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Abstract

In this paper, we propose a novel neural single-
document extractive summarization model for
long documents, incorporating both the global
context of the whole document and the local
context within the current topic. We evalu-
ate the model on two datasets of scientific pa-
pers , Pubmed and arXiv, where it outperforms
previous work, both extractive and abstractive
models, on ROUGE-1, ROUGE-2 and ME-
TEOR scores. We also show that, consistently
with our goal, the benefits of our method be-
come stronger as we apply it to longer docu-
ments. Rather surprisingly, an ablation study
indicates that the benefits of our model seem
to come exclusively from modeling the local
context, even for the longest documents.

1 Introduction

Single-document summarization is the task of
generating a short summary for a given document.
Ideally, the generated summaries should be fluent
and coherent, and should faithfully maintain the
most important information in the source docu-
ment. This is a very challenging task, because it
arguably requires an in-depth understanding of the
source document, and current automatic solutions
are still far from human performance (Allahyari
etal., 2017).V1

Single-document summarization can be either
extractive or abstractive. Extractive methods typ-
ically pick sentences directly from the original
document based on their importance, and form
the summary as an aggregate of these sentences.
Usually, summaries generated in this way have a
better performance on fluency and grammar, but
they may contain much redundancy and lack in
coherence across sentences. In contrast, abstrac-
tive methods attempt to mimic what humans do

VISentence coloring and Roman numbering will be ex-
plained in the result sub-section 4.5.

by first extracting content from the source docu-
ment and then produce new sentences that aggre-
gate and organize the extracted information. Since
the sentences are generated from scratch they tend
to have a relatively worse performance on flu-
ency and grammar. Furthermore, while abstractive
summaries are typically less redundant, they may
end up including misleading or even utterly false
statements, because the methods to extract and ag-
gregate information form the source document are
still rather noisy.

In this work, we focus on extracting informative
sentences from a given document (without dealing
with redundancy), especially when the document
is relatively long (e.g., scientific articles).

Most recent works on neural extractive summa-
rization have been rather successful in generating
summaries of short news documents (around 650
words/document) (Nallapati et al., 2016) by ap-
plying neural Seq2Seq models (Cheng and Lap-
ata, 2016). However when it comes to long doc-
uments, these models tend to struggle with longer
sequences because at each decoding step, the de-
coder needs to learn to construct a context vector
capturing relevant information from all the tokens
in the source sequence (Shao et al., 2017).

Long documents typically cover multiple top-
ics. In general, the longer a document is, the
more topics are discussed. As a matter of fact,
when humans write long documents they organize
them in chapters, sections etc.. Scientific papers
are an example of longer documents and they fol-
low a standard discourse structure describing the
problem, methodology, experiments/results, and
finally conclusions (Suppe, 1998).

To the best of our knowledge only one previous
work in extractive summarization has explicitly
leveraged section information to guide the genera-
tion of summaries (Collins et al., 2017). However,
the only information about sections fed into their

3011

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 3011-3021,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics



sentence classifier is a categorical feature with val-
ues like Highlight, Abstract, Introduction, etc., de-
pending on which section the sentence appears in.

In contrast, in order to exploit section infor-
mation, in this paper we propose to capture a
distributed representation of both the global (the
whole document) and the local context (e.g., the
section/topic) when deciding if a sentence should
be included in the summary

Our main contributions are as follows: (i) In
order to capture the local context, we are the
first to apply LSTM-minus to text summarization.
LSTM-minus is a method for learning embeddings
of text spans, which has achieved good perfor-
mance in dependency parsing (Wang and Chang,
2016), in constituency parsing (Cross and Huang,
2016), as well as in discourse parsing (Liu and La-
pata, 2017). With respect to more traditional meth-
ods for capturing local context, which rely on hi-
erarchical structures, LSTM-minus produces sim-
pler models i.e. with less parameters, and there-
fore faster to train and less prone to overfitting.
(ii) We test our method on the Pubmed and arXiv
datasets and results appear to support our goal of
effectively summarizing long documents. In par-
ticular, while overall we outperform the baseline
and previous approaches only by a narrow mar-
gin on both datasets, the benefit of our method
become much stronger as we apply it to longer
documents. Furthermore, in an ablation study to
assess the relative contributions of the global and
the local model we found that, rather surprisingly,
the benefits of our model seem to come exclu-
sively from modeling the local context, even for
the longest documents.V!  (iii) In order to evalu-
ate our approach, we have created oracle labels for
both Pubmed and arXiv (Cohan et al., 2018), by
applying a greedy oracle labeling algorithm. The
two datasets annotated with extractive labels will
be made public.'

2 Related work

2.1 Extractive summarization

Traditional extractive summarization methods are
mostly based on explicit surface features (Radev
et al., 2004), relying on graph-based methods (Mi-
halcea and Tarau, 2004), or on submodular maxi-
mization (Tixier et al., 2017). Benefiting from the

'The data and code are available at https:
//github.com/Wendy-Xiao/Extsumm_local_
global_context.

success of neural sequence models in other NLP
tasks, Cheng and Lapata (2016) propose a novel
approach to extractive summarization based on
neural networks and continuous sentence features,
which outperforms traditional methods on the Dai-
IyMail dataset. In particular, they develop a gen-
eral encoder-decoder architecture, where a CNN is
used as sentence encoder, a uni-directional LSTM
as document encoder, with another uni-directional
LSTM as decoder. To decrease the number of pa-
rameters while maintaining the accuracy, Nallap-
ati et al. (2017) present SummaRuNNer, a simple
RNN-based sequence classifier without decoder,
outperforming or matching the model of (Cheng
and Lapata, 2016). They take content, salience,
novelty, and position of each sentence into consid-
eration when deciding if a sentence should be in-
cluded in the extractive summary. Yet, they do not
capture any aspect of the topical structure, as we
do in this paper. So their approach would arguably
suffer when applied to long documents, likely con-
taining multiple and diverse topics.

While SummaRuNNer was tested only on news,
Kedzie et al. (2018) carry out a comprehensive set
of experiments with deep learning models of ex-
tractive summarization across different domains,
i.e. news, personal stories, meetings, and medical
articles, as well as across different neural architec-
tures, in order to better understand the general pros
and cons of different design choices. They find
that non auto-regressive sentence extraction per-
forms as well or better than auto-regressive extrac-
tion in all domains, where by auto-regressive sen-
tence extraction they mean using previous predic-
tions to inform future predictions. Furthermore,
they find that the Average Word Embedding sen-
tence encoder works at least as well as encoders
based on CNN and RNN. In light of these find-
ings, our model is not auto-regressive and uses the
Average Word Embedding encoder.

2.2 Extractive summarization on Scientific
papers

Research on summarizing scientific articles has
a long history (Nenkova et al., 2011). Earlier
on, it was realized that summarizing scientific pa-
pers requires different approaches than what was
used for summarizing news articles, due to dif-
ferences in document length, writing style and
rhetorical structure. For instance, (Teufel and
Moens, 2002) presented a supervised Naive Bayes
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Datasets | # docs | avg. doc. length | avg. summ. length
CNN 92K 656 43
Daily Mail | 219K 693 52
NY Times | 655K 530 38
PubMed 133K 3016 203
arXiv 215K 4938 220

Table 1: Comparison of news datasets and scientific pa-
per datasets(Cohan et al., 2018), the length is in terms
of the number of words

classifier to select content from a scientific pa-
per based on the rhetorical status of each sentence
(e.g., whether it specified a research goal, or some
generally accepted scientific background knowl-
edge, etc.). More recently, researchers have ex-
tended this work by applying more sophisticated
classifiers to identify more fine-grain rhetorical
categories, as well as by exploiting citation con-
texts. Liakata et al. (2013) propose the CoreSC
discourse-driven content, which relies on CRFs
and SVMs, to classify the discourse categories
(e.g. Background, Hypothesis, Motivation, etc.) at
the sentence level. The recent work most similar
to ours is (Collins et al., 2017) where, in order to
determine whether a sentence should be included
in the summary, they directly use the section each
sentence appears in as a categorical feature with
values like Highlight, Abstract, Introduction, etc..
In this paper, instead of using sections as categor-
ical features, we rely on a distributed representa-
tion of the semantic information within each sec-
tion, as the local context of each sentence. In a
very different line of work, Cohan and Goharian
(2015) form the summary by also exploiting infor-
mation on how the target paper is cited in other
papers. Currently, we do not use any information
from citation contexts.

2.3 Datasets for long documents

Dernoncourt et al. (2018) provide a comprehen-
sive overview of the current datasets for sum-
marization. Noticeably, most of the larger-scale
summarization datasets consists of relatively short
documents, like CNN/DailyMail (Nallapati et al.,
2016) and New York Times (Sandhaus, 2008).
One exception is (Cohan et al., 2018) that recently
introduce two large-scale datasets of long and
structured scientific papers obtained from arXiv
and PubMed. These two new datasets contain
much longer documents than all the news datasets
(See Table 1) and are therefore ideal test-beds for
the method we present in this paper.

2.4 Neural Abstractive summarization on
long documents

While most current neural abstractive summariza-
tion models have focused on summarizing rela-
tively short news articles (e.g., (See et al., 2017)),
few researchers have started to investigate the
summarization of longer documents by exploiting
their natural structure. Celikyilmaz et al. (2018)
present an encoder-decoder architecture to address
the challenges of representing a long document for
abstractive summarization. The encoding task is
divided across several collaborating agents, each
is responsible for a subsection of text through
a multi-layer LSTM with word attention. Their
model seems however overly complicated when it
comes to the extractive summarization task, where
word attention is arguably much less critical. So,
we do not consider this model further in this paper.

Cohan et al. (2018) also propose a model for
abstractive summarization taking the structure of
documents into consideration with a hierarchical
approach, and test it on longer documents with
section information, i.e. scientific papers. In par-
ticular, they apply a hierarchical encoder at the
word and section levels. Then, in the decoding
step, they combine the word attention and section
attention to obtain a context vector.

This approach to capture discourse structure is
however quite limited both in general and espe-
cially when you consider its application to ex-
tractive summarization. First, their hierarchical
method has a large number of parameters and it
is therefore slow to train and likely prone to over-
fitting?. Secondly, it does not take the global con-
text of the whole document into account, which
may arguably be critical in extractive methods,
when deciding on the salience of a sentence (or
even a word). The extractive summarizer we
present in this paper tries to address these limita-
tions by adopting the parameter lean LSTM-minus
method, and by explicitly modeling the global
context.

2.5 LSTM-Minus

The LSTM-Minus method is first proposed in
(Wang and Chang, 2016) as a novel way to learn
sentence segment embeddings for graph-based de-
pendency parsing, i.e. estimating the most likely

’To address this, they only process the first 2000 words
of each document, by setting a hard threshold in their imple-
mentation, and therefore loosing information.
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dependency tree given an input sentence. For each
dependency pair, they divide a sentence into three
segments (prefix, infix and suffix), and LSTM-
Minus is used to represent each segment. They ap-
ply a single LSTM to the whole sentence and use
the difference between two hidden states h; — h; to
represent the segment from word w; to word wj.
This enables their model to learn segment embed-
dings from information both outside and inside the
segments and thus enhancing their model ability
to access to sentence-level information. The intu-
ition behind the method is that each hidden vector
hy can capture useful information before and in-
cluding the word v;.

Shortly after, Cross and Huang (2016) use the
same method on the task of constituency parsing,
as the representation of a sentence span, extend-
ing the original uni-directional LSTM-Minus to
the bi-directional case. More recently, inspired
by the success of LSTM-Minus in both depen-
dency and constituency parsing, Liu and Lapata
(2017) extend the technique to discourse pars-
ing. They propose a two-stage model consisting
of an intra-sentential parser and a multi-sentential
parser, learning contextually informed represen-
tations of constituents with LSTM-Minus, at the
sentence and document level, respectively.

Similarly, in this paper, when deciding if a sen-
tence should be included in the summary, the lo-
cal context of that sentence is captured by apply-
ing LSTM-Minus at the document level, to rep-
resent the sub-sequence of sentences of the doc-
ument (i.e., the topic/section) the target sentence
belongs to.

3 Our Model

In this work, we propose an extractive model for
long documents, incorporating local and global
context information, motivated by natural topic-
oriented structure of human-written long docu-
ments. The architecture of our model is shown in
Figure 1, each sentence is visited sequentially in
the original document order, and a corresponding
confidence score is computed expressing whether
the sentence should be included in the extractive
summary. Our model comprises three compo-
nents: the sentence encoder, the document encoder
and the sentence classifier.

3.1 Sentence Encoder

The goal of the sentence encoder is mapping se-
quences of word embeddings to a fixed length vec-
tor (See bottom center of Figure 1). There are sev-
eral common methods to embed sentences. For ex-
tractive summarization, RNN were used in (Nal-
lapati et al., 2017), CNN in (Cheng and Lapata,
2016), and Average Word Embedding in (Kedzie
et al., 2018). Kedzie et al. (2018) experiment with
all the three methods and conclude that Word Em-
bedding Averaging is as good or better than either
RNNs or CNNs for sentence embedding across
different domains and summarizer architectures.
Thus, we use the Average Word Embedding as our
sentence encoder, by which a sentence embedding
is simply the average of its word embeddings, i.e.

1 &

se= Zemb(wi), se € Remt,
wo

Besides, we also tried the popular pre-trained
BERT sentence embedding (Devlin et al., 2019),
but initial results were rather poor. So we do not
pursue this possibility any further.

3.2 Document Encoder

At the document level, a bi-directional recurrent
neural network (Schuster and Paliwal, 1997) is of-
ten used to encode all the sentences sequentially
forward and backward, with such model achieving
remarkable success in machine translation (Bah-
danau et al., 2015). As units, we selected gated
recurrent units (GRU) (Cho et al., 2014), in light
of favorable results shown in (Chung et al., 2014).
The GRU is represented with the standard reset,
update, and new gates.

The output of the bi-directional GRU for each

sentence ¢ comprises two hidden states, h,{ €
Rdnia phb € RImd as forward and backward hid-
den state, respectively.
A. Sentence representation As shown in Figure
1(A), for each sentence ¢, the sentence represen-
tation is the concatenation of both backward and
forward hidden state of that sentence.

STy = (h{ . hY), srp € RIniax2

In this way, the sentence representation not only
represents the current sentence, but also partially
covers contextual information both before and af-
ter this sentence.

B. Document representation The document rep-
resentation provides global information on the
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Figure 1: The structure of our model, se;, sr; represent the sentence embedding and sentence representation of
sentence ¢, respectively. The binary decision of whether the sentence should be included in the summary is based
on the sentence itself (A), the whole document (B) and the current topic (C). The document representation is
simply the concatenation of the last hidden states of the forward and backward RNNs, while the topic segment
representation is computed by applying LSTM-Minus, as shown in detail in the left panel (Detail of C).

whole document. It is computed as the concatena-
tion of the final state of the forward and backward
GRU, labeled as B in Figure 1. (Li et al., 2018)

d = (hi : hj),d € Rmia*?

C. Topic segment representation To capture
the local context of each sentence, namely the
information of the topic segment that sentence
falls into, we apply the LSTM-Minus method?,
a method for learning embeddings of text spans.
LSTM-Minus is shown in detail in Figure 1 (left
panel C), each topic segment is represented as
the subtraction between the hidden states of the
start and the end of that topic. As illustrated
in Figure 1, the representation for section 2 of
the sample document (containing three sections
and eight sentences overall) can be computed as

*In the original paper, LSTMs were used as recurrent unit.

Although we use GRUs here, for consistency with previous
work, we still call the method LSTM-Minus

[f5— f2, b3 —bg], where f5, fo are the forward hid-
den states of sentence 5 and 2, respectively, while
b3, bg are the backward hidden states of sentence 3
and 6, respectively. In general, the topic segment
representation [; for segment ¢ is computed as:

fr = hgndt - hztartt—la ft € Rhid
by = hgmrtt - thdt—l—l’ by € Rdhid
le = (fi:by),ly € RMia*?

where start;, end; is the index of the beginning
and the end of topic ¢, f; and b; denote the topic
segment representation of forward and backward,
respectively. The final representation of topic ¢ is
the concatenation of forward and backward repre-
sentation [;. To obtain f; and b;, we utilize subtrac-
tion between GRU hidden vectors of start; and
endy, and we pad the hidden states with zero vec-
tors both in the beginning and the end, to ensure
the index can not be out of bound. The intuition
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behind this process is that the GRUs can keep pre-
vious useful information in their memory cell by
exploiting reset, update, and new gates to decide
how to utilize and update the memory of previous
information. In this way, we can represent the con-
textual information within each topic segment for
all the sentences in that segment.

3.3 Decoder

Once we have obtained a representation for the
sentence, for its topic segment (i.e., local context)
and for the document (i.e., global context), these
three factors are combined to make a final predic-
tion p; on whether the sentence should be included
in the summary. We consider two ways in which
these three factors can be combined.
Concatenation We can simply concatenate the
vectors of these three factors as,

mnput; = (d o STZ'), input; € R4hia*6

where sentence ¢ is part of the topic ¢, and input;
is the representation of sentence ¢ with topic seg-
ment information and global context information.
Attentive context As local context and global
context are all contextual information of the given
sentence, we use an attention mechanism to decide
the weight of each context vector, represented as

scored = vTtanh(Wy(d : sr;))
scorel = vTtanh(W,(l; : sr3))
d
score!
weight? = B
score; + score;
l
score;
weight: = 7 Er—
score; + score;
context; = weight? « d+ weightl * I,
input; = (sr;: context;),input; € [Rhiax4

where the context; is the weighted context vec-
tor of each sentence 7, and assume sentence ¢ is in
topic ¢.

Then there is a final multi-layer percep-
tron(MLP) followed with a sigmoid activation
function indicating the confidence score for select-
ing each sentence:

hi =
pbi =

Dropout(ReLU (W ppinput; + biip))
o (Whhi + bh)
4 Experiments

To validate our method, we set up experiments
on the two scientific paper datasets (arXiv and

PubMed). With ROUGE and METEOR scores
as automatic evaluation metrics, we compare with
previous works, both abstractive and extractive.

4.1 Training

The weighted negative log-likelihood is mini-
mized, where the weight is computed as wpos =
%, to solve the problem of highly imbal-

anced data (typical in extractive summarization).

N Ny

- Z Z(wpos * Y Ing(yi‘Wa b)
d=1 i=1

+ (1 —yi)logp(y:|W,b))

where y; represent the ground-truth label of sen-
tence ¢, with y; = 1 meaning sentence ¢ is in the
gold-standard extract summary.

L =

4.2 Extractive Label Generation

In the Pubmed and arXiv datasets, the extractive
summaries are missing. So we follow the work of
(Kedzie et al., 2018) on extractive summary label-
ing, constructing gold label sequences by greed-
ily optimizing ROUGE-1 on the gold-standard ab-
stracts, which are available for each article. * The
algorithm is shown in Appendix A.

4.3 Implementation Details

We train our model using the Adam optimizer
(Kingma and Ba, 2015) with learning rate 0.0001
and a drop out rate of 0.3. We use a mini-batch
with a batch size of 32 documents, and the size
of the GRU hidden states is 300. For word em-
beddings, we use GloVe (Pennington et al., 2014)
with dimension 300, pre-trained on the Wikipedia
and Gigaword. The vocabulary size of our model
is 50000. All the above parameters were set based
on (Kedzie et al., 2018) without any fine-tuning.
Again following (Kedzie et al., 2018), we train
each model for 50 epochs, and the best model is
selected with early stopping on the validation set
according to Rouge-2 F-score.

4.4 Models for Comparison

We perform a systematic comparison with previ-
ous work in extractive summarization. For com-
pleteness, we also compare with recent neural ab-
stractive approaches. In all the experiments, we
use the same train/val/test splitting.

“For this, we use a popular python implementation of the
ROUGE score to build the oracle. Code can be found here,
https://pypi.org/project/py—-rouge/
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Model ROUGE-1 ROUGE-2 ROUGE-L METEOR Model ROUGE-1 ROUGE-2 ROUGE-L METEOR
SumBasic* 29.47 6.95 26.30 - SumBasic* 37.15 11.36 33.43 -
LSA* 29.91 7.42 25.67 LSA* 33.89 9.93 29.70 -
LexRank* 33.85 10.73 28.99 LexRank* 39.19 13.89 34.59 -
Attn-Seq2Seq* 29.30 6.00 25.56 Attn-Seq2Seq* 31.55 8.52 27.38 -
Pntr-Gen-Seq2Seq* 32.06 9.04 25.16 Pntr-Gen-Seq2Seq* 35.86 10.22 29.69 -
Discourse-aware* 35.80 11.05 31.80 - Discourse-aware™ 38.93 15.37 35.21 -
Baseline 4291 16.65 28.53 21.35 Baseline 44.29 19.17 30.89 20.56
Cheng & Lapata 42.24 15.97 27.88 20.97 Cheng & Lapata 43.89 18.53 30.17 20.34
SummaRuNNer 42.81 16.52 28.23 21.35 SummaRuNNer 43.89 18.78 30.36 20.42
Ours-attentive context 43.58 17.37 29.30 21.71 Ours-attentive context 44.81 19.74 31.48 20.83
Ours-concat 43.62 17.36 29.14 21.78 Ours-concat 44.85 19.70 3143 20.83
Lead 33.66 8.94 22.19 16.45 Lead 35.63 12.28 25.17 16.19
Oracle 53.88 23.05 34.90 24.11 Oracle 55.05 27.48 38.66 23.60

Table 2: Results on the arXiv dataset. For models with
an *, we report results from (Cohan et al., 2018). Mod-
els are traditional extractive in the first block, neural
abstractive in the second block, while neural extractive
in the third block. The Oracle (last row) corresponds
to using the ground truth labels, obtained (for training)
by the greedy algorithm, see Section 4.2. Results that
are not significantly distinguished from the best sys-
tems are bold.

e Traditional extractive summarization models:
SumBasic (Vanderwende et al., 2007), LSA
(Steinberger and Jezek, 2004), and LexRank
(Erkan and Radev, 2004)

e Neural abstractive summarization models:
Attn-Seq2Seq (Nallapati et al., 2016),
Pntr-Gen-Seq2Seq (See et al., 2017) and
Discourse-aware (Cohan et al., 2018)

e Neural extractive summarization models:
Cheng&Lapata (Cheng and Lapata, 2016)
and SummaRuNNer (Nallapati et al., 2017).
Based on (Kedzie et al., 2018), we use the
Average Word Encoder as sentence encoder
for both models, instead of the CNN and
RNN sentence encoders that were originally
used in the two systems, respectively. >

e Baseline: Similar to our model, but without
local context and global context, i.e. the input
to MLP is the sentence representation only.

e Lead: Given a length limit of k£ words for the
summary, Lead will return the first £ words
of the source document.

e Oracle: uses the Gold Standard extractive la-
bels, generated based on ROUGE (Sec. 4.2).

4.5 Results and Analysis

For evaluation, we follow the same procedure as
in (Kedzie et al., 2018). Summaries are generated

>Aiming for a fair and reproducible comparison, we
re-implemented the models by borrowing the extractor
classes from (Kedzie et al., 2018), the source code
can be found https://github.com/kedz/nnsum/
tree/emnlpl8-release

Table 3: Results on the Pubmed dataset. See caption
of Table 2 above for details on compared models and
notation.

by selecting the top ranked sentences by model
probability p(y;|W, b), until the length limit is met
or exceeded. Based on the average length of ab-
stracts in these two datasets, we set the length
limit to 200 words. We use ROUGE scores®
(Lin and Hovy, 2003) and METEOR scores’
(Denkowski and Lavie, 2014) between the model
results and ground-truth abstractive summaries as
evaluation metric. The unigram and bigram over-
lap (ROUGE-1,2) are intended to measure the
informativeness, while longest common subse-
quence (ROUGE-L) captures fluency to some ex-
tent (Cheng and Lapata, 2016). METEOR was
originally proposed to evaluate translation systems
by measuring the alignment between the system
output and reference translations. As such, it can
also be used as an automatic evaluation metric for
summarization (Kedzie et al., 2018).

The performance of all models on arXiv and
Pubmed is shown in Table 2 and Table 3, respec-
tively. Follow the work (Kedzie et al., 2018), we
use the approximate randomization as the statisti-
cal significance test method (Riezler and Maxwell,
2005) with a Bonferroni correction for multiple
comparisons, at the confidence level 0.01 (p <
0.01). As we can see in these tables, on both
datasets, the neural extractive models outperforms
the traditional extractive models on informative-
ness (ROUGE-1,2) by a wide margin, but results
are mixed on ROUGE-L. Presumably, this is due
to the neural training process, which relies on
a goal standard based on ROUGE-1. Exploring
other training schemes and/or a combination of

®We use a modified version of rouge_papier, a
python wrapper of ROUGE-1.5.5, https://github.
com/kedz/rouge_papier. The command line is ’Perl
ROUGE-1.5.5 -e data -a -n 2 -r 1000 -f A -z SPL config_file’

"We use default setting of METEOR.
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Figure 2: A Comparison between our model, SummaRuNNer and Oracle when applied to documents with increas-
ing length, left-up: ROUGE-1 on Pubmed dataset, right-up: ROUGE-2 on Pubmed dataset, left-down: ROUGE-1

on arXiv dataset, right-down: ROUGE-2 on arXiv dataset

traditional and neural approaches is left as fu-
ture work. Similarly, the neural extractive mod-
els also dominate the neural abstractive models on
ROUGE-1,2, but these abstractive models tend to
have the highest ROUGE-L scores, possibly be-
cause they are trained directly on gold standard
abstract summaries.

Compared with other neural extractive models,
our models (both with attentive context and con-
catenation decoder) have better performances on
all three ROUGE scores, as well as METEOR.
In particular, the improvements over the Base-
line model show that a combination of local and
global contextual information does help to iden-
tify the most important sentences (more on this
in the next section). Interestingly, just the Base-
line model already achieves a slightly better per-
formance than previous works; possibly because
the auto-regressive approach used in those models
is even more detrimental for long documents.

Figure 2 shows the most important result of our
analysis: the benefits of our method, explicitly de-
signed to deal with longer documents, do actually
become stronger as we apply it to longer docu-

ments. As it can be seen in Figure 2, the perfor-
mance gain of our model with respect to current
state-of-the-art extractive summarizer is more pro-
nounced for documents with >= 3000 words in
both datasets.

Finally, the result of Lead (Table 2, 3) shows
that scientific papers have less position bias than
news; i.e., the first sentences of these papers are
not a good choice to form an extractive summary.

As a teaser for the potential and challenges that
still face our approach, its output (i.e., the ex-
tracted sentences) when applied to this paper is
colored in red and the order in which the sentences
are extracted is marked with the Roman number-
ing. If we set the summary length limit to the
length of our abstract, the first five sentences in the
conclusions section are extracted. If we increase
the length to 200 words, two more sentences are
extracted, which do seem to provide useful com-
plementary information. Not surprisingly, some
redundancy is present, as dealing explicitly with
redundancy is not a goal of our current proposal
and left as future work.
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4.6 Ablation Study

\ Model ROUGE-1(+l/+g) ROUGE-2(+l/+g) ROUGE-L(+l/+g) \
BSL 44.29 (na/na) 19.17 (na/na) 30.89 (na/na)
BSL+1 44.85 (+.56/na) 19.77 (+.6/na) 31.51 (+.62/na)
BSL+g 44.06 (na/-.23) 18.83 (na/-.34) 30.53 (na/-.36)
BSL+l+g 44.81 (+.75/-.04)  19.74 (+.91/-.03)  31.48 (+.95/-.03)
BSL 43.85 (na/na) 15.94 (na/na) 28.13 (na/na)
BSL+1 44.65 (+.8/na) 16.75 (+.81/na) 28.99 (+.85/na)
BSL+g 43.70 (na/-.15) 15.74 (na/-.2) 27.67 (na/-.46)
BSL+l+g  44.64 (+.94/-.01)  16.69 (+.95/-.06)  28.96 (+1.29/-.03)

Table 4: Ablation study on the Pubmed dataset, with
all the documents(up) and a subset of long documents
(down, > 6000 words). BSL is the model with sen-
tence representation only, BSL+] is the model with sen-
tence and local topic information, BSL+g is the model
with sentence and global document information, and
the last one is the full model with attentive_context de-
coder. The numbers in parenthesis represent the im-
provements with the additional local/global context,
respectively. Results that are not significantly distin-
guished from the best systems are bold.

[ Model  ROUGE-I(+l/+g) ROUGE-2(+l/+g) ROUGE-L(+l/+g) |
BSL 42.91 (na/na) 16.65 (na/na) 28.53 (na/na)
BSL+l 43.57 (+.66/na) 17.35 (+.7/na) 29.29 (+.76/na)
BSL+g 42.90 (na/-.01) 16.58 (na/-.07) 28.36 (na/-.17)
BSL+l+g 43.58 (+.68/+.01)  17.37 (+.79/+.02)  29.30 (+.94/+.01)

BSL 42.95 (na/na) 14.85 (na/na) 28.66 (na/na)

BSL+l  44.01 (+1.06/na)  15.95 (+1.1/na) _ 29.68 (+1.02/na)
BSL+g  43.05 (na/+.1) 1491 (na/+.06)  28.57 (na/-.09)
BSL+l+g 4417 (+1.12/+.16) 16.01 (+1.1/+.06) 29.72 (+1.15/+.04)

Table 5: Ablation study on arXiv dataset, with all
documents (up) and a subset of long document(down,
> 9000 words). Results that are not significantly dif-
ferent from the best systems are in bold.

In order to assess the relative contributions of
the global and local models to the performance of
our approach, we ran an ablation study. This was
done for each dataset both with the whole test set,
as well as with a subset of long documents. The
results for Pubmed and arXiv are shown in Table
4 and Table 5, respectively. For statistical signif-
icance, as it was done for the general results in
Section 4.5, we use the approximate randomiza-
tion method (Riezler and Maxwell, 2005) with the
Bonferroni correction at (p < 0.01).

From these tables, we can see that on both
datasets the performance significantly improves
when local topic information (i.e. local context)
is added. And the improvement is even greater
when we only consider long documents. Rather
surprisingly, this is not the case for the global con-
text. Adding a representation of the whole docu-
ment (i.e. global context) never significantly im-
proves performance. In essence, it seems that all

the benefits of our model come exclusively from
modeling the local context, even for the longest
documents. Further investigation of this finding is
left as future work.

5 Conclusions and Future Work

In this paper, we propose a novel extractive sum-
marization model especially designed for long
documents, by incorporating the local context
within each topic, along with the global context
of the whole document.!! Our approach inte-
grates recent findings on neural extractive sum-
marization in a parameter lean and modular ar-
chitecture.™  We evaluate our model and com-
pare with previous works in both extractive and
abstractive summarization on two large scientific
paper datasets, which contain documents that are
much longer than in previously used corpora.lV
Our model not only achieves state-of-the-art on
these two datasets, but in an additional experi-
ment, in which we consider documents with in-
creasing length, it becomes more competitive for
longer documents.Y We also ran an ablation study
to assess the relative contribution of the global and
local components of our approach. ! Rather sur-
prisingly, it appears that the benefits of our model
come only from modeling the local context.

For future work, we initially intend to inves-
tigate neural methods to deal with redundancy.
Then, it could be beneficial to integrate explicit
features, like sentence position and salience, into
our neural approach. More generally, we plan
to combine of traditional and neural models, as
suggested by our results. Furthermore, we would
like to explore more sophistical structure of docu-
ments, like discourse tree, instead of rough topic
segments. As for evaluation, we would like to
elicit human judgments, for instance by inviting
authors to rate the outputs from different systems,
when applied to their own papers. More long
term, we will study how extractive/abstractive
techniques can be integrated; for instance, the out-
put of an extractive system could be fed into an
abstractive one, training the two jointly.
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