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Abstract

Commonsense reasoning aims to empower
machines with the human ability to make
presumptions about ordinary situations in
our daily life. In this paper, we propose
a textual inference framework for answer-
ing commonsense questions, which effec-
tively utilizes external, structured common-
sense knowledge graphs to perform explain-
able inferences. The framework first grounds a
question-answer pair from the semantic space
to the knowledge-based symbolic space as a
schema graph, a related sub-graph of exter-
nal knowledge graphs. It represents schema
graphs with a novel knowledge-aware graph
network module named KacNET, and finally
scores answers with graph representations.
Our model is based on graph convolutional
networks and LSTMs, with a hierarchical
path-based attention mechanism. The interme-
diate attention scores make it transparent and
interpretable, which thus produce trustworthy
inferences. Using ConceptNet as the only
external resource for BERT-based models, we
achieved state-of-the-art performance on the
CommonsenseQA, a large-scale dataset for
commonsense reasoning. We open-source our
code! to the community for future research in
knowledge-aware commonsense reasoning.

1 Introduction

Human beings are rational and a major component
of rationality is the ability to reason. Reasoning is
the process of combining facts and beliefs to make
new decisions (Johnson-Laird, 1980), as well as
the ability to manipulate knowledge to draw in-
ferences (Hudson and Manning, 2018). Common-
sense reasoning utilizes the basic knowledge that
reflects our natural understanding of the world and
human behaviors, which is common to all humans.

"https://github.com/INK-USC/KagNet
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Figure 1: An example of using external commonsense
knowledge (symbolic space) for inference in natural
language commonsense questions (semantic space).

Empowering machines with the ability to per-
form commonsense reasoning has been seen as the
bottleneck of artificial general intelligence (Davis
and Marcus, 2015). Recently, there have been a
few emerging large-scale datasets for testing ma-
chine commonsense with various focuses (Zellers
etal., 2018; Sap et al., 2019b; Zellers et al., 2019).
In a typical dataset, CommonsenseQA (Talmor
et al., 2019), given a question like “Where do
adults use glue sticks?”, with the answer choices
being {classroom(X), office (v'), desk drawer (X)},
a commonsense reasoner is expected to differenti-
ate the correct choice from other “distractive” can-
didates. False choices are usually highly related to
the question context, but just less possible in real-
world scenarios, making the task even more chal-
lenging. This paper aims to tackle the research
question of how we can teach machines to make
such commonsense inferences, particularly in the
question-answering setting.

It has been shown that simply fine-tuning large,

pre-trained language models such as GPT (Rad-
ford et al., 2018) and BERT (Devlin et al., 2019)
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can be a very strong baseline method. However,
there still exists a large gap between performance
of said baselines and human performance. Rea-
soning with neural models is also lacking in trans-
parency and interpretability. There is no clear way
as to how they manage to answer commonsense
questions, thus making their inferences dubious.

Merely relying on pre-training large language
models on corpora cannot provide well-defined or
reusable structures for explainable commonsense
reasoning. We argue that it would be more benefi-
cial to propose reasoners that can exploit common-
sense knowledge bases (Speer et al., 2017; Tan-
don et al., 2017; Sap et al., 2019a). Knowledge-
aware models can explicitly incorporate external
knowledge as relational inductive biases (Battaglia
et al., 2018) to enhance their reasoning capacity,
as well as to increase the transparency of model
behaviors for more interpretable results. Further-
more, a knowledge-centric approach is extensi-
ble through commonsense knowledge acquisition
techniques (Li et al., 2016; Xu et al., 2018).

We propose a knowledge-aware reasoning
framework for learning to answer commonsense
questions, which has two major steps: schema
graph grounding (§3) and graph modeling for
inference (§4). As shown in Fig. 1, for each
pair of question and answer candidate, we re-
trieve a graph from external knowledge graphs
(e.g. ConceptNet) in order to capture the rel-
evant knowledge for determining the plausibil-
ity of a given answer choice. The graphs are
named “schema graphs” inspired by the schema
theory proposed by Gestalt psychologists (Ax-
elrod, 1973). The grounded schema graphs are
usually much more complicated and noisier, un-
like the ideal case shown in the figure.

Therefore, we propose a knowledge-aware
graph network module to further effectively model
schema graphs. Our model KaAGNET is a combi-
nation of graph convolutional networks (Kipf and
Welling, 2017) and LSTMs, with a hierarchical
path-based attention mechanism, which forms a
GCN-LSTM-HPA architecture for path-based re-
lational graph representation. Experiments show
that our framework achieved a new state-of-the-art
performamce2 on the CommonsenseQA dataset.
Our model also works better then other meth-
ods with limited supervision, and provides human-

2The highest score on the leaderboard as of the time when
we submitted the paper (May 2019).
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Figure 2: The overall workflow of the proposed frame-
work with knowledge-aware graph network module.

readable results via intermediate attention scores.

2 Overview

In this section, we first formalize the com-
monsense question answering problem in a
knowledge-aware setting, and then introduce the
overall workflow of our framework.

2.1 Problem statement

Given a commonsense-required natural language
question ¢ and a set of N candidate answers {a; },
the task is to choose one answer from the set.
From a knowledge-aware perspective, we addi-
tionally assume that the question ¢ and choices
{a;} can be grounded as a schema graph (de-
noted as g) extracted from a large external knowl-
edge graph (5, which is helpful for measuring the
plausibility of answer candidates. The knowledge
graph G = (V, E) can be defined as a fixed set
of concepts V, and typed edges E describing se-
mantic relations between concepts. Therefore, our
goal is to effectively ground and model schema
graphs to improve the reasoning process.

2.2 Reasoning Workflow

As shown in Fig. 2, our framework accepts a pair
of question and answer (QA-pair) denoted as ¢
and a. It first recognizes the mentioned concepts
within them respectively from the concept set V'
of the knowledge graph. We then algorithmically
construct the schema graph g by finding paths be-
tween pairs of mentioned concepts (§3).

The grounded schema graph is further encoded
with our proposed knowledge-aware graph net-
work module (§4). We first use a model-agnostic
language encoder, which can either be trainable or
a fixed feature extractor, to represent the QA-pair
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as a statement vector. The statement vector serves
as an additional input to a GCN-LSTM-HPA ar-
chitecture for path-based attentive graph modeling
to obtain a graph vector. The graph vector is fi-
nally fed into a simple multi-layer perceptron to
score this QA-pair into a scalar ranging from 0
to 1, representing the plausibility of the inference.
The answer candidate with the maximum plausi-
bility score to the same question becomes the final
choice of our framework.

3 Schema Graph Grounding

The grounding stage is three-fold: recognizing
concepts mentioned in text (§3.1), constructing
schema graphs by retrieving paths in the knowl-
edge graph (§3.2), and pruning noisy paths (§3.3).

3.1 Concept Recognition

We match tokens in questions and answers to sets
of mentioned concepts (C, and C, respectively)
from the knowledge graph G (for this paper we
chose to use ConceptNet due to its generality).

A naive approach to mentioned concept recog-
nition is to exactly match n-grams in sentences
with the surface tokens of concepts in V. For ex-
ample, in the question “Sitting too close to watch
tv can cause what sort of pain?”, the exact match-
ing result C, would be {sitting, close, watch_tv,
watch, tv, sort, pain, etc.}. We are aware of the
fact that such retrieved mentioned concepts are not
always perfect (e.g. “sort” is not a semantically re-
lated concept, “close” is a polysemous concept).
How to efficiently retrieve contextually-related
knowledge from noisy knowledge resources is still
an open research question by itself (Weissenborn
et al., 2017; Khashabi et al., 2017), and thus most
prior works choose to stop here (Zhong et al.,
2018; Wang et al., 2019b). We enhance this
straightforward approach with some rules, such as
soft matching with lemmatization and filtering of
stop words, and further deal with noise by pruning
paths (§3.3) and reducing their importance with at-
tention mechanisms (§4.3).

3.2 Schema Graph Construction

ConceptNet. Before diving into the construction
of schema graphs, we would like to briefly intro-
duce our target knowledge graph ConceptNet.
ConceptNet can be seen as a large set of triples
of the form (h,r,t), like (ice, HasProperty,
cold), where h and ¢ represent head and tail con-

cepts in the concept set V' and r is a certain relation
type from the pre-defined set . We delete and
merge the original 42 relation types into 17 types,
in order to increase the density of the knowledge
graph?® for grounding and modeling.

Sub-graph Matching via Path Finding. We
define a schema graph as a sub-graph g of the
whole knowledge graph (G, which represents the
related knowledge for reasoning a given question-
answer pair with minimal additional concepts and
edges. One may want to find a minimal span-
ning sub-graph covering all the question and an-
swer concepts, which is actually the NP-complete
“Steiner tree problem” in graphs (Garey and John-
son, 1977). Due to the incompleteness and
tremendous size of ConceptNet, we find that
it is impractical to retrieve a comprehensive but
helpful set of knowledge facts this way. Therefore,
we propose a straightforward yet effective graph
construction algorithm via path finding among
mentioned concepts (C; U Cy).

Specifically, for each question concept ¢; € C,
and answer concept ¢; € C,, we can efficiently
find paths between them that are shorter than k&
concepts®. Then, we add edges, if any, between
the concept pairs within C, or C,.

3.3 Path Pruning via KG Embedding

To prune irrelevant paths from potentially noisy
schema graphs, we first utilize knowledge graph
embedding (KGE) techniques, like TransE (Wang
et al., 2014), to pre-train concept embeddings V
and relation type embeddings R, which are also
used as initialization for KaAgNET (§4). In order
to measure the quality of a path, we decompose
it into a set of triples, the confidence of which can
be directly measured by the scoring function of the
KGE method (i.e. the confidence of triple classi-
fication). Thus, we score a path with the multipli-
cation product of the scores of each triple in the
path, and then we empirically set a threshold for
pruning (§5.3).

4 Knowledge-Aware Graph Network

The core component of our reasoning framework
is the knowledge-aware graph network module
KacgNET. The KaGNET first encodes plain struc-
tures of schema graphs with graph convolutional
networks (§4.1) to accommodate pre-trained con-

3The full mapping list is in the appendix.
*We set k = 4 in experiments to gather three-hop paths.
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Figure 3: Illustration of the GCN-LSTM-HPA architecture for the proposed KacNe T module.

cept embeddings in their particular context within
schema graphs. It then utilizes LSTMs to en-
code the paths between C, and C,, capturing multi-
hop relational information (§4.2). Finally, we ap-
ply a hierarchical path-based attention mechanism
(84.3) to complete the GCN-LSTM-HPA architec-
ture, which models relational schema graphs with
respect to the paths between question and answer
concepts.

4.1 Graph Convolutional Networks

Graph convolutional networks (GCNs) encode
graph-structured data by updating node vectors via
pooling features of their adjacent nodes (Kipf and
Welling, 2017). Our intuition for applying GCNs
to schema graphs is to 1) contextually refine the
concept vectors and 2) capture structural patterns
of schema graphs for generalization.

Although we have obtained concept vectors by
pre-training (§3.3), the representations of concepts
still need to be further accommodated to their spe-
cific schema graphs context. Think of polysemous
concepts such as “close” (§3.1), which can either
be a verb concept like in “close the door” or an ad-
jective concept meaning “a short distance apart”.
Using GCNs to update the concept vector with
their neighbors is thus helpful for disambiguation
and contextualized concept embedding. Also, the
pattern of schema graph structures provides po-
tentially valuable information for reasoning. For
instance, shorter and denser connections between
question and answer concepts could mean higher
plausibility under specific contexts.

As many works show (Marcheggiani and
Titov, 2017; Zhang et al., 2018), relational

GCNs (Schlichtkrull et al., 2018) usually over-
parameterize the model and cannot effectively uti-
lize multi-hop relational information. We thus ap-
ply GCNs on the plain version (unlabeled, non-
directional) of schema graphs, ignoring relation
types on the edges. Specifically, the vector for
concept ¢; € V, in the schema graph g is ini-
tialized by their pre-trained embeddings at first
(hgo) = V;). Then, we update them at the (I + 1)-
th layer by pooling features of their neighboring
nodes (/V;) and their own at the [-th layer with an
non-linear activation function o

self % +Z

JEN

h§z+1) W(l h
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4.2 Relational Path Encoding

In order to capture the relational information in
schema graphs, we propose an LSTM-based path
encoder on top of the outputs of GCNs. Recall that
our graph representation has a special purpose: “to
measure the plausibility of a candidate answer to
a given question”. Thus, we propose to represent
graphs with respect to the paths between question
concepts C, and answer concepts C,.

We denote the k-th path between i-th question
concept cgq) € C4 and j-th answer concept cga) €
Cq, as P; j[k], which is a sequence of triples:

Pilk) = (",

7o, t0)7 ceey (tn—h Tn, c§a))]

Note that the relations are represented with
trainable relation vectors (initialized with pre-
trained relation embeddings), and concept vectors
are the GCNs’ outputs (h(1). Thus, each triple can
be represented by the concatenation of the three

2832



corresponding vectors. We employ LSTM net-
works to encode these paths as sequences of triple
vectors, taking the concatenation of the first and
the last hidden states:

1
Rij = 15— > LSTM(Pi;[k])
1Pigl 4
The above R; ; can be viewed as the latent re-

lation between the question concept CEQ) and the
answer concept cg-a), for which we aggregate the
representations of all the paths between them in
the schema graph. Now we can finalize the vector
representation of a schema graph g by aggregating

all vectors in the matrix R using mean pooling:

T;; =MLP([s; cg) ; cgj)])
_ Z” [Ri;; Tijl
[Cql X |Cal

, where [- ; -] means concatenation of two vectors.

The statement vector s in the above equation is
obtained from a certain language encoder, which
can either be a trainable sequence encoder like
LSTM or features extracted from pre-trained uni-
versal language encoders like GPT/BERT). To en-
code a question-answer pair with universal lan-
guage encoders, we simply create a sentence com-
bining the question and the answer with a spe-
cial token (“question+ [sep] + answer”), and
then use the vector of ‘[cls]’ as suggested by prior
works (Talmor et al., 2019)..

We concatenate R; ; with an additional vector
T; j before doing average pooling. The T; ; is in-
spired from the Relation Network (Santoro
et al., 2017), which also encodes the latent rela-
tional information yet from the context in the state-
ment s instead of the schema graph g. Simply put,
we want to combine the relational representations
of a pair of question/answer concepts from both
the schema graph side (symbolic space) and the
language side (semantic space).

Finally, the plausibility score of the answer can-
didate a to the question ¢ can be computed as
score(q,a) = sigmoid(MLP(g)).

4.3 Hierarchical Attention Mechanism

A natural argument against the above
GCN-LSTM-mean architecture is that mean
pooling over the path vectors does not always
make sense, since some paths are more important
than others for reasoning. Also, it is usually not
the case that all pairs of question and answer

concepts equally contribute to the reasoning.
Therefore, we propose a hierarchical path-based
attention mechanism to selectively aggregate
important path vectors and then more important
question-answer concept pairs. This core idea is
similar to the work of Yang et al. (2016), which
proposes a document encoder that has two levels
of attention mechanisms applied at the word- and
sentence-level. In our case, we have path-level
and concept-pair-level attention for learning to
contextually model graph representations. We
learn a parameter matrix W for path-level
attention scores, and the importance of the path
P j[k] is denoted as G ;,.).-

k) = Tij W1 LSTM(P; ;[k]),

d(’t,j,) = SOftMaX(a(l’J»))7

R@j = Zd(i,j,k:) . LSTM(PZ‘J' [k])
k

Afterwards, we similarly obtain the attention over
concept-pairs.

Bij) =s Wa Ty

ﬂ(.j.) = SoftMax(B(.,.))
=) BupRij; Tijl
4,7

The whole GCN-LSTM-HPA architecture is il-
lustrated in Figure 3. To sum up, we claim that
the KAGNET is a graph neural network module
with the GCN-LSTM-HPA architecture that mod-
els relational graphs for relational reasoning un-
der the context of both knowledge symbolic space
and language semantic space.

5 Experiments

We introduce our setups of the CommonsenseQA
dataset (Talmor et al., 2019), present the baseline
methods, and finally analyze experimental results.

5.1 Dataset and Experiment Setup

The CommonsenseQA dataset consists of 12,102
(v1.11) natural language questions in total that
require human commonsense reasoning ability
to answer, where each question has five candi-
date answers (hard mode). The authors also re-
lease an easy version of the dataset by pick-
ing two random terms/phrases for sanity check.
CommonsenseQA is directly gathered from real
human annotators and covers a broad range of
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10(%) of THtrain

50(%) of THtrain 100(%) of THtrain

Model IHdev-Acc.(%) IHtest-Acc.(%) IHdev-Acc.(%) IHtest-Acc.(%) IHdev-Acc.(%) IHtest-Acc.(%)
Random guess 20.0 20.0 20.0 20.0 20.0 20.0
GPT-FINETUNING 27.55 26.51 32.46 31.28 47.35 45.58
GPT-KAGNET 28.13 26.98 33.72 32.33 48.95 46.79
BERT-BASE-FINETUNING 30.11 29.78 38.66 36.83 53.48 53.26
BERT-BASE-KAGNET 31.05 30.94 40.32 39.01 55.57 56.19
BERT-LARGE-FINETUNING 35.71 32.88 55.45 49.88 60.61 55.84
BERT-LARGE-KAGNET 36.82 33.91 58.73 51.13 62.35 57.16
Human Performance - 88.9 - 88.9 - 88.9

Table 1: Comparisons with large pre-trained language model fine-tuning with different amount of training data.

types of commonsense, including spatial, social,
causal, physical, temporal, etc. To the best of our
knowledge, CommonsenseQA may be the most
suitable choice for us to evaluate supervised learn-
ing models for question answering.

For the comparisons with the reported results
in the CommonsenseQA’s paper and leader-
board, we use the official split (9,741/1,221/1,140)
named (OFtrain/OFdev/OFtest). Note that the per-
formance on OFtest can only be tested by submit-
ting predictions to the organizers. To efficiently
test other baseline methods and ablation studies,
we choose to use randomly selected 1,241 exam-
ples from the training data as our in-house data,
forming an (8,500/1,221/1,241) split denoted as
(IHtrain/IHdev/IHtest). All experiments are using
the random-split setting as the authors suggested,
and three or more random states are tested on de-
velopment sets to pick the best-performing one.

5.2 Compared Methods

We consider two different kinds of baseline meth-
ods as follows:

e Knowledge-agnostic Methods. These methods
either use no external resources or only use un-
structured textual corpora as additional informa-
tion, including gathering textual snippets from
search engine or large pre-trained language mod-
els like BERT-LARGE. QABILINEAR, QACOM-
PARE, ESIM are three supervised learning mod-
els for natural language inference that can be
equipped with different word embeddings in-
cluding G1love and ELMo. BIDAF++ utilizes
Google web snippets as context and is further
augmented with a self-attention layer while using
ELMO as input features. GPT/BERT-LARGE are
fine-tuning methods with an additional linear layer
for classification as the authors suggested. They
both add a special token ‘[sep]’ to the input and

use the hidden state of the ‘[cls]’ as the input to
the linear layer. More details about them can be
found in the dataset paper (Talmor et al., 2019).

e Knowledge-aware Methods. We also adopt
some recently proposed methods of incorporating
knowledge graphs for question answering. KV-
MEM (Mihaylov and Frank, 2018) is a method that
incorporates retrieved triples from ConceptNet
at the word-level, which uses a key-valued mem-
ory module to improve the representation of each
token individually by learning an attentive aggre-
gation of related triple vectors. CBPT (Zhong
et al., 2018) is a plug-in method of assembling
the predictions of any models with a straight-
forward method of utilizing pre-trained concept
embeddings from ConceptNet. TEXTGRAPH-
CAT (Wang et al., 2019c) concatenates the graph-
based and text-based representations of the state-
ment and then feed it into a classifier. We cre-
ate sentence template for generating sentences and
then feed retrieved triples as additional text inputs
as a baseline method TRIPLESTRING. Rajani et al.
(2019) propose to collect human explanations for
commonsense reasoning from annotators as addi-
tional knowledge (COS-E), and then train a lan-
guage model based on such human annotations for
improving the model performance.

5.3 Implementation Details of KagNet

Our best (tested on OFdev) settings of KAGNET
have two GCN layers (100 dim, 50dim respec-
tively), and one bidirectional LSTMs (128dim) .
We pre-train KGE using TransE (100 dimension)
initialized with GloVe embeddings. The statement
encoder in use is BERT-LARGE, which works as
a pre-trained sentence encoder to obtain fixed fea-
tures for each pair of question and answer candi-
date. The paths are pruned with path-score thresh-
old set to 0.15, keeping 67.21% of the original
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Model OFdev-Acc.(%) OFtest-Acc.(%)
Random guess 20.0 20.0
BIDAF++ - 32.0
QACOMPARE+GLOVE - 25.7
QABLINEAR+GLOVE - 31.5
EsiM+ELMO - 32.8
ESiM+GLOVE - 34.1
GPT-FINETUNING 47.11 45.5
BERT-BASE-FINETUNING 53.57 53.0
BERT-LARGE-FINETUNING 62.34 56.7
Co0S-E (w/ additional annotations) - 58.2
KAGNET (Ours) 64.46 58.9
Human Performance - 88.9

Table 2: Comparison with official benchmark baseline
methods using the official split on the leaderboard.

paths. We did not conduct pruning on concept
pairs with less than three paths. For very few pairs
with none path, R(i,j) will be a randomly sampled
vector. We learn our KacgNE T models with Adam
optimizers (Kingma and Ba, 2015). In our exper-
iments, we found that the recall of ConceptNet
on commonsense questions and answers is very
high (over 98% of QA-pairs have more than one
grounded concepts).

5.4 Performance Comparisons and Analysis

Comparison with standard baselines.

As shown in Table 2, we first use the official split
to compare our model with the baseline methods
reported on the paper and leaderboard. BERT and
GPT-based pre-training methods are much higher
than other baseline methods, demonstrating the
ability of language models to store commonsense
knowledge in an implicit way. This presump-
tion is also investigated by Trinh and Le (2019)
and Wang et al. (2019). Our proposed frame-
work achieves an absolute increment of 2.2% in
accuracy on the test data, a state-of-the-art perfor-
mance.

We conduct the experiments with our in-house
splits to investigate whether our KAGNE T can also
work well on other universal language encoders
(GPT and BERT-BASE), particularly with differ-
ent fractions of the dataset (say 10%, 50%, 100%
of the training data). Table 1 shows that our
KaGNET-based methods using fixed pre-trained
language encoders outperform fine-tuning them-
selves in all settings. Furthermore, we find that
the improvements in a small data situation (10%)
is relatively limited, and we believe an important
future research direction is thus few-shot learning

Easy Mode Hard Mode
Model IHdev.(%) IHtest.(%) IHdev.(%) IHtest.(%)
Random guess 333 333 20.0 20.0
BLSTMs 80.15 78.01 34.79 32.12
+ KV-MN 81.71 79.63 35.70 33.43
+ CSPT 81.79 80.01 35.31 33.61
+ TEXTGRAPHCAT 82.68 81.03 34.72 33.15
+ TRIPLESTRING 79.11 76.02 33.19 31.02
+ KAGNET 83.26 82.15 36.38 34.57
Human Performance - 99.5 - 88.9

Table 3: Comparisons with knowledge-aware baseline
methods using the in-house split (both easy and hard
mode) on top of BLSTM as the sentence encoder.

for commonsense reasoning.

Comparison with knowledge-aware baselines.
To compare our model with other adopted base-
line methods that also incorporate ConceptNet,
we set up a bidirectional LSTM networks-based
model for our in-house dataset. Then, we add
baseline methods and KAGNE T onto the BLSTMs
to compare their abilities to utilize external knowl-
edge®. Table 3 shows the comparisons under both
easy mode and hard mode, and our methods out-
perform all knowledge-aware baseline methods by
a large margin in terms of accuracy. Note that
we compare our model and the CoS-E in Ta-
ble 2. Although CoS-E also achieves better re-
sult than only fine-tuning BERT by training with
human-generated explanations, we argue that our
proposed KagNet does not utilize any additional
human efforts to provide more supervision.

Ablation study on model components.

To better understand the effectiveness of each
component of our method, we have done abla-
tion study as shown in Table 4. We find that re-
placing our GCN-LSTM-HPA architecture with
traditional relational GCNs, which uses sepa-
rate weight matrices for different relation types,
results in worse performance, due to its over-
parameterization. The attention mechanisms mat-
ters almost equally in two levels, and pruning also
effectively filters noisy paths.

Error analysis.
In the failed cases, there are three kinds of hard
problems that KAGNET is still not good at.

e negative reasoning: the grounding stage is
not sensitive to the negation words, and thus
can choose exactly opposite answers.

e comparative reasoning strategy: For the

SWe do LSTM-based setup because it is non-trivial to ap-

ply token-level knowledge-aware baseline methods for com-
plicated pre-trained encoders like BERT.
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Model IHdev.(%) IHtest.(%)
KAGNET (STANDARD) 62.35 57.16
: replace GCN-HPA-LSTM w/ R-GCN 60.01 55.08
: w/o GCN 61.84 56.11
: #GCN Layers = 1 62.05 57.03
: w/o Path-level Attention 60.12 56.05
: w/o QAPair-level Attention 60.39 56.13
: using all paths (w/o pruning) 59.96 55.27

Table 4: Ablation study on the KAGNE T framework.

questions with more than one highly plau-
sible answers, the commonsense reasoner
should benefit from explicitly investigating
the difference between different answer can-
didates, while KAGNET training method is
not capable of doing so.

e subjective reasoning: Many answers actu-
ally depend on the “personality” of the rea-
soner. For instance, “Traveling from new
place to new place is likely to be what?”
The dataset gives the answer as ‘“‘exhilarat-
ing” instead of “exhausting”, which we think
is more like a personalized subjective infer-
ence instead of common sense.

5.5 Case Study on Interpretibility

Our framework enjoys the merit of being more
transparent, and thus provides more interpretable
inference process. We can understand our model
behaviors by analyzing the hierarchical attention
scores on the question-answer concept pairs and
path between them.

Figure 4 shows an example how we can ana-
lyze our KagNET framework through both pair-
level and path-level attention scores. We first se-
lect the concept-pairs with highest attention scores
and then look at the (one or two) top-ranked paths
for each selected pair. We find that paths located in
this way are highly related to the inference process
and also shows that noisy concepts like ‘fountain’
will be diminished while modeling.

5.6 Model Transferability.

We study the transferability of a model that is
trained on CommonsenseQA (CSQA) by directly
testing it with another task while fixing its parame-
ters. Recall that we have obtained a BERT-LARGE
model and a KacNET model trained on CSQA.
Now we denoted them as CSQA-BL and CSQA-
KN to suggest that they are not trainable anymore.

In order to investigate their transferability, we
separately test them on SWAG (Zellers et al., 2018)

What do you £i11 with ink to write on an A4 paper?
fountain pen v (KagNet);

N o P P
BNl Q'oQ

fountain

pen
e
fountain_pen '%’
o

1.select concept pairs
of high att. scores

KagNet

ink —PartOf—> fountain_pen
ink —RelatedTo—> container <—IsA— fountain_pen

fill <-HasSubEvent— ink <—AtLocation— fountain_pen
fill —RelatedTo—> container <—IsA— fountain pen

write <—UsedFor— pen
write <-UsedFor— pen <—IsA— fountain_pen

paper <—RelatedTo— write <-UsedFor— fountain_pen

. Ranking via path-level attn.

Figure 4: An example of interpreting model behaviors
by hierarchical attention scores.

and WSC (Levesque, 2011) datasets. We first
test them the 20k validation examples in SWAG.
CsQA-BL has an accuracy of 56.53%, while our
fixed CSQA-KN model achieves 59.01%. Simi-
larly, we also test both models on the WSC—QA,
which is converted from the WSC pronoun resolu-
tion to a multi-choice QA task.

The CsQA-BL achieves an accuracy of 51.23%,
while our model CSQA-KN scores 53.51%. These
two comparisons further support our assumption
that KAGNET, as a knowledge-centric model, is
more extensible in commonsense reasoning. As
we expect for a good knowledge-aware frame-
works to behave, our KaAcNET indeed enjoys bet-
ter transferablity than only fine-tuning large lan-
guage encoders like BERT.

5.7 Recent methods on the leaderboard.

We argue that the KacNeT utilizes the
ConceptNet as the only external resource
and other methods are improving their perfor-
mance in orthogonal directions: 1) we find that
most of the other recent submissions (as of Aug.
2019) with public information on the leaderboard
utilize larger additional textual corpora (e.g. top
10 matched sentences in full Wikipedia via infor-
mation retrieval tools), and fine-tuning on larger
pre-trained encoders, such as XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019). 2) there are
also models using multi-task learning to transfer
knowledge from other reading comprehension
datasets, such as RACE (Lai et al.,, 2017) and
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OpenBookQA (Mihaylov et al., 2018).

An interesting fact is that the best performance
on the OFtest set is still achieved the original
fine-tuned ROBERTa model, which is pre-trained
with copora much larger than BERT. All other
RoBERTa-extended methods have negative im-
provements. We also use statement vectors from
RoBERTa as the input vectors for KAGNET, and
find that the performance on OFdev marginally
improves from 77.47% to 77.56%. Based on our
above-mentioned failed cases in error analysis, we
believe fine-tuning RoBERTa has achieved the
limit due to the annotator biases of the dataset and
the lack of comparative reasoning strategies.

6 Related Work

Commonsense knowledge and reasoning.
There is a recent surge of novel large-scale
datasets for testing machine commonsense with
various focuses, such as situation prediction
(SWAG) (Zellers et al., 2018), social behavior
understanding (Sap et al., 2019a,b), visual scene
comprehension (Zellers et al., 2019), and gen-
eral commonsense reasoning (Talmor et al.,
2019), which encourages the study of supervised
learning methods for commonsense reasoning.
Trinh and Le (2018) find that large language
models show promising results in WSC resolution
task (Levesque, 2011), but this approach can
hardly be applied in a more general question
answering setting and also not provide explicit
knowledge used in inference. A unique merit of
our KAcNET method is that it provides grounded
explicit knowledge triples and paths with scores,
such that users can better understand and put trust
in the behaviors and inferences of the model.

Injecting external knowledge for NLU. Our
work also lies in the general context of using
external knowledge to encode sentences or an-
swer questions. Yang and Mitchell (2017) are the
among first ones to propose to encode sentences
by keeping retrieving related entities from knowl-
edge bases and then merging their embeddings
into LSTM networks computations, to achieve
a better performance on entity/event extraction
tasks. Weissenborn et al. (2017), Mihaylov and
Frank (2018), and Annervaz et al. (2018) follow
this line of works to incorporate the embeddings of
related knowledge triples at the word-level and im-
prove the performance of natural language under-
standing tasks. In contrast to our work, they do not

explicitly impose graph-structured knowledge into
models , but limit its potential within transforming
word embeddings to concept embeddings.

Some other recent attempts (Zhong et al., 2018;
Wang et al., 2019¢) to use ConceptNet graph em-
beddings are adopted and compared in our experi-
ments (§5). Rajani et al. (2019) propose to manu-
ally collect more human explanations for correct
answers as additional supervision for auxiliary
training. KacGNEeT-based framework focuses on
injecting external knowledge as an explicit graph
structure, and enjoys the relational reasoning ca-
pacity over the graphs.

Relational reasoning. KacNET can be seen as
a knowledge-augmented Relation Network
module (RN) (Santoro et al., 2017), which is pro-
posed for the visual question answering task re-
quiring relational reasoning (i.e. questions about
the relations between multiple 3D-objects in an
image). We view the concepts in the questions and
answers as objects and effectively utilize external
knowledge graphs to model their relations from
both semantic and symbolic spaces (§4.2), while
prior methods mainly work on the semantic one.

7 Conclusion

We propose a knowledge-aware framework for
learning to answer commonsense questions. The
framework first constructs schema graphs to rep-
resent relevant commonsense knowledge, and then
model the graphs with our KAGNE T module. The
module is based on a GCN-LSTM-HPA architec-
ture, which effectively represent graphs for rela-
tional reasoning purpose in a transparent, inter-
pretable way, yielding a new state-of-the-art re-
sults on a large-scale general dataset for testing
machine commonsense. Future directions include
better question parsing methods to deal with nega-
tion and comparative question answering, as well
as incorporating knowledge to visual reasoning.
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