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Abstract

Sentence matching is a key issue in natural lan-
guage inference and paraphrase identification.
Despite the recent progress on multi-layered
neural network with cross sentence attention,
one sentence learns attention to the inter-
mediate representations of another sentence,
which are propagated from preceding layers
and therefore are uncertain and unstable for
matching, particularly at the risk of error prop-
agation. In this paper, we present an original
semantics-oriented attention and deep fusion
network (OSOA-DFN) for sentence matching.
Unlike existing models, each attention layer of
OSOA-DFN is oriented to the original seman-
tic representation of another sentence, which
captures the relevant information from a fixed
matching target. The multiple attention lay-
ers allow one sentence to repeatedly read the
important information of another sentence for
better matching. We then additionally design
deep fusion to propagate the attention informa-
tion at each matching layer. At last, we in-
troduce a self-attention mechanism to capture
global context to enhance attention-aware rep-
resentation within each sentence. Experiment
results on three sentence matching benchmark
datasets SNLI, SciTail and Quora show that
OSOA-DFN has the ability to model sentence
matching more precisely.

1 Introduction

Natural language sentence matching is a key tech-
nique of comparing two sentences and identifying
the semantic relationship between them, which is
usually viewed as a classification problem (Wang
et al., 2017). The technique has applications in
natural language inference to judge whether a hy-
pothesis sentence can be inferred from a premise
sentence (Bowman et al., 2015) and in paraphrase
identification to determine whether two sentences
express the equivalent meaning or not (Yin et al.,

2015). The core issue for sentence matching is
to model the relatedness between two sentences
(Rocktäschel et al., 2015; Parikh et al., 2016;
Wang et al., 2017; Duan et al., 2018).

Recently, neural network-based models for sen-
tence matching have attracted more attention for
their powerful ability to learn sentence represen-
tation (Bowman et al., 2015; Wang et al., 2017;
Duan et al., 2018). There are mainly two types
of frameworks: sentence encoding based frame-
work and attention-based framework. For the first
type of framework, a simple and effective model is
proposed by using two sentence vectors (Bowman
et al., 2015), but the interaction between two sen-
tences is neglected. For the second type of frame-
work, attention mechanism is introduced to model
word-level interaction between two sentences and
a higher accuracy is achieved (Rocktäschel et al.,
2015; Parikh et al., 2016; Wang et al., 2017).
Particularly, multi-layered deep matching network
with attention shows that deeper models outper-
form shallower models (Duan et al., 2018).

However, the existing attention mechanism still
has some limitations. When one sentence learns
attention to another sentence, the attention is per-
formed between two parallel layers and oriented
to the intermediate representations from the pre-
ceding layer of another one. As a result, seman-
tics to be paid attention are uncertain and unsta-
ble for matching because semantics are changed
at different layers. On the other hand, the interme-
diate representations tend to be affected by error
propagation in multi-layered attentions, in which
if the first attention aligns the wrong position, the
second attention will now have the incorrect infor-
mation as input for alignment.

In order to address these problems, we propose
an original semantics-oriented attention and deep
fusion network (OSOA-DFN) for sentence match-
ing. OSOA-DFN mainly consists of three sub-
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components: (1) original semantics-oriented cross
sentence attention; (2) deep fusion; and (3) self-
attention mechanism. The cross sentence attention
is oriented to the original semantic representations
of another sentence, so as to be able to capture in-
herent semantics by relying on the fixed matching
target. The multiple cross attention operations al-
low one sentence to repeatedly read the important
information of another sentence for better inter-
action. We then design a deep fusion in addition
to usual fusion to augment the propagation of at-
tention information at each matching layer. The
self-attention mechanism is also introduced at the
last to capture global context to enhance attention-
aware representation within each sentence. Exper-
iment results demonstrate that OSOA-DFN has the
ability to model sentence matching more precisely
on the SNLI, the SciTail, and the Quora datasets.

Our contributions can be summarized as fol-
lows:

• We pay attention to the original semantic
representations for cross sentence interaction
and the matching target of attention for a cer-
tain sentence is therefore ensured to be fixed
in spite of multiple layers. The multiple cross
attention operations allow one sentence to re-
peatedly read the important information of
another sentence for better interaction.

• We design a deep fusion in addition to usual
fusion to augment the propagation of at-
tention information for matching, and intro-
duce a self-attention mechanism at the last to
capture global context to enhance attention-
aware representation within each sentence.

• We evaluate our model on three challenging
datasets and show that the proposed model
has the ability to model sentence matching
more precisely and significantly improves the
performance.

2 General Neural Attention-Based
Model for Sentence Matching

Formally, we can define the sentence matching as
follows. Given two sentences P = [p1, · · · , pi, · · · ,
pm] and Q = [q1, · · · , qj , · · · , qn], the goal is to
predict a label y∗ ∈ Y , where Y = {entailment,
contradiction, neutral} in natural language infer-
ence and Y = {0,1} in paraphrase identification,
indicating the logic semantic relationship between

two sentences P and Q (Wang et al., 2017).

y∗ = argmax
y∈Y

Pr(y|P,Q) (1)

Generally, the architecture of neural attention-
based models for sentence matching includes three
components (Wang et al., 2017; Duan et al., 2018):
(1) input encoding layer encodes each sentence
into semantic representation; (2) attention-based
matching layer models word-level alignment be-
tween two sentences and produces attention-aware
representation for each sentence; and (3) predic-
tion layer predicts the semantic relation between
two sentences. Figure 1(a) illustrates the general
model.

2.1 Input Encoding Layer

For the given sentence pairs P = [p1, · · · , pi, · · · ,
pm] and Q = [q1, · · · , qj , · · · , qn], where pi and
qj indicate the i-th and j-th word in P and Q re-
spectively, the input encoding layer first converts
words of P and Q into vectors [ep1 , · · · , epi , · · · ,
epm] and [eq1 , · · · , eqj , · · · , eqn] by looking up M
respectively, where M ∈ Rd×|V | is the embedding
table. d is the dimension of embeddings and |V | is
the size of the vocabulary.

In order to encode contextual information into
word representations, we use a BiLSTM neu-
ral network (Hochreiter and Schmidhuber, 1997)
to encode two sentences P and Q. The sequen-
tial BiLSTM calculates a new hidden state condi-
tioned on the previous states to incorporate con-
textual information, and several previous works
have shown its effectiveness for sentence match-
ing (Rocktäschel et al., 2015; Wang et al., 2017;
Duan et al., 2018).

h0
pi = BiLSTM(epi ,

−→
h 0

pi−1
,
←−
h 0

pi+1
) (2)

h0
qj = BiLSTM(eqj ,

−→
h 0

qj−1
,
←−
h 0

qj+1
) (3)

Then the two sentences are converted to H0
P =

[h0
p1 , · · · , h0

pi , · · · , h0
pm] and H0

Q = [h0
q1 , · · · , h0

qj ,
· · · , h0

qn]. Hereafter, we call H0
P and H0

Q as origi-
nal semantic representations of sentences P and Q
respectively. In this paper, we will use them as the
targets of cross sentence attention.

2.2 Attention-Based Matching Layer

Generally, this layer employs the attention mecha-
nism to model the interaction information between



2654

ℎ𝑝1
0 ℎ𝑝2

0 ℎ𝑝𝑖
0 ℎ𝑝𝑚

0 ℎ𝑞1
0 ℎ𝑞2

0 ℎ𝑞𝑗
0 ℎ𝑞𝑛

0

Q(1) –> P Attention 1

Q(T) –> P Attention T

……

P(1) –> Q Attention 1

P(T) –> Q Attention T

……

𝑒𝑝1 𝑒𝑝2 𝑒𝑝𝑖 𝑒𝑝𝑚

ℎ𝑝1
𝑇 ℎ𝑝2

𝑇 ℎ𝑝𝑖
𝑇 ℎ𝑝𝑚

𝑇

ℎ𝑝1
s ℎ𝑝2

𝑠 ℎ𝑝𝑖
𝑠 ℎ𝑝𝑚

𝑠

Self-Attention 

ℎq1
𝑇 ℎ𝑞2

𝑇 ℎ𝑞𝑗
𝑇 ℎ𝑞𝑛

𝑇

ℎ𝑞1
𝑠 ℎ𝑞2

𝑠 ℎ𝑞𝑗
𝑠 ℎ𝑞𝑛

𝑠

Classifier

Pooling Pooling

y

Premise (P) Hypothesis (Q)

𝑒𝑞1 𝑒𝑞2 𝑒𝑞𝑗 𝑒𝑞𝑛

Self-Attention 

𝐻𝑃
0 𝐻𝑄

0

𝐻𝑃
0

𝐻𝑄
0

Input Encoding Layer

Attention-based
Matching Layer

Prediction Layer

Deep Fusion

Fusion for Attention

𝐻𝑃
0

Cross Attention 

ℎ𝑞𝑗
t−1

Premise (P) Hypothesis (Q)

Attentive Representation 𝐻𝑄
𝑡

෨ℎ𝑞𝑗
𝑡

෠ℎ𝑞𝑗
𝑡

ℎ𝑞𝑗
𝑡

(c) A Cross Attention Unit Q(t)→P(b) The Architecture of Our Proposed OSOA-DFN(a) The General Model

Figure 1: (a) is the general model for sentence matching. (b) is an overview architecture of our proposed OSOA-
DFN. (c) is an original semantics-oriented cross attention unit that learns the interaction information from the
original semantic representation of another sentence.

two sentences. It can be formulated as:

VP = Match(H0
P ,H

0
Q),VQ = Match(H0

Q,H
0
P )
(4)

where Match(·) is a neural attention-based match-
ing function, VP = [vp1 , · · · , vpi , · · · , vpm]
and VQ = [vq1 , · · · , vqj , · · · , vqn] are new
attention-aware representations for P and Q, re-
spectively. This layer is the core layer for sen-
tence matching. Match(·) is mainly focused by
researches and some effective frameworks are pro-
posed (Rocktäschel et al., 2015; Wang et al., 2017;
Duan et al., 2018). In this paper, we also focus
on this layer, and propose an original semantics-
oriented attention and deep fusion network. The
details will be described in Section 3.

2.3 Prediction Layer

A pooling layer is used to convert the resulting
representations of all position in P and Q into a
fixed-length vector and feed it into a classifier to
determine the semantic relationship between the
two sentences.

A mean pooling is usually adopted on each
sentence for capturing all of the information and
also a max pooling for highlighting the significant
properties. In this paper, we get a fixed dimen-
sional representation V by concatenating them to-

gether as (Chen et al., 2017; Duan et al., 2018).

VPmean =
1

m

m∑
i=1

vpi ,VPmax =
m

max
i=1

vpi (5)

VQmean =
1

n

n∑
j=1

vqj ,VQmax =
n

max
j=1

vqj (6)

V = [VPmean ;VPmax ;VQmean ;VQmax ] (7)

Finally, we pass representation V into a multilayer
perceptron (MLP) classifier to calculate the prob-
ability Pr(·) of each label.

Pr(·|P,Q)=softmax(W2ReLU(W1V+b1)+b2)
(8)

where, W1, W2, b1, b2 are learnable parameters.

3 Original Semantics-Oriented Attention
and Deep Fusion Network

In this paper, we mainly focus on the struc-
ture of attention-based matching layer. Inspired
by the recent successful deep models (He et al.,
2016; Duan et al., 2018), we propose an origi-
nal semantics-oriented attention and deep fusion
network (OSOA-DFN) for sentence matching, as
shown in Figure 1(b). OSOA-DFN is mainly com-
posed of: (1) original semantics-oriented cross
sentence attention; (2) deep fusion; and (3) self-
attention mechanism. (1) and (2) are combined to
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form one unit of cross attention, as shown in Fig-
ure 1(c), and there are T units in attention-based
matching layer. Finally, one layer of self-attention
is introduced after the T units of cross attention.

3.1 Original Semantics-Oriented Cross
Sentence Attention

Cross sentence attention is utilized to model the
relevance between two sentences. In the t-th at-
tention layer, we use P(t)→Q to annotate that the
sentence P learns attention to the sentence Q to
extract the relevant information from Q.

Given the representations of P and Q: Ht−1
P =

[ht−1
p1 , · · · , ht−1

pi , · · · , ht−1
pm ] and H0

Q = [h0
q1 , · · · ,

h0
qj , · · · , h0

qn], each cross attention P(t)→Q will
use the original semantics H0

Q of Q for interac-
tion, where t = {1, · · · , T} and t = 1 represents
P using the original representation H0

P . We first
compute the unnormalized attention weights as
the similarity of P(t) and Q, the alignment matrix
At ∈ Rm×n is defined as follows:

At
ij = ht−1

pi

TWth0
qj + 〈U

t
p,h

t−1
pi 〉+ 〈U

t
q,h

0
qj 〉 (9)

where Wt ∈ Rh×h, Ut
p, Ut

q ∈ Rh are learnable
parameters, and 〈·, ·〉 denotes the inner production
operation. pi and pj are the the i-th and j-th word
in the P and Q respectively. Next, the semantics of
sentence Q related to ht−1

pi is extracted to compute

h̃
t

pi according to At, as shown in Equation (10).

h̃
t

pi =

n∑
j=1

exp(At
ij)∑n

k=1 exp(A
t
ik)

h0
qj (10)

Intuitively, h̃
t

pi is a representation by using atten-
tive information in H0

Q that is softly aligned to
ht−1
pi , and the semantics of H0

Q is more probably
selected if it is more related to ht−1

pi .

3.2 Deep Fusion
To further enrich the interaction, we first perform
an usual fusion and then design a deep fusion for
each cross attention to augment the propagation of
attention information.

The usual fusion (Wang and Jiang, 2016a; Duan
et al., 2018) can be formulated as the Equations
(11) - (13).

ht
pi =[ht−1

pi ; h̃
t

pi ; | h
t−1
pi − h̃

t

pi |;ht−1
pi � h̃

t

pi ] (11)

h̃
t

pi = ReLU(Wt
hht

pi
+ bt

h) (12)

ĥ
t

pi = BiLSTM(h̃
t

pi ,
−→
h t

pi−1
,
←−
h t

pi+1
) (13)

where [·; ·; ·; ·] refers to the concatenation opera-
tion. In matching operation, the concatenation can
retain all the information (Wang and Jiang, 2016a;
Chen et al., 2017). We use a neural nonlinear
transformation ReLU (Glorot et al., 2011) as lo-
cal comparison function. This operation helps the
model to better fuse the attention information and
also reduce the complexity of vector representa-
tion. Since the understanding of some word-level
alignments may rely on the contextual matching
information, we then apply a BiLSTM to incor-
porate the sequential matching information, which
further gathers interactive features between two
sentences.

We design the deep fusion layer as follows. A
gated connection layer is used to learn adaptively
controlling how much information to be stored and
carried to the next attention layer. It can be formu-
lated as Equations (14) - (17):

rtpi = σ(Wt
r[h

t−1
pi ; ĥ

t

pi ;ht−1
pi � ĥ

t

pi ] + bt
r) (14)

ztpi = σ(Wt
z[h

t−1
pi ; ĥ

t

pi ;ht−1
pi � ĥ

t

pi ] + bt
z) (15)

c̃tpi = tanh(Wt
c[r

t
pi � ht−1

pi ; ĥ
t

pi ] + bt
c) (16)

ht
pi = ztpi � ht−1

pi + (1− ztpi)� c̃tpi (17)

where Wt
∗ and bt

∗ are the learnable parameters, ht
pi

is the result of current layer, ht−1
pi is the result from

preceding layer, σ is a sigmoid function, the value
of rtpi and ztpi is between 0 and 1. Intuitively, the
model can learn to set the rtpi and ztpi close to 1,
thus the more attention information from the pre-
ceding layers will be propagated to the following
attention layers for matching, and close to 0 im-
plying that the information of preceding layers is
less propagated.

After the t-th layer of the original semantics-
oriented cross attention, each word pi in sentence
P is newly represented by ht

pi . Similarly, we con-
duct cross attention for Q(t)→P, implying that
the sentence Q learns attention to the sentence
P, which will be oriented to the original seman-
tic representation H0

P of P to derive the attention-
aware representation ht

qj for each word qj of Q.

3.3 Self-Attention Mechanism

We additionally introduce a self-attention mech-
anism after cross sentence attention. It captures
long-distance context information to learn word
representation within each sentence and further
enhances the attention-aware representation.
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For sentence P, its attentive representation HT
p =

[hT
p1 , · · · , hT

pi , · · · , hT
pm] is computed after T lay-

ers of original semantics-oriented cross sentence
attention. We first compute a self-attention matrix
Ss ∈ Rm×m as Equation (9).

Ss
ij = 〈hT

pi ,h
T
pj 〉 (18)

where, Ss
ij indicates the relevance between the i-th

word and j-th word in P. Then, the self-attention
vector for each word in P is computed as follows:

h̃
s

pi =
m∑
j=1

exp(Ss
ij)∑m

k=1 exp(S
s
ik)

hT
pj (19)

Intuitively, h̃
s

pi augments each word representation
with global context of the sentence P.

After that, an usual fusion augmented by deep
fusion, as described in Section 3.2, is also intro-
duced to further enhance the self-attention infor-
mation within each sentence as follows:

hs
pi = [hT

pi ; h̃
s

pi ; | h
T
pi − h̃

s

pi |;hT
pi � h̃

s

pi ] (20)

h̃
s

pi = ReLU(Ws
hhs

pi
+ bs

h) (21)

ĥ
s

pi = BiLSTM(h̃
s

pi ,
−→
h s

pi−1
,
←−
h s

pi+1
) (22)

The deep fusion after the self-attention layer is
computed as Equations (14) and (17), which fuses
the hT

pi from original semantics-oriented cross at-
tention and the ĥ

s

pi from self-attention to get the
final attention-ware representation.

Similarly, we conduct self-attention and deep
fusion operations to the sentence Q to derive the
attention-aware representation hs

qj for each word
qj of Q. Then, two sentences are converted to Hs

P

= [hs
p1 , · · · , hs

pi , · · · , hs
pm] and Hs

Q = [hs
q1 , · · · , hs

qj ,
· · · , hs

qn]. Finally, Hs
P and Hs

Q are passed into the
prediction layer as input VP and VQ for deciding
their semantic relationship.

4 Training

For model training, we employ cross-entropy as
the loss function since the goal is the make the
correct classification. Considering the model com-
plexity, we also add l2-norm of all learnable pa-
rameters to the final loss function. Finally, the ob-
ject is to minimize the following objective func-
tion J (θ), which can be formulated as:

J (θ)=− 1

N

N∑
i=1

logP (y(i)|P (i), Q(i); θ)+
1

2
λ‖θ‖22

(23)

Dataset Train Dev Test Avg.L Vocab
SNLI 549K 9.8K 9.8K 14 8 36K

SciTail 23K 1.3K 2.1K 17 12 24K
Quora 384K 10K 10K 12 12 107K

Table 1: Statistics of datasets: SNLI, SciTail and
Quora. Avg.L refers to average length of a pair of sen-
tences.

where θ denotes all the learnable parameters of our
model, N is the number of instances in the train-
ing set, (P (i), Q(i)) are the sentence pairs, and y(i)

denotes the corresponding annotated label for the
i-th instance.

Word Embedding Following (Tay et al., 2017),
to represent each input word, we concatenate three
types of vectors: a pre-trained vector, a learnable
vector for each word type, and a learnable vector
for the POS tag of the word. We use NLTK 1 to
acquire POS tags. Finally, we apply a nonlinear
transformation ReLU to the concatenated vector
to get the final word embedding.

5 Experiments

5.1 Dataset

We evaluate our model on natural language infer-
ence and paraphrase identification tasks with three
datasets: the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015), the SciTail
dataset (Khot et al., 2018), and the Quora Ques-
tions Pairs dataset (Quora).

SNLI is a natural language inference dataset
(Bowman et al., 2015). The original data set
contains 570,152 sentence pairs, each labeled
with one of the following relationships: Y =
{entailment, contradiction, neutral}. We follow
the same data split as in (Bowman et al., 2015).

SciTail is a binary entailment classification task
and Y = {entailment, neutral}. We have the same
data split as in (Khot et al., 2018). Notably, the
premise and the corresponding hypothesis have
high lexical similarity both for entailed and non-
entailed pairs, which makes the task particularly
difficult.

Quora consists of over 400,000 question pairs
and Y = {0, 1} indicating whether two questions
are paraphrases of each other. We have the same
data split as in (Wang et al., 2017).

1http://www.nltk.org/
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Models Train Test
LstmAtt(Rocktäschel et al., 2015) 85.3 83.5
mLSTM (Wang and Jiang, 2016b) 92.0 86.1
LSTMN (Cheng et al., 2016) 88.5 86.3
DecompAtt (Parikh et al., 2016) 89.5 86.8
re-read (Sha et al., 2016) 90.7 87.5
btree-LSTM (Paria et al., 2016) 88.6 87.6
SAN (Im and Cho, 2017) 89.6 86.3
BiMPM (Wang et al., 2017) 90.9 87.5
ESIM (Chen et al., 2017) 92.6 88.0
DIIN (Gong et al., 2017) 91.2 88.0
AF-DMN (Duan et al., 2018) 94.5 88.6
OSOA-DFN (single) 92.3 88.8
BiMPM (ensemble) 93.2 88.8
ESIM (ensemble) 93.5 88.6
DIIN (ensemble) 92.3 88.9
AF-DMN (ensemble) 94.9 89.0
OSOA-DFN (ensemble) 93.5 89.3

Table 2: Comparative results with previous models on
SNLI dataset.

The detailed statistical information of the three
datasets is shown in Table 1.

5.2 Implementation Details

We set word embeddings and all of the hidden
states of BiLSTMs and MLPs to 300 dimensions.
Pre-trained word vectors are 300-dimensional
Glove 840B (Pennington et al., 2014) and without
updating during training. The learnable word vec-
tors and POS vectors have 30 dimensions. For all
datasets, there are 3 cross sentence attention lay-
ers and 1 self-attention layer. The batch size is
set to 64 for SNLI and Quora, 32 for SciTail. We
use the Adam method (Kingma and Ba, 2014) for
model training. We set the initial learning rate to
5e-4 with a decay ratio of 0.95 for each epoch, and
l2 regularizer strength to 6e-5. To prevent over-
fitting, we use dropout regularization (Srivastava
et al., 2014) with a drop rate of 0.2 for all MLPs.

5.3 Ensemble

The ensemble strategy has been proved to effec-
tively improve model accuracy. Following (Duan
et al., 2018), our ensemble model averages the
probability distributions from three individual sin-
gle OSOA-DFNs, and each of them has the same
architecture but different parameter initialization.

5.4 Comparison on Natural Language
Inference

SNLI We compare our model with the follow-
ing previous models on SNLI dataset, and show
the results in Table 2. LstmAtt (Rocktäschel et al.,
2015) extend the general LSTM model with at-

Models Dev Test
Majority class 63.3 60.3
Ngram 65.0 70.6
DecompAtt 75.4 72.3
ESIM 70.5 70.6
DGEM 79.6 77.3
DEISTE 82.4 82.1
CAFE - 83.3
AF-DMN (re-imp) 87.2 84.4
OSOA-DFN 88.9 86.8

Table 3: Comparative results with previous models on
SciTail dataset.

tention mechanism. mLSTM (Wang and Jiang,
2016b) exploit LSTM with memory. Decom-
pAtt (Parikh et al., 2016) propose a decompos-
able word-by-word matching model with atten-
tion, and use pre-trained word vector without rely-
ing on any word-order information. SAN (Im and
Cho, 2017) is a distance-based self-attention net-
work. BiMPM (Wang et al., 2017) design a bilat-
eral multi-perspective matching model from both
directions. ESIM (Chen et al., 2017) incorporate
the chain LSTM and tree LSTM. Recently, AF-
DMN (Duan et al., 2018) adopt attention-fused
deep matching network by using multiple stacked
cross attention and self-attention layers.

In Table 2, our single OSOA-DFN achieves
88.8% test accuracy. Moreover, we also report the
ensemble result, and the test accuracy is 89.3%.
Comparative results show that our model outper-
forms the previous models on single and ensemble
scenarios on SNLI dataset. ELMO (Peters et al.,
2018) and BERT (Devlin et al., 2018) have been
well known as pre-trained language model for ac-
quiring contextual word vectors. However, our
model has less computing complexity (340M pa-
rameters in BERT while 10M in our model), but
obtained competitive performance. We will con-
duct the comparison with them in the future. In
this paper, we evaluated the contribution of origi-
nal semantics-oriented cross attention and deep fu-
sion to our model.

SciTail We compare our model with the follow-
ing previous models on SciTail dataset, and show
the results in Table 3. The first five models in Ta-
ble 3 are all implemented in (Khot et al., 2018).
DGEM is a graph based attention model using
lingual syntactic structures for improved perfor-
mance (Khot et al., 2018). CAFE (Tay et al., 2017)
improve previous comparison operations by com-
pressing alignment vectors into scalar valued fea-
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Models Test
Siamese-CNN 79.60
Multi-Perspective-CNN 81.38
Siamese-LSTM 82.58
Multi-Perspective-LSTM 83.21
L.D.C 85.55
BiMPM 88.17
AF-DMN 88.72
OSOA-DFN 89.03

Table 4: Comparative results with previous models on
Quora dataset.

Models Dev Test
OSOA-DFN (ori-attention) 88.9 86.8
OSOA-DFN (inter-attention) 87.1 84.2

Table 5: Effect of original semantics-oriented cross
sentence attention on SciTail dataset.

tures. DEISTE (Yin et al., 2018) propose deep ex-
plorations of inter-sentence interaction. AF-DMN
(re-imp) is our re-implementation of the multi-
layered attention model in (Duan et al., 2018) that
have not reported the results on this dataset.

On this dataset, our single OSOA-DFN signifi-
cantly outperforms these strong baselines, achiev-
ing the state-of-the-art performance with 86.8%
accuracy on the test set. It demonstrates that our
model has the ability to improve semantic match-
ing on the challenging SciTail dataset.

5.5 Comparison on Paraphrase Identification

Quora We compare our model with the follow-
ing previous models on Quora dataset, and show
the results in Table 4. The Siamese-CNN model
and Siamese-LSTM model encode sentences with
CNN and LSTM respectively, and then predict
the relationship between them based on the cosine
similarity (Wang et al., 2017). Multi-Perspective-
CNN and Multi-Perspective-LSTM adopt multi-
ple perspective cosine matching function (Wang
et al., 2017). L.D.C (Wang et al., 2016) and
BiMPM (Wang et al., 2017) adopt attention-based
framework that performs word-level matching.

As we can see, our single OSOA-DFN outper-
forms the baselines and achieves 89.03% accuracy
on the test set. The results prove that our model is
very effective for paraphrase identification task.

5.6 Effect of Original Semantics-Oriented
Cross Sentence Attention

To verify the effect of original semantics-oriented
cross sentence attention, we first implement a
variant of our model, namely OSOA-DFN (inter-

Num Dev Test
1 86.9 84.0
2 88.6 85.1
3 88.9 86.8
4 89.1 87.2
5 89.2 87.4

Table 6: Effect of cross sentence attention layers on
SciTail dataset.

Models Dev Test
OSOA-DFN 88.9 86.8
- Deep fusion 85.8 84.7
- Self-attention 88.1 84.8
- BiLSTM fusion 87.2 83.2

Table 7: Effect of components on SciTail dataset.

attention), as shown in Table 5. As in the model
of (Duan et al., 2018), we make the cross sentence
attention oriented to the intermediate representa-
tions from the preceding layer of another sentence,
where cross attention is performed on parallel lay-
ers between two sentences. The results show that
our method achieves higher accuracy on the test
set of SciTail dataset, which proves the effect of
original semantics-oriented cross attention on ex-
tracting expressive features from another sentence
for semantic matching.

We further verify the effect of the depth of cross
sentence attention on performance, as shown in
Table 6. As the number of stacked attention layers
increases from 1 to 5, we can see that the perfor-
mance increases both on the development set and
the test set of SciTail dataset. But from 3 to 5,
the increased accuracy is slower. We can conclude
that the multiple original semantics-oriented atten-
tions are effective in improving matching perfor-
mance. However, the parameters will grow rapidly
with the increasing of the number of stacked at-
tention layer, and a large of number of parameters
will increase model complexity. Because of com-
putational cost, we just set the number of cross at-
tention layers to 3 in our experiment.

5.7 Effect of Deep Fusion and Self-Attention
Mechanism

We verify the effect of deep fusion and self-
attention for better understanding of the perfor-
mance improvement of OSOA-DFN, as shown in
Table 7. Only using BiLSTM fusion without deep
fusion, the accuracy drops by 2.1% on the test set
of SciTail dataset. This indicates the augmented
deep fusion at different layers is important in prop-
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(a) 1st cross attention. (b) 2nd cross attention. (c) 3rd cross attention. (d) self-attention.

Figure 2: The visualization of alignment matrices in the three cross sentence attention layers and the self-attention
layer.

agating attention information through the network
for deep interaction. Without the self-attention,
the accuracy is degraded to 84.8%. This indicates
that the self-attention mechanism is effective in
capturing global context information for augment-
ing attention-aware semantic representation.

We also verify the effect of BiLSTM fusion,
without the BiLSTM fusion, the accuracy is de-
graded to 83.2%. This shows contextual informa-
tion gathered by BiLSTM fusion is important for
interaction between two sentences.

5.8 What is Learned by Attention ?

We further investigate the results of the multi-
layered cross sentence attention and the self-
attention and then visualize the results in Figure 2.
This is an instance from the test set of the SciTail
dataset: {P: all living cells have a plasma mem-
brane that encloses their contents. Q: all types of
cells are enclosed by a membrane. The label y:
entailment.}. The results are produced by OSOA-
DFN with 3 original semantics-oriented cross sen-
tence attentions P(t)→Q and 1 self-attention. We
visualize the attention matrices for each layer to
show the dynamic attention changes.

From the results, we observe that the first at-
tention layer may have erroneous alignments. We
can find that the premise word “encloses” is in-
correctly aligned with hypothesis word “all”. In
the second attention layer, the alignment quality
is improved dramatically, where the “encloses”
is correctly aligned to “enclosed”. It shows that
the second attention layer effectively revises the
errors from the first attention layer. In the sec-
ond and third attention layers, the attention gradu-
ally tends to capture phrase-level alignments, such
as “that encloses their contents” and “enclosed”,
and “cells have a plasma membrane” and “mem-

brane”. Meanwhile, with the increment of interac-
tion, the high attention layers also tend to capture
new alignment information from another sentence
that is not captured in low attention layers.

In the self-attention layer, we observe that the
phrase “plasma membrane that encloses their con-
tents” is strongly aligned to the phrase “living
cells”. This layer captures long-distance semantic
dependency within the sentence. The visualiza-
tion of attention further shows that our proposed
model is capable of capturing alignment informa-
tion from two sentences for better semantic match-
ing.

6 Related Works

Recently, deep neural network models have
achieved promising results in modeling sentence
matching. A standard practice is to encode each
sentence as a vector with a neural network (Bow-
man et al., 2015; Mou et al., 2015; Tan et al.,
2015), and then the relation is decided based on
the two sentence vectors. This kind of framework
ignores the interaction between two sentences.

Most recent works (Wang and Jiang, 2016a;
Chen et al., 2017; Duan et al., 2018) employ
attention mechanism to model interaction be-
tween two sentences. The attention-based frame-
work matches two sentences at the word level.
(Wang and Jiang, 2016b) design a specific LSTM
called matching-LSTM that performs word-by-
word matching of the hypothesis with the premise.
Furthermore, (Wang et al., 2017) and (Chen et al.,
2017) propose a new framework to model the
relationship between two sentences, which per-
forms the matching from two directions. To im-
prove the attention-based framework, (Duan et al.,
2018) propose an attention-fused deep matching
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network (AD-DMN), which is based on multi-
layered attention mechanism and shows that multi-
ple stacked attention layers can improve matching
performance. Besides cross sentence attention, the
self-attention mechanism is proposed to solve the
limitations of RNN model on the long-term depen-
dency problem, which aims to align the sentence
with itself and has been used in a variety of tasks
(Lin et al., 2017; Duan et al., 2018).

Our proposed OSOA-DFN conducts original
semantics-oriented cross sentence attention to
model the matching. We design deep fusion to
augment the propagation of attention information.
At last, we introduce a self-attention mechanism
to capture global context to enhance semantic rep-
resentation. Compared to AF-DMN (Duan et al.,
2018), we just use one self-attention layer instead
of multiple layers, which reduces model complex-
ity but achieves outperformed accuracy.

7 Conclusions and Future Work

In this paper, we propose an original semantics-
oriented attention and deep fusion network
(OSOA-DFN) for sentence matching. It lever-
ages original semantics-oriented cross sentence at-
tention, deep fusion and self-attention mechanism
jointly. We compare our model with the previous
models on two sentence matching tasks: natural
language inference and paraphrase identification.
Experiment results show that OSOA-DFN has the
ability to model sentence matching more precisely
and significantly improves the performance.

In the future, we will further investigate the
effect of the network depth on sentence match-
ing and explore introducing external knowledge,
such as pre-trained language model BERT (De-
vlin et al., 2018) and paraphrase database (Gan-
itkevitch et al., 2013), to help learning more accu-
rate and robust sentence representation.
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