unseen entities are not updated by
training. Our model, however, is capable of pro-
ducing accurate referring expressions for both pre-
viously mentioned and new entities.

Table 3 shows an example of the generated text
of each model. The entity in this example is
Acharya Institute of Technology. Note that only
the bold text is generated by the models. The out-
put of the OnlyName model is clearly the least
readable one.

6.2 Seen Entities vs. Unseen Entities

In the evaluation, we also distinguished the results
for seen and unseen entities. We trained the model
on a training set contains 64,353 referring expres-
sions and evaluate the model on a test set with
3,591 referring expressions related to seen enti-
ties and 2,955 expressions related to unseen en-
tities. Table 4 shows the evaluation results. From
Table 4, it is easy to see that the model performs

better when generating referring for seen entities.
Among four referring expression types, the ac-
curacy of description type drops dramatically for
unseen entities, from 48.72% to 20.54%. This
is probably due to the fact that compared with
name and pronoun, description type is often hard
to identify and more flexible. For instance, one of
the gold-standard descriptions in the test set is the
comic character , amazing-man. The model’s gen-
eration for this referring expression is amazing-
man.

Also notice that the accuracy of demonstrative
type is zero for both seen and unseen entities. We
think this is because the dataset is unbalanced and
there are too few demonstrative samples in the
training set. The model did not have enough sam-
ples to learn to identify demonstratives.

6.3 Human Evaluation

Method. In addition to automatic evaluation, we
also performed a human evaluation, comparing
our model to the original text and to the three base-
line models. We concatenated the pre- and post-
contexts with the generated referring expression
to form an overall passage. We showed partici-
pants the output of our model and a comparison
model, and asked them to make a pairwise prefer-
ence judgment between the two passages.

Specifically, we randomly selected 100 samples
from the Random test set. We presented the two
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Original: Acharya Institute of Technology is affiliated with Visvesvaraya Technological University which is in Belgium
. The institute itself is in India ’s Karnataka state and its full address is In Soldevanahalli , Acharya Dr. Sarvapalli
Radhakrishnan Road , Hessarghatta Main Road , Bangalore – 560090 . It was created in 2000 and its director is Dr. G. P.
Prabhukumar .

OnlyName: Acharya Institute of Technology is affiliated with Visvesvaraya Technological University which is in Belgium
. Acharya Institute of Technology is in India ’s Karnataka state and Acharya Institute of Technology full address is In
Soldevanahalli , Acharya Dr. Sarvapalli Radhakrishnan Road , Hessarghatta Main Road , Bangalore – 560090 . Acharya
Institute of Technology was created in 2000 and Acharya Institute of Technology director is Dr. G. P. Prabhukumar .

Ferreira: Acharya Institute of Technology is affiliated with Visvesvaraya Technological University which is in Belgium
. It is in India ’s Karnataka state and its full address is In Soldevanahalli , Acharya Dr. Sarvapalli Radhakrishnan Road ,
Hessarghatta Main Road , Bangalore - 560090 . It was created in 2000 and it director is Dr. G. P. Prabhukumar .

NeuralREG: Acharya institute of technology is affiliated with Visvesvaraya Technological University which is in Belgium
. It is in India ’s Karnataka state and its full address is In Soldevanahalli , Acharya Dr. Sarvapalli Radhakrishnan Road ,
Hessarghatta Main Road , Bangalore – 560090 . It ’s was created in 2000 and its director is Dr. G. P. Prabhukumar .

PROFILEREG: The Acharya Institute of Technology is affiliated with Visvesvaraya Technological University which is
in Belgium . The institute is in India ’s Karnataka state and its full address is In Soldevanahalli , Acharya Dr. Sarvapalli
Radhakrishnan Road , Hessarghatta Main Road , Bangalore – 560090 . It was created in 2000 and its director is Dr. G. P.
Prabhukumar .

(Entity profile) Acharya Institute of Technology , or AIT , is a private co-educational engineering and management college
in Bengaluru , India , affiliated with the Visvesvaraya Technological University and accredited by the National Board of
Accreditation . Established in 2000 , it offers eleven undergraduate courses and eight postgraduate courses . The college
has links and collaborations with various industries and universities across the world .

Table 3: Example of original text and generated text of each model.

Type Acc. Support

Seen

demonstrative 0.00% 22
description 48.72% 862

name 79.11% 2547
pronoun 90.00% 160

total 71.82% 3591

Unseen

demonstrative 0.00% 3
description 20.54% 409

name 74.74% 2423
pronoun 88.33% 120

total 67.72% 2955

Table 4: Evaluation for seen and unseen entities.

passages in random order, asking participants to
consider the readability, grammaticality and flu-
ency of texts. We then asked them to select the
passage that they prefer, or to say they are equally
good. We recruited 20 participants, each evaluat-
ing 20 samples.

Results. Figure 2 shows the human evaluation
results. The most common choice made by par-
ticipants is “equal”. This is because many gener-
ated referring expressions by the models are ac-
tually identical. When our model was compared
to the original text, 86 of the 100 generated texts
are identical or very similar to the original text.
This demonstrates our model’s ability to generate

Only Name Ferreira NeuralREG Original Text
0

20

40

60

80

100

28
22

13

4

66 68

79
86

6
10 8 10

this work
equal
baseline/original

Figure 2: Human evaluation results. Comparison of our
model with three baselines and original text.

high quality referring expressions. Also, we can
see from the chart that our model tends to be pre-
ferred over the three baseline models.

6.4 Analyzing Switch Variable Behaviour
We now examine the behaviour of the switch vari-
able, Σ. As mentioned in Section 4.4, each word
is generated with a probability distribution (σCOPY,
σPRO and σGEN). We expect this distribution to
vary based on the form of the referring expression.
For instance, when a proper name expected, σCOPY

should be relatively high if the model copies words
from the entity profile.

Table 5 shows three examples of generated re-
ferring expressions with the values of the switch
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pronoun name description demonstrative
0.0

0.2

0.4

0.6

0.8

1.0

0.07 0.08

0.27 0.25

0.84

0.02 0.05

0.18

0.10

0.89

0.69

0.58

σGEN
σPRO
σCOPY

Figure 3: The average probabilities of the switch vari-
able values for each referential form on the Random
test set.

Context: The 3rd runway at Ardmore Airport ( New
Zealand ) is made of Poaceae . (...)
Entity Profile: Ardmore Airport is an airport 3 NM south-
east of Manurewa in Auckland , New Zealand . (...)
Realization: Ardmore(COPY 0.968) Airport(COPY 0.971)

in(GEN 0.908) New(COPY 0.969) Zealand(COPY 0.947)

Context: Curitiba is part of Parana State in the South Re-
gion , Brazil and is served by Afonso Pena International
airport . It is led by the Democratic Labour Party .
Entity Profile: The Democratic Labour Party is a social
democratic political party in Brazil . (...)
Realization: the(GEN 0.895) Democratic(COPY 0.938)

Labour(COPY 0.987) Party(COPY 0.966)

Context: Elliot See was born on July 23 , 1927 in Dallas .
He attended the U of Texas at Austin which is part of the
U of Texas system . (...)
Entity Profile: Elliot See was an American engineer ,
naval aviator , test pilot , and NASA astronaut . He was
selected for NASA ’s second group of astronauts in 1962 .
Realization: he(PRO 0.987)

Table 5: An example of how the switch variable works
in referring expression generation.

variable. We put the gold-standard referring ex-
pression, pre- and post-context together in Con-
text. The words in yellow, green and orange high-
light are copied words, vocabulary words and gen-
erated pronouns respectively and each word is fol-
lowed by the corresponding switch value. These
examples show that our model is able to switch
between the three actions to generate a coherent,
fluent referring expression. We further show the
average value of the switch variable on the Ran-
dom test set separated by the gold-standard refer-
ential form (Figure 3).

7 Conclusions

In this work, we have proposed new test setups on
WebNLG dataset that evaluate the performance of

REG models when dealing with previously unseen
entities. We also introduced PROFILEREG, an
end-to-end deep neural network model for REG.
Unlike previous REG models that only model the
local context, PROFILEREG incorporates both the
context information and an entity profile that al-
lows it to generate references for unseen entities.
Our results show that PROFILEREG can accu-
rately generate referring expressions for both new
and previously mentioned entities, outperforming
three strong baselines. One future direction is to
model larger contexts with this approach. It would
also be interesting to integrate our model into an
existing language generation system (e.g., as part
of an abstractive summarization system).
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