NL2pSQL: Generating Pseudo-SQL Queries from Under-Specified
Natural Language Questions

Fuxiang Chen'#, Seung-won Hwang?, Jaegul Choo?, Jung-Woo Ha' and Sunghun Kim®:

4

!Clova AI Research, NAVER
2Yonsei University
3Korea University
“Hong Kong University of Science and Technology

Jchenaa@cse.ust.hk , seungwonh@yonsei.ac.kr , jchoo@korea.ac.kr , {jungwoo.ha , sung.kim.n} @navercorp.com

Abstract

Generating SQL codes from natural language
questions (NL2SQL) is an emerging research
area. Existing studies have mainly focused
on clear scenarios where specified informa-
tion is fully given to generate a SQL query.
However, in developer forums such as Stack
Overflow,' questions cover more diverse tasks
including table manipulation or performance
issues, where a table is not specified. The
SQL query posted in Stack Overflow, Pseudo-
SQL (pSQL), does not usually contain ta-
ble schemas and is not necessarily executable,
is sufficient to guide developers. Here we
describe a new NL2pSQL task to generate
pSQL codes from natural language questions
on under-specified database issues, in short,
NL2pSQL. In addition, we define two new
metrics suitable for the proposed NL2pSQL
task, Canonical-BLEU and SQL-BLEU, in-
stead of the conventional BLEU. With a base-
line model using sequence-to-sequence archi-
tecture integrated with denoising autoencoder,
we confirm the validity of our task. Experi-
ments show that the proposed NL2pSQL ap-
proach yields well-formed queries (up to 43%
more than a standard Seq2Seq model). Our
code and datasets are publicly available at http:
//github.com/clovaai/nl2psql.

1 Introduction

Converting natural-language questions to SQL
codes (NL2pSQL) is an active area of research
in natural language processing. However, earlier
work (Hemphill et al., 1990; Brad et al., 2017;
Zelle and Mooney, 1996; Tang and Mooney, 2000;
Popescu et al., 2003; Lawrence and Riezler, 2016;
Li and Jagadish, 2014; Roy et al., 2013; Yagh-
mazadeh et al., 2017; Zhong et al., 2017; Yu et al.,
2018c; Finegan-Dollak et al., 2018) mainly fo-
cused on fully specified questions where the given

'https://www.stackoverflow.com

question and the table can be uniquely answered
by a generated SQL query. For example, a ques-
tion such as “who is the manufacturer for the order
year 1998?” can only be uniquely answered when
the table that can answer the question is attached
to the question. This requires the generated SQL
query to be executable, in order to verify its cor-
rectness.

Meanwhile, real-life NL2pSQL questions
from developer forums such as Stack Over-
flow (SO) (StackOverflow, 2018) are mostly
under-specified to generate an executable answer.
Actual questions deal with more diverse issues,
including table creation, backup, or performance,
and often present with a less detailed context
(such as missing table name or schema). For
example, a SO question’ such as “How to reset
AUTO_INCREMENT in MySQL?” can only be
answered by a non-executable template “ALTER
TABLE [tablename] AUTO_INCREMENT =
17, where human developers are expected to
read and then feed the missing context. We
call these questions Under-specified NL2pSQL,
distinguished from the conventional NL2pSQL
task on fully specified questions.

Our key contribution is to address 1) the novel
problem of generating human-readable pseudo
SQL code to diverse ranges of under-specified de-
veloper questions with our own curated dataset
and to propose 2) a new approach as well as 3)
evaluation metrics suitable for the proposed task.
Our dataset contains crawled posts in SO between
the year of 2008 and 2017. The proposed task ad-
dresses the following new opportunities and chal-
lenges.

First, our new dataset covers diverse scenarios
with 362 distinct SQL keywords, such as USING,
UNIQUE, SELECT, UPDATE, TRUNCATE, etc,

*https://stackoverflow.com/questions/8923114

2603

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 26032613,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics

http://github.com/clovaai/nl2psql
http://github.com/clovaai/nl2psql
https://www.stackoverflow.com
https://stackoverflow.com/questions/8923114

unlike specified scenarios such as data lookup us-
ing simple SELECT queries. Meanwhile, 19% of
the answers in SO do not contain the SELECT key-
word at all.

Second, we eliminate the requirement of a gen-
erated code to be executable, for which we pro-
pose new evaluation metrics without such a re-
quirement. An existing metric is lexical compar-
isons with the human-generated templates using
BLEU scores (Papineni et al., 2002). This metric
based on counting matching n-gram may penalize
mismatches in non-essential tokens such as vari-
able names (Lin et al., 2018; Zhong et al., 2017),
while mismatches of SQL keywords should not be
tolerated.

Our contribution includes the following:

e Dataset: We publicly release the NL2pSQL
dataset containing 1,244 pairs as well as the
denoising dataset for NL2pSQL containing
406,384 pairs.>

o NL2pSQL: We propose an end-to-end natu-
ral NL2pSQL model without the restriction
of an executable SQL query trained and eval-
uated for under-specifed questions. Exist-
ing sequence-to-sequence models are known
to generate repetitive tokens, but our de-
noising autoencoder can effectively fix errors
in SQL statements towards readable codes.
Our model performs a two-step translation by
cascading two sequence-to-sequence models,
one for generating initial SQL statements
from natural language input, and the other to
fix ill-formed SQL statements.

e Evaluation metric: While existing
NL2pSQL metrics penalize the mismatch of
any terms, we propose novel metrics allow-
ing the mismatches for non-essential terms,
yet requiring matches for important SQL
keyword: Specifically, Canonical-BLEU
abstracts the identifier names of the SQL
statements before calculating the BLEU
scores while SQL-BLEU calculates the
BLEU scores using only the SQL keywords.
Different forms of SQL queries may exist for
a given natural language, and we note that no
single metric is capable to accurately discern
one form from the other. Thus, two proposed
metrics complement each other.

3https://github.com/clovaai/nl2psql

2 Related Work

Natural Language to SQL. Bridging the gap
between natural language and SQL queries has
been a long-studied area (Warren and Pereira,
1982; Popescu et al., 2003, 2004; Li et al., 2006;
Giordani and Moschitti, 2012). With the emer-
gence of deep learning, neural network-based ap-
proaches have gained popularity including mod-
els using sequence-to-sequence and reinforcement
learning (Zhong et al., 2017; Xu et al., 2018; Iyer
et al., 2017; Dong and Lapata, 2016; Yu et al.,
2018a). These models assume fully-specified
questions and require human-annotated executable
SQL queries for training and evaluation. Thus,
they are not applicable to under-specified ques-
tions, which are the majority of issues in real-
world software developer forums.

An alternative approach is designing semantic
parsers, to exploit rich prior knowledge in the
form of features and grammars (Zettlemoyer and
Collins, 2005). It aims at mapping natural lan-
guage utterances to an executable logical form
such as SQL. They require rich resources — in the
form of either grammars or training data to ex-
tract such grammars. As existing semantic parsers
on SQL build on pairs of SQL and their execu-
tion results, which cannot exist in our problem
context (Xu et al., 2018; Zhong et al., 2017; Sun
et al., 2018; Yu et al., 2018c,b) of under-specified
questions, we adopt a generative approach in our
model.

Program Synthesis Program synthesis or au-
tomatic code generation is a relatively new field
and has gained much attention lately. In previ-
ous work (Ling et al., 2016; Rabinovich et al.,
2017; Yin and Neubig, 2017; Balog et al., 2017;
Murali et al., 2018), the generated code is tar-
geted at programming languages such as Java
and Python, or they used a reduced specifica-
tion such as a domain-specific language (DSL).
Meanwhile, Beltramelli utilized GUI screenshots
to generate markup language codes (Beltramelli,
2017). Our work differs in the sense that we are
not constrained to a reduced specification but deal
with a new domain of SQL statements, instead of
markup languages or fully-fledged programming
languages such as Java and Python.

Denoising and Program Repair Denoising is a
popular research area in computer vision (Buades
et al., 2005; Elad and Aharon, 2006; Dabov et al.,
2007; Zhang et al., 2017; Meiniel et al., 2018) and

2604

https://github.com/clovaai/nl2psql

natural language processing (Kouno et al., 2015;
Napoles et al., 2017). In software engineering, de-
noising tasks focus on bug fixing in fully-fledged
programming languages such as Java and C (Long
and Rinard, 2015; Mechtaev et al., 2016; Gupta
et al., 2017). Our work is different in that we
are combining the denoising aspect into the auto-
generated SQL queries to complement the limita-
tion of neural generation, which has not been pre-
viously considered.

3 Proposed Approach
3.1 NL2pSQL Dataset

To obtain human-written pseudo SQL statements
with their corresponding natural language descrip-
tion, we turn to Stack Overflow (SO). We use the
public SO data from the Stack Exchange Data
Dump website for convenience purposes as the
data are already structured in an XML form, e.g.,
‘Posts.xml’, for easy extraction. Our goal is to cu-
rate question and code pairs: For example, in the
SO Question 6308594, # the natural language in-
put is “how can I copy data from one column to
another in the same table”, and the code is “up-
date table set columnB = columnA”.

In particular, we collect all the answers where
they have a single code block and their corre-
sponding questions are labeled with an SQL tag
from ‘Posts.xml’. Note that this xml file contains
all the SO questions and answers since its estab-
lishment from August 2008 to September 2017.
We also used the data from ‘Postlinks.xml’ (de-
scribed in the later paragraph).

A code block can contain multiple lines of
codes. We observed that indentation for code read-
ability made numerous SQL statements be repre-
sented with multiple lines. A SQL statement in-
dented with a different style will have a trivial
effect when being read and executed by a SQL
parser. Thus, we transformed all the multi-line
SQL statements into a single line by replacing the
line break with a white space. In this study, we
only consider the SQL statement with a maximum
token (delimited by a white space) length of 100.

Among questions with SQL answers, we avoid
error debugging questions but focus on implemen-
tation questions with code answers. To this end,
we first collect all the QA pairs tagged with SQL.
We then extract the title from the QA pairs for

*https://stackoverflow.com/questions/6308594

classifying the implementation questions, as the ti-
tle description has been reported as sufficient (Iyer
et al., 2016). We only keep QA pairs where their
question titles start with “how”,> and not contain-
ing the following keywords bug, error, fix within
the title content to exclude questions on error de-
bugging. We manually inspected these QA pairs
to ensure all of them to be implementation-related
questions. As a result, 1,225 QA pairs in total
were found.

Another issue is redundancy: ‘Postlinks.xml’
may also contain recurring question pairs from
SO, asking the same questions in lexically differ-
ent forms (or paraphrased) (Chen and Kim, 2015).
We found 19 such recurring questions, and we
union them to the previously mentioned 1,225 QA
pairs. A total of 1,244 implementation question
QA pairs were collected.

We observed that the queries in our dataset
mostly involve complex conditions such as the
combination of multiple joined tables with order-
ing and grouping clauses that are not supported
by existing NL2pSQL approaches. A majority
of the natural text contains 11 to 40 tokens, with
SQL queries containing 11 and 15 tokens. To gain
more insights on the difficulty of SQL queries,
we measured Halstead complexity metrics (Hal-
stead et al., 1977) on the training, development,
and test sets and found most queries fall under the
complexity score of 0-5 and well-split with near-
identical distributions across the three splits.

3.2 Model: NL2pSQL with Denoising

While semantic parsing approaches require the
machine-executable code for training (as outlined
in Section 2), we focus on a new generative model
without executability requirements for our pro-
posed scenario. Essentially, our model consists of
two layers of autoencoder architecture (Figure 1).
The first layer is for generating SQL code given a
natural language as input (NL2pSQL) through an
autoencoder. The input to the first autoencoder is
the word embedding of the natural language.
However, this model suffers a well-known prob-
lem of low-quality generation, such as token rep-
etitions (Holtzman et al., 2018), or “ill-formed”.
Though our approach does not require a code seg-
ment to be machine-executable, generated codes

SWe are aware that the same intention can be paraphrased,
and we can use paraphrased patterns to increase recall (and
the data size). However, we focus on maintaining a high-
precision set to start with.

2605

https://stackoverflow.com/questions/6308594

Decoder e I | I Il] [Je—{ Je—{ Je—{ Je— Je—
S T T T

[
insert into tablel (1co|umn1 , column2) select date_time : : date , date_time : : time from stud ;

[erermessascos |
Encoder —

ﬂ‘H.HAHAH] e T ey B e ¥ e B e
esesooes) S oo

COCOCaCCd = s s N
rr 1t 11

insert into tablel (columnl, column2) select date_time : : date , date_time : : time from stud ;

- Denoising
\ Decoder

insert into tablel (columnl, column2) select date_time, date frdm dual;

Ill-Formed SQL Statement

[Denoised Generated SQL Code J Well-Forfned SQL Statement
Denoising
Encoder

how to copy or update from one table to another table

Natural Language

Figure 1: Overview of NL2pSQL with Denoising Autoencoder. Our model performs a two-step translation by
cascading two sequence-to-sequence models. The input layers are the natural-language word embeddings in the 1
autoencoder and the SQL statement (generated by the first autoencoder) word embeddings in the 2" autoencoder.

should be sufficiently “well-formed” to ensure
human readablity. For example, a generated
code with repetitive tokens will be considered
ill-formed and transformed into its well-formed
counterpart (or, denoising). Our contribution is
thus to denoise the ill-formed queries by employ-
ing a subsequent autoencoder architecture. The in-
put to the second autoencoder is the word embed-
dings of the generated SQL statements from the
first autoencoder. This denoising functionality is
included in the second layer with the goal of pro-
ducing well-formed SQL statements.

For training the denoiser, we propose to synthe-
size a pair of ill- and well-formed SQL statements
from the given dataset: <a well-formed SQL state-
ment, an ill-formed SQL statement> as the in-
put to the denoising autoencoder module. For-
mally, we define a well-formed SQL statement as a
valid SQL statement recognized by an SQL parser
whereas an ill-formed SQL statement is detected
as an erroneous SQL statement construct.

We first collect well-formed SQL statements
among SQL statements written by developers in
SO using MySQL parser (GuduSoftware, 2018),
as MySQL is the most popular SQL dialect among
developers (StackOverflowSurvey, 2018). Next,
we generate its ill-formed counterpart, by perturb-
ing each of the collected well-formed SQL state-
ments. Specifically, we randomly decide to inject
into or remove from the well-formed SQL state-
ment a token for k iterations to generate multi-
ple ill-formed statements for a given well-formed
SQL statement. In our model, we set k to be four.

To the best of our knowledge, this is the first

NL2pSQL model that is not restricted to the ex-
ecutability from specified questions. This work
is also the first in attempting to fix (denoise) ill-
formed SQL statements through a neural network-
based autoencoder architecture.

3.3 Evaluation Metrics

To evaluate the generated SQL statements, we first
check if the generated SQL statements are well-
formed (Section 3.3.1). In addition, we propose
two new BLEU variants. Previous studies have re-
ported that the BLEU score may be inappropriate
in measuring the correctness of the generated code
against the target code (Lin et al., 2018; Zhong
et al., 2017). This is because a generated code
may be written differently but still perform the in-
tended function. The first example in Table 6 illus-
trates this problem. The generated SQL statement
performs the semantics as required in the natural
language but is structurally different as compared
to the ground truth (GT). By using the vanilla
BLEU, it produces a much heavily penalized score
of 0.065. Thus, in our study, we use two modified
versions of BLEU, namely Canonical-BLEU and
SQL-BLEU, as will be described in Section 3.3.2.

3.3.1 Well-Formed SQL Statements

To evaluate the effectiveness of our denoising au-
toencoder, we compare the relative number of
well-formed SQL statements between the gen-
erated SQL statements before and after denois-
ing. Whether a particular SQL statement is well-
formed is determined by using a SQL parser.

2606

3.3.2 Canonical-BLEU and SQL-BLEU

Here, we first motivate the need for introduc-
ing two new BLEU variants, namely Canonical-
BLEU and SQL-BLEU, before describing them in
more detail. Canonical-BLEU first abstracts the
identifiers of the SQL statement before calculating
the BLEU score, while SQL-BLEU only considers
the SQL keywords within the SQL statement when
computing the BLEU score.

We note that two queries with the same seman-
tics may have syntactically different forms. For
example, a join statement (S1) such as “select
a.car from a,b where a.id=b.id” can be equiva-
lent to a nested select statement (S2) such as “se-
lect a.car from a where a.id in (select b.id from
b where b.name="Mary’)”. When S1 is gener-
ated and the ground truth is a similar join state-
ment, it will have a correct and high SQL-BLEU
score, yet having lower computing complexity.
When the ground truth is similar to S2, SQL-
BLEU and Vanilla BLEU would penalize more
heavily than our Canonical-BLEU. In this respect,
both SQL-BLEU and Canonical-BLEU comple-
ment each other and should be used together.

Canonical-BLEU Generated SQL statements
may have different identifiers such as variable
and table names, as compared to the original
(ground truth) SO SQL statements. The differ-
ence in the identifiers’ name between the gener-
ated SQL statements and the ground truth should
not be heavily penalized if their SQL forms are
semantically the same. To mitigate this issue, we
first “canonicalize” all the identifier names (e.g.,
MY _COLUMN) into indexed placeholders (e.g.,
var_1). This transformation is performed both on
the ground truth SQL statements and the generated
SQL statements, and their BLEU scores are calcu-
lated. We call this Canonical-BLEU.

SQL-BLEU In a SQL statement, several words
are considered keywords that serve as particular
functions. For example, SELECT and UPDATE
are both keywords in the SQL language. SELECT
is used for retrieving a record from a relational
database table whereas UPDATE is used to modify
the content of a record. In SO, developers are free
to adopt and use different column or table names.
However, despite that, if the SQL code is about
the retrieval of records, there should have a SE-
LECT keyword within the SQL statement. Fur-
thermore, we analyze the syntactically correct an-
swers from SO between the period of 2008 and

2017 and found that 362 distinct SQL keywords
(e.g., YEAR, DATABASES, USING, UNIQUE, SE-
LECT, UPDATE, TRUNCATE, etc) are used, and
19% of the answers (that are well-formed) do not
contain the SELECT keyword. We also found that
multiple different variations of retrieval-type an-
swers (i.e., 348 different keywords are used to-
gether with SELECT) use different combinations
of keywords such as WHEN, EXIST, INNER JOIN,
IN, GROUP BY, etc. Thus, we decided to use SQL
keywords as another form of measure.

We first transform the generated SQL state-
ments into their token types using a SQL parser.
Each word will have its corresponding token type.
For example, the word SELECT will be tagged
as a keyword by the SQL parser. We remove all
words that are non-keywords and only those words
tagged as keywords are left in the SQL statements
(we preserve their word ordering) to calculate the
BLEU score. This transformation is performed
both on the ground truth SQL code as well as the
generated SQL statements and their BLEU scores
are calculated. We call this SQL-BLEU.

4 Experiment Setup

4.1 Data Description

The used dataset is randomly split into train, dev
and test sets in the ratio 60:20:20 to be mutual ex-
clusive.

4.2 Baseline and Backbone Models

We stress that our work is focused on under-
specified NL2pSQL and is designed for users to
read/adjust the missing context for their specific
usage. This is the first work on under-specified
NL2pSQL and is mostly a resource and new prob-
lem/metric definition paper. Note that existing
NL2pSQL work is all fully-specified and cannot
be used for comparison as they involve semantic
parsing and query execution on a valid database
schema, which is absent in our context. In addi-
tion, making the system fully-specified is beyond
the scope of this paper.

We conduct experiments for NL2pSQL gen-
eration with denoising on two neural machine
translation models, Seq2Seq and CopyNet, which
have shown competitive performance on natural-
language-to-code translation (Lin et al., 2018). In
addition, we carry out experiments in both token
and character levels on both of these models, de-
noted as Seq2Seq(Token), Seq2Seq(Char), Copy-

2607

Net(Token), CopyNet(Char). For each model, we
perform a two-step translation by cascading two
sequence-to-sequence models, for pSQL genera-
tion and denoising respectively. Each model is
trained with the following hyperpameters: ©

e Seq2Seq (Cho et al., 2014) encodes questions
and decodes into queries using recurrent neu-
ral networks (RNNs). The encoder dimen-
sion is 200 by using a bi-directional RNN
with concatenation. The dimension of the
decoder RNN is set as 100. We optimized
our objective function with Adam (Kingma
and Ba, 2015), using the default momentum
hyperparameters. We set the initial learning
rate as 0.0001 and the mini-batch size as 32.
We also used variational RNN dropout (Gal
and Ghahramani, 2016) with a dropout rate of
0.4. During beam-search decoding (Hwang
and Chang, 2007), we set the beam size as
100, and we ran for 100 epochs to train the
model. For beam size, it has been reported
that a larger beam size will lead to a higher
translation quality at the expense of the de-
coder speed (Freitag and Al-Onaizan, 2017).
We wanted to find a balance between trans-
lation quality and decoding speed. We tested
different beam sizes and an entire decoding
process to generate a SQL statement takes
only a few seconds when the beam size is set
to 100.

e CopyNet (Gu et al., 2016) extends the model
above, to selectively “copy” some input se-
quence into output, using the same hyperpa-
rameters discussed above.

e The information retrieval (IR)-based base-
line is a Lucene-based code retrieval tool,
widely adopted for code search such as
Sourcerer (Linstead et al., 2009). It retrieves
top-3 matches, based on answer titles, match-
ing the given question.

All the experiments were performed based on
NAVER Smart Machine Learning (NSML) (Kim
et al., 2018; Sung et al., 2017).

SFollowing description is for generation, and when the
same model is used for denoising, we make a minor change:
mini-batch size (set as 16 rather than 32), and the beam size
(set as 10 instead of 100), due to a relatively large size of
the dataset. Character-level encoding for denoising is unre-
ported, as it is empirically inferior to that of token-level, as
argued in prior work (Lin et al., 2018) as well.

5 Results

This section shows the quantitative (Sections 5.1
and 5.2) as well as qualitative analysis (Sec-
tion 5.3) from our experiments.

5.1 Well-Formed SQL Statements

Table 1 shows the change in the number of SQL
statements determined as well-formed by the SQL
parser, after going through our denosing autoen-
coder module trained with a Seq2Seq and a Copy-
Net model.

Our module certainly increases the number of
well-formed SQL statements. For example, when
paired with a Seq2Seq denoising autoencoder for
the top-1 prediction, the number of well-formed
statements increases from 47 to 66 (19% increase).
Such increase ranges from 12% to 19%, from 14%
to 19%, from 30% to 43%, and from 0% to 7%,
in Seq2Seq (Token), CopyNet (Token), Seq2Seq
(Char), and CopyNet (Char), respectively. When
paired with a CopyNet Denoising autoencoder,
such increase is less significant. When comparing
token- and character-level generation after denois-
ing, we can see that token-level generation shows
higher increase, as shown in bold.

5.2 Comparison of Canonical and
SQL-BLEU

Here, we report the mean scores of both
Canonical-BLEU and SQL-BLEU over all the
generated SQL statements in the test set (includ-
ing their denoised version) using the Seq2Seq and
CopyNet autoencoder models in both the token
and character levels.

5.2.1 Mean SQL-BLEU

Tables 2 and 3 show the changes in the mean
SQL-BLEU scores on the first three generated
SQL statements, after using denoising autoen-
coders trained with a Seq2Seq and a CopyNet
model, respectively.

For example, when paired with a Seq2Seq de-
noising autoencoder for the top-1 prediction, the
mean SQL-BLEU scores has a negligible de-
crease of 0.01 (from 0.28 to 0.27). Such de-
crease ranges from 0.01 to 0.01, from 0.01 to
0.01, from 0.02 to 0.03, and from 0.02 to 0.02,
in Seq2Seq(Token), CopyNet (Token), Seq2Seq
(Char), and CopyNet(Char), respectively. When
paired with a CopyNet Denoising autoencoder,
we observed similar negligible decrease in the

2608

Table 1: % of well-formed, generated SQL queries using a Seq2Seq/CopyNet & after denoising autoencoder
models. P1, P2, and P3 correspond to the first three predictions. Columns (2, 4, 6, 8) & (3, 5, 7, 9) show the
increased in well-formed queries after going through a Seq2Seq & CopyNet denoising autoencoder respectively.

P1 P2 P3 Top 3 (%)
Seq2Seq | CopyNet | Seq2Seq | CopyNet | Seq2Seq | CopyNet | Seq2Seq | CopyNet
Seq2Seq (Token) | 47 —66 | 47 —50 | 37 —49 | 37 —-40 | 33 —52 | 33 —35 | 59—80 | 59 — 64
CopyNet (Token) | 49 —65 | 49 —-51 | 40 —+54 | 40 40 | 33 —52 | 33 —+33 | 61 —80 | 61 — 64
Seq2Seq (Char) | 31 —+74 | 31 —+35 | 29—64 | 29 31 | 33 —-63 | 33 —+33 | 4079 | 40— 43
CopyNet (Char) | 29 =35 | 29—+ 10 | 27 —34 | 27— 15 | 32 —+32 | 32— 14 | 40— 45 | 40 — 31

Table 2: Negligible change in mean SQL-BLEU score

& changes in delta after Seq2Seq denoising in ().

P1

P2

P3

Seq2Seq (T)

0.28 (-0.01)

0.30 (-0.01)

0.29 (-0.01)

CopyNet (T)

0.30 (-0.01)

0.30 (-0.01)

0.28 (-0.01)

Seq2Seq (C)

0.26 (-0.03)

0.26 (-0.02)

0.26 (-0.02)

CopyNet (C)

0.18 (-0.02)

0.18 (-0.02)

0.17 (-0.01)

IR

0.29

0.29

0.27

Table 3: Negligible change in mean SQL-BLEU score
& changes in delta after CopyNet denoising in ().

P1

P2

P3

Seq2Seq (T)

0.28 (-0.01)

0.30 (-0.01)

0.29 (0.00)

CopyNet (T)

0.30 (-0.01)

0.30 (-0.01)

0.28 (0.00)

Seq2Seq (C)

0.26 (0.00)

0.26 (-0.01)

0.26 (-0.01)

CopyNet (C)

0.18 (-0.02)

0.18 (-0.02)

0.17 (-0.01)

IR

0.29

0.29

0.27

Table 4: Negligible change in mean Canonical-BLEU
score & changes in delta after Seq2Seq denoising in ().

P1 P2 P3

Seq2Seq (T) | 0.27 (0.00) | 0.31 (-0.01) | 0.31(0.00)

CopyNet (T) | 0.27 (0.00) | 0.30 (+0.01) | 0.31 (+0.01)

Seq2Seq (C) | 0.23 (-0.01) | 0.26 (-0.02) | 0.29 (-0.01)

CopyNet (C) | 0.29 (+0.02) | 0.30 (+0.02) | 0.30 (+0.03)
IR 0.23 0.23 0.24

Table 5: Negligible change in mean Canonical-BLEU
score & changes in delta after CopyNet denoising in ().

P1 P2 P3

Seq2Seq (T) | 0.27 (0.00) | 0.31 (+0.01) | 0.31 (+0.01)

CopyNet (T) | 0.27 (0.00) | 0.30 (+0.01) | 0.31(0.00)

Seq2Seq (C) | 0.23 (+0.01) | 0.26 (0.00) | 0.29 (-0.01)

CopyNet (C) | 0.29 (-0.01) | 0.30(0.00) | 0.30 (-0.01)
IR 0.23 0.23 0.24

mean SQL-BLEU after denoising. Compared to
IR approach, token level approaches mostly yield
higher SQL-BLEU scores.

5.2.2 Mean Canonical-BLEU

Table 4 and 5 show the change in the mean
Canonical-BLEU scores on the first three gener-
ated SQL statements, after using denoising au-

toencoders trained with a Seq2Seq and a CopyNet
model respectively.

For example, when paired with a Seq2Seq de-
noising autoencoder for the top-1 prediction, the
mean Canonical-BLEU scores has a negligible de-
crease in Seq2Seq (Token), from 0.00 to 0.01, or
0.01 decrease. Such decrease ranges from 0.00 to
0.02, from 0.00 to 0.01, from 0.01 to 0.02, and
from 0.02 to 0.03, in Seq2Seq(Token), CopyNet
(Token), Seq2Seq (Char), and CopyNet(Char), re-
spectively. When paired with a CopyNet Denois-
ing autoencoder, we observed similar negligible
decrease in the mean SQL-BLEU after denois-
ing. Compared to the IR approach, we observed
that most of the generative approaches yield higher
Canonical-BLEU scores.

In Section 5.1, we previously reported up to
43% more well-formed SQL statements in the
denoised version than the non-denoised version.
This suggests that the two metrics (Well-Formed
SQL Statements and the two variants of BLEU —
Canonical BLEU and SQL BLEU) we proposed
are complementary, in that Canonical-BLEU and
SQL-BLEU alone cannot distinguish well-formed
SQL statements. We also note that for denoising,
while enhancing one metric, it does not hurt an-
other.

5.3 Qualitative Analysis

Table 6 shows the output examples generated by
our models in the unseen data (the test set), in-
cluding the denoised version. We only show the
generated outputs from the Seq2Seq model as they
yield the best results in our experiments. Each ex-
ample consists of the natural language input, the
ground truth, the top prediction of the generated
output from the Seq2Seq model, and its denoised
version.

The first example is about copying or updat-
ing from one table to another. In the generated
SQL statement, it performs the intended copying
function but is syntactically incorrect in the use of

2609

date_time. The denoised version fixes it by replac-
ing date_time : : date and date_time : : time with
proper column names. Furthermore, the ground
truth is coupled with comments, and its SQL state-
ment is much longer than the generated version.
The retrieved statement by the IR baseline has
similar semantics on observing the same type of
an insertion query with our approach. Although
both of them are similar, the IR baseline appears
more complicated as it contains more columns for
insertion and a nested table structure. We believe
that the generated SQL statement is a much better
choice in this case.

The second example is about counting the num-
ber of rows. The generated SQL statement shows
the counting-related code. Interestingly, the IR ap-
proach produces the exact query. In the last ex-
ample, it is about inserting a record from another
table. Similar to the IR approach, the generated
SQL statement is able to churn out a query per-
forming an insertion operation from another table.
Both generated SQL statements from the last two
examples do not contain any syntax errors, and
the denoised autocoders did not change the SQL
statements. In the last example, it is difficult to
include “top500” which requires verbal explana-
tion of defining one’s own function in the “order
by” clause. This part was omitted, but all the other
semantics are fully preserved.

6 Conclusions

This paper addressed the problem of gen-
erating human-readable pseudo SQL queries
from natural-languge questions without code-
executability restriction, and propose a new
dataset. Despite excluding executability, our task
covers much more diverse issues including table
manipulation and performance-related problems
beyond simple table lookup. This coverage allows
our task to help software engineers to deal with
various practical implementation and operation is-
sues. In addition, we describe a new NL2pSQL
model and two evaluation metrics suitable for
dealing with our task. Our result shows that
adding a denoising autoencoder module enables
our model to generate a more number of well-
formed queries, to complement a known weakness
of neural code generation.

Table 6: Generated examples

NL how to copy or update from one table to
another table
GT - - 1) insert new record insert into

old_table (id , column) select n . id ,
n . column from new_table n left join
old_table o on n . id = o . id where o
. id is null - - 2') update existed record
update o set column =n . column from
old_table o join new_table nonn . id =
o.id

insert into table1 (columnl , column?2)
select date_time : : date , date_time : :
time from stud ;

Seq2Seq| insert into tablel (columnl , column?2)

Seq2Seq

(D) select date_time , date from dual ;

IR insert into testl . dbo . bed (coll , col2
, col3) select coll , col2 , col3 from test
. dbo . abc

NL how can i count the number of rows in
a database for different time periods

GT declare @ interval int set @ interval =

5 select datepart (hh , datetimecolumn
) , datepart (mi , datetimecolumn) /
@ interval * @ interval , count (*)
from thetable group by datepart (hh ,
datetimecolumn) , datepart (mi , date-
timecolumn) / @ interval * @ interval
select count (*) from (select distinct *
from table_name) t

Seq2Seq

Seq2Seq| select count (*) from (select distinct *

(D) from table_name) t

IR select count (*) from (select distinct *
from table_name) t

NL how can i select top 500 rows from ta-
blel and insert them to table2

GT insert into emptytable select top 500 *

from populatedtable order by what - -
need this to define top 500

insert into destination (coll , col2, col3
, cold , col5) select * static_valuel ’ ,’
static_value2 ’ , col6 , col7 , col8 from
source_table

Seq2Seq| insert into destination (coll , col2, col3
(D) , col4 , col5) select * static_valuel ’ ,’
static_value2 ’ , col6 , col7 , col8 from
source_table

IR insert into temp (time , name) select
getdate () , name from name

Seq2Seq

7 Acknowledgement

Hwang was partly supported by IITP funded by
MSIT (2017-0-0177; XAD).

2610

References

Matej Balog, Alexander L Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2017.
Deepcoder: Learning to write programs. In Inter-
national Conference on Learning Representations.

Tony Beltramelli. 2017. pix2code: Generating code
from a graphical user interface screenshot. arXiv
preprint arXiv:1705.07962.

Florin Brad, Radu Iacob, Ionel Hosu, and Traian Rebe-
dea. 2017. Dataset for a neural natural language
interface for databases (nnlidb). arXiv preprint
arXiv:1707.03172.

Antoni Buades, Bartomeu Coll, and J-M Morel. 2005.
A non-local algorithm for image denoising. In Com-
puter Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol-
ume 2, pages 60-65. IEEE.

Fuxiang Chen and Sunghun Kim. 2015. Crowd de-
bugging. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 320-332, New York, NY,
USA. ACM.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724—
1734. Association for Computational Linguistics.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik,
and Karen Egiazarian. 2007. Image denoising
by sparse 3-d transform-domain collaborative fil-
tering. [EEE Transactions on image processing,
16(8):2080-2095.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33-43, Berlin, Germany. Association for Computa-
tional Linguistics.

Michael Elad and Michal Aharon. 2006. Image denois-
ing via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image
processing, 15(12):3736-3745.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation.
arXiv preprint arXiv:1702.01806.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent

neural networks. In Advances in neural information
processing systems, pages 1019-1027.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to sql queries with generative
parsers discriminatively reranked. Proceedings of
COLING 2012: Posters, pages 401-410.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631-1640. Association for Computational
Linguistics.

GuduSoftware. 2018. Sql parse, analyze, transform
and format all in one.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish
Shevade. 2017. Deepfix: Fixing common c lan-
guage errors by deep learning. In AAAI, pages
1345-1351.

Maurice H Halstead et al. 1977. Elements of Software
Science (Operating and programming systems se-
ries). Elsevier Science Inc., New York, NY.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018.
Learning to write with cooperative discriminators.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1638—1649. Association for
Computational Linguistics.

Seung-won Hwang and Kevin Chang. 2007. Probe
minimization by schedule optimization: Supporting
top-k queries with expensive predicates. In IEEE
TKDE.

Srinivasan Iyer, loannis Konstas, Alvin Cheung,
Jayant Krishnamurthy, and Luke Zettlemoyer. 2017.
Learning a neural semantic parser from user feed-
back. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 963-973, Vancouver,
Canada. Association for Computational Linguistics.

Srinivasan lyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 2073-2083. Association for Computational
Linguistics.

Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong
Kim, Heungseok Park, Soeun Park, Hyunwoo Jo,
KyungHyun Kim, Youngil Yang, Youngkwan Kim,

2611

https://doi.org/10.1145/2786805.2786819
https://doi.org/10.1145/2786805.2786819
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://www.aclweb.org/anthology/P16-1004
http://www.aclweb.org/anthology/P16-1004
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
http://www.sqlparser.com/
http://www.sqlparser.com/
http://aclweb.org/anthology/P18-1152
http://aclweb.org/anthology/P17-1089
http://aclweb.org/anthology/P17-1089
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195

et al. 2018. Nsml: Meet the mlaas platform
with a real-world case study. arXiv preprint
arXiv:1810.09957.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization.

Kazuhei Kouno, Hiroyuki Shinnou, Minoru Sasaki,
and Kanako Komiya. 2015. Unsupervised do-
main adaptation for word sense disambiguation us-
ing stacked denoising autoencoder. In Proceedings
of the 29th Pacific Asia Conference on Language,
Information and Computation: Posters, pages 224—
231.

Carolin Lawrence and Stefan Riezler. 2016. Nlmaps:
A natural language interface to query open-
streetmap. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: System Demonstrations, pages 6—10.

Fei Li and Hosagrahar V Jagadish. 2014. Nalir: an in-
teractive natural language interface for querying re-
lational databases. In Proceedings of the 2014 ACM
SIGMOD international conference on Management
of data, pages 709-712. ACM.

Yunyao Li, Huahai Yang, and HV Jagadish. 2006.
Constructing a generic natural language interface
for an xml database. In International Conference
on Extending Database Technology, pages 737-754.
Springer.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NI2bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation LREC 2018, Miyazaki
(Japan), 7-12 May, 2018.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Toma$ Kocisky, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
599-609. Association for Computational Linguis-
tics.

Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul
Rigor, Cristina Lopes, and Pierre Baldi. 2009.
Sourcerer: mining and searching internet-scale soft-
ware repositories. Data Mining and Knowledge Dis-
covery, 18(2):300-336.

Fan Long and Martin Rinard. 2015. Staged program
repair with condition synthesis. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, pages 166—-178. ACM.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoud-
hury. 2016. Angelix: Scalable multiline program
patch synthesis via symbolic analysis. In Software
Engineering (ICSE), 2016 IEEE/ACM 38th Interna-
tional Conference on, pages 691-701. IEEE.

William Meiniel, Jean-Christophe Olivo-Marin, and
Elsa D Angelini. 2018. Denoising of microscopy
images: A review of the state-of-the-art, and a new
sparsity-based method. IEEE Transactions on Im-
age Processing, 27(8):3842-3856.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri,
and Chris Jermaine. 2018. Neural sketch learning
for conditional program generation. In International
Conference on Learning Representations.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. Jfleg: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 229-234. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311-318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. 2004. Modern
natural language interfaces to databases: Compos-
ing statistical parsing with semantic tractability. In
Proceedings of the 20th international conference on
Computational Linguistics, page 141. Association
for Computational Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces,
pages 149-157. ACM.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1139-1149. Association for Computational Linguis-
tics.

Senjuti Basu Roy, Martine De Cock, Vani Mandava,
Swapna Savanna, Brian Dalessandro, Claudia Per-
lich, William Cukierski, and Ben Hamner. 2013.
The microsoft academic search dataset and kdd cup
2013. In Proceedings of the 2013 KDD cup 2013
workshop, page 1. ACM.

StackOverflow. 2018. Stack overflow.

StackOverflowSurvey. 2018.
2018.

Stack overflow survey

Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong
Cao, Xiaocheng Feng, Bing Qin, Ting Liu, and Ming
Zhou. 2018. Semantic parsing with syntax- and
table-aware sql generation. In Proceedings of the

2612

https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://openreview.net/forum?id=HkfXMz-Ab
https://openreview.net/forum?id=HkfXMz-Ab
http://aclweb.org/anthology/E17-2037
http://aclweb.org/anthology/E17-2037
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://stackoverflow.com/
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
http://aclweb.org/anthology/P18-1034
http://aclweb.org/anthology/P18-1034

56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
361-372. Association for Computational Linguis-
tics.

Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang,
Jingwoong Kim, Leonard Lausen, Youngkwan Kim,
Gayoung Lee, Donghyun Kwak, Jung-Woo Ha,
etal. 2017. Nsml: A machine learning platform that
enables you to focus on your models. arXiv preprint
arXiv:1712.05902.

Lappoon R Tang and Raymond J Mooney. 2000. Au-
tomated construction of database interfaces: Inte-
grating statistical and relational learning for seman-
tic parsing. In Proceedings of the 2000 Joint SIG-
DAT conference on Empirical methods in natural
language processing and very large corpora: held in
conjunction with the 38th Annual Meeting of the As-
sociation for Computational Linguistics-Volume 13,
pages 133-141. Association for Computational Lin-
guistics.

David HD Warren and Fernando CN Pereira. 1982. An
efficient easily adaptable system for interpreting nat-
ural language queries. Computational Linguistics,
8(3-4):110-122.

Xiaojun Xu, Chang Liu, and Dawn Song. 2018. SQL-
Net: Generating structured queries from natural lan-
guage without reinforcement learning. ICLR.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Type-and content-driven syn-
thesis of sql queries from natural language. arXiv
preprint arXiv:1702.01168.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. Typesql: Knowledge-
based type-aware neural text-to-sql generation.
arXiv preprint arXiv:1804.09769.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018b. Syntaxsqglnet: Syntax tree networks for com-
plex and cross-domaintext-to-sql task.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018c. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence, pages 1050-1055.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial

grammars. In Proceedings of the Twenty-First Con-
ference on Uncertainty in Artificial Intelligence,
UAT 05, pages 658-666, Arlington, Virginia, United
States. AUAI Press.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng,
and Lei Zhang. 2017. Beyond a gaussian de-
noiser: Residual learning of deep cnn for image de-
noising. IEEE Transactions on Image Processing,
26(7):3142-3155.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

2613

https://openreview.net/forum?id=SkYibHlRb
https://openreview.net/forum?id=SkYibHlRb
https://openreview.net/forum?id=SkYibHlRb
http://dl.acm.org/citation.cfm?id=3020336.3020416
http://dl.acm.org/citation.cfm?id=3020336.3020416
http://dl.acm.org/citation.cfm?id=3020336.3020416

