Answering Complex Open-domain Questions
Through Iterative Query Generation

Xiaowen Lin*" Leo Mehr*!
1 Computer Science Department

Peng Qi

Abstract

It is challenging for current one-step retrieve-
and-read question answering (QA) systems to
answer questions like “Which novel by the au-
thor of ‘Armada’ will be adapted as a feature
film by Steven Spielberg?” because the ques-
tion seldom contains retrievable clues about
the missing entity (here, the author). Answer-
ing such a question requires multi-hop reason-

Zijian Wang*!

Christopher D. Manning!

I Symbolic Systems Program
Stanford University
{penggi, veralin, leomehr, zijwang, manning}@cs.stanford.edu

Q: Which novel by the author of
~“Armada” will be adapted as a
feature film by Steven Spielberg?

A: Ready Player One

T
Armada (novel)
Armada is a science fiction novel by
Ernest Cline, ...

Ernest Cline

Ernest Christy Cline ... co-wrote the
screenplay for the film adaptation of
Ready Player One, directed by
Stephen Spielberg.

Search Results with queries derived from the

original question

Which novel by the author of “Armada” will be
adapted as a feature film by Steven Spielberg?
The collector

The Color Purple (film)
Kim Wozencraft

l novel by the author of “Armada”
Armada (novel
Author, Author (novel)
Armada

&
&

l Armada author
Armada
Armada Centre
Halley Armada

ing where one must gather information about
the missing entity (or facts) to proceed with
further reasoning. We present GOLDEN (Gold
Entity) Retriever, which iterates between read-
ing context and retrieving more supporting
documents to answer open-domain multi-hop
questions. Instead of using opaque and com-
putationally expensive neural retrieval models,
GOLDEN Retriever generates natural language
search queries given the question and available
context, and leverages off-the-shelf informa-
tion retrieval systems to query for missing en-
tities. This allows GOLDEN Retriever to scale
up efficiently for open-domain multi-hop rea-
soning while maintaining interpretability. We
evaluate GOLDEN Retriever on the recently
proposed open-domain multi-hop QA dataset,
HOTPOTQA, and demonstrate that it outper-
forms the best previously published model de-
spite not using pretrained language models
such as BERT.

1 Introduction

Open-domain question answering (QA) is an im-
portant means for us to make use of knowledge
in large text corpora and enables diverse queries
without requiring a knowledge schema ahead of
time. Enabling such systems to perform multi-
step inference can further expand our capability to
explore the knowledge in these corpora (e.g., see
Figure 1).

*Equal contribution, order decided by a random number
generator.

Figure 1: An example of an open-domain multi-hop
question from the HOTPOTQA dev set, where “Ernest
Cline” is the missing entity. Note from the search re-
sults that it cannot be easily retrieved based on merely
the question. (Best viewed in color)

Fueled by the recently proposed large-scale QA
datasets such as SQuAD (Rajpurkar et al., 2016,
2018) and TriviaQA (Joshi et al., 2017), much
progress has been made in open-domain question
answering. Chen et al. (2017) proposed a two-
stage approach of retrieving relevant content with
the question, then reading the paragraphs returned
by the information retrieval (IR) component to ar-
rive at the final answer. This “retrieve and read”
approach has since been adopted and extended in
various open-domain QA systems (Nishida et al.,
2018; Kratzwald and Feuerriegel, 2018), but it is
inherently limited to answering questions that do
not require multi-hop/multi-step reasoning. This
is because for many multi-hop questions, not all
the relevant context can be obtained in a single re-
trieval step (e.g., “Ernest Cline” in Figure 1).

More recently, the emergence of multi-hop
question answering datasets such as QAngaroo
(Welbl et al., 2018) and HOTPOTQA (Yang et al.,
2018) has sparked interest in multi-hop QA in the
research community. Designed to be more chal-
lenging than SQuAD-like datasets, they feature
questions that require context of more than one

2590

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 2590-2602,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics

document to answer, testing QA systems’ abili-
ties to infer the answer in the presence of multi-
ple pieces of evidence and to efficiently find the
evidence in a large pool of candidate documents.
However, since these datasets are still relatively
new, most of the existing research focuses on the
few-document setting where a relatively small set
of context documents is given, which is guaran-
teed to contain the “gold” context documents, all
those from which the answer comes (De Cao et al.,
2019; Zhong et al., 2019).

In this paper, we present GOLDEN (Gold En-
tity) Retriever. Rather than relying purely on the
original question to retrieve passages, the central
innovation is that at each step the model also uses
IR results from previous hops of reasoning to gen-
erate a new natural language query and retrieve
new evidence to answer the original question. For
the example in Figure 1, GOLDEN would first gen-
erate a query to retrieve Armada (novel) based on
the question, then query for Ernest Cline based on
newly gained knowledge in that article. This al-
lows GOLDEN to leverage off-the-shelf, general-
purpose IR systems to scale open-domain multi-
hop reasoning to millions of documents efficiently,
and to do so in an interpretable manner. Com-
bined with a QA module that extends BiDAF++
(Clark and Gardner, 2017), our final system out-
performs the best previously published system on
the open-domain (fullwiki) setting of HOTPOTQA
without using powerful pretrained language mod-
els like BERT (Devlin et al., 2019).

The main contributions of this paper are: (a)
a novel iterative retrieve-and-read framework ca-
pable of multi-hop reasoning in open-domain
QA;' (b) a natural language query generation
approach that guarantees interpretability in the
multi-hop evidence gathering process; (c) an ef-
ficient training procedure to enable query genera-
tion with minimal supervision signal that signifi-
cantly boosts recall of gold supporting documents
in retrieval.

2 Related Work

Open-domain question answering (QA) In-
spired by the series of TREC QA competitions,’
Chen et al. (2017) were among the first to adapt
neural QA models to the open-domain setting.

!Code and pretrained models available at https://
github.com/gipeng/golden-retriever
http://trec.nist.gov/data/gamain.html

They built a simple inverted index lookup with
TF-IDF on the English Wikipedia, and used the
question as the query to retrieve top 5 results for
a reader model to produce answers with. Recent
work on open-domain question answering largely
follow this retrieve-and-read approach, and focus
on improving the information retrieval component
with question answering performance in consider-
ation (Nishida et al., 2018; Kratzwald and Feuer-
riegel, 2018; Nogueira et al., 2019). However,
these one-step retrieve-and-read approaches are
fundamentally ill-equipped to address questions
that require multi-hop reasoning, especially when
necessary evidence is not readily retrievable with
the question.

Multi-hop QA datasets QAngaroo (Welbl
et al., 2018) and HOTPOTQA (Yang et al., 2018)
are among the largest-scale multi-hop QA datasets
to date. While the former is constructed around
a knowledge base and the knowledge schema
therein, the latter adopts a free-form question gen-
eration process in crowdsourcing and span-based
evaluation. Both datasets feature a few-document
setting where the gold supporting facts are pro-
vided along with a small set of distractors to ease
the computational burden. However, researchers
have shown that this sometimes results in game-
able contexts, and thus does not always test the
model’s capability of multi-hop reasoning (Chen
and Durrett, 2019; Min et al., 2019a). Therefore,
in this work, we focus on the fullwiki setting of
HOTPOTQA, which features a truly open-domain
setting with more diverse questions.

Multi-hop QA systems At a broader level, the
need for multi-step searches, query task decom-
position, and subtask extraction has been clearly
recognized in the IR community (Hassan Awadal-
lah et al., 2014; Mehrotra et al., 2016; Mehrotra
and Yilmaz, 2017), but multi-hop QA has only
recently been studied closely with the release of
large-scale datasets. Much research has focused
on enabling multi-hop reasoning in question an-
swering models in the few-document setting, e.g.,
by modeling entity graphs (De Cao et al., 2019)
or scoring answer candidates against the context
(Zhong et al., 2019). These approaches, however,
suffer from scalability issues when the number of
supporting documents and/or answer candidates
grow beyond a few dozen. Ding et al. (2019) ap-
ply entity graph modeling to HOTPOTQA, where

2591

https://github.com/qipeng/golden-retriever
https://github.com/qipeng/golden-retriever
http://trec.nist.gov/data/qamain.html

they expand a small entity graph starting from
the question to arrive at the context for the QA
model. However, centered around entity names,
this model risks missing purely descriptive clues
in the question. Das et al. (2019) propose a neu-
ral retriever trained with distant supervision to
bias towards paragraphs containing answers to the
given questions, which is then used in a multi-step
reader-reasoner framework. This does not funda-
mentally address the discoverability issue in open-
domain multi-hop QA, however, because usually
not all the evidence can be directly retrieved with
the question. Besides, the neural retrieval model
lacks explainability, which is crucial in real-world
applications. Talmor and Berant (2018), instead,
propose to answer multi-hop questions at scale by
decomposing the question into sub-questions and
perform iterative retrieval and question answering,
which shares very similar motivations as our work.
However, the questions studied in that work are
based on logical forms of a fixed schema, which
yields additional supervision for question decom-
position but limits the diversity of questions. More
recently, Min et al. (2019b) apply a similar idea to
HOTPOTQA, but this approach similarly requires
additional annotations for decomposition, and the
authors did not apply it to iterative retrieval.

3 Model

In this section, we formally define the prob-
lem of open-domain multi-hop question answer-
ing, and motivate the architecture of the proposed
GOLDEN (Gold Entity) Retriever model. We then
detail the query generation components as well as
how to derive supervision signal for them, before
concluding with the QA component.

3.1 Problem Statement

We define the problem of open-domain multi-hop
QA as one involving a question ¢, and S relevant
(gold) supporting context documents dy,...,dg
which contain the desired answer a.> These sup-
porting documents form a chain of reasoning nec-
essary to arrive at the answer, and they come from
a large corpus of documents D where |D| > S. In
this chain of reasoning, the supporting documents
are usually connected via shared entities or textual
similarities (e.g., they describe similar entities or

3In this work, we only consider extractive, or span-
based, QA tasks, but the problem statement and the proposed
method apply to generative QA tasks as well.

events), but these connections do not necessarily
conform to any predefined knowledge schema.

We contrast this to what we call the few-
document setting of multi-hop QA, where the
QA system is presented with a small set of
documents Dfey-doc = {d1,...,ds,d},...,dp},
where d},...,d}, comprise a small set of “dis-
tractor” documents that test whether the system
is able to pick out the correct set of supporting
documents in the presence of noise. This setting
is suitable for testing QA systems’ ability to per-
form multi-hop reasoning given the gold support-
ing documents with bounded computational bud-
get, but we argue that it is far from a realistic one.
In practice, an open-domain QA system has to lo-
cate all gold supporting documents from D on its
own, and as shown in Figure 1, this is often diffi-
cult for multi-hop questions based on the original
question alone, as not all gold documents are eas-
ily retrievable given the question.

To address this gold context discoverability
issue, we argue that it is necessary to move
away from a single-hop retrieve-and-read ap-
proach where the original question serves as the
search query. In the next section, we introduce
GOLDEN Retriever, which addresses this problem
by iterating between retrieving more documents
and reading the context for multiple rounds.

3.2 Model Overview

Essentially, the challenge of open-domain multi-
hop QA lies in the fact that the information need
of the user (¢ — a) cannot be readily satisfied by
any information retrieval (IR) system that models
merely the similarity between the question ¢ and
the documents. This is because the true informa-
tion need will only unfold with progressive rea-
soning and discovery of supporting facts. There-
fore, one cannot rely solely on a similarity-based
IR system for such iterative reasoning, because the
potential pool of relevant documents grows expo-
nentially with the number of hops of reasoning.
To this end, we propose GOLDEN (Gold En-
tity) Retriever, which makes use of the gold doc-
ument* information available in the QA dataset at
training time to iteratively query for more relevant
supporting documents during each hop of reason-
ing. Instead of relying on the original question as
the search query to retrieve all supporting facts,

“In HoTPOTQA, documents usually describe entities,
thus we use “documents” and “entities” interchangeably.

2592

Hop 1 Query

Which novel by the author of
“Armada” will be adapted as a
feature film by Steven Spielberg?
Paragraph Set 1
Armada (novel

Hop 2 Query

Answer Prediction

Q

Paragraph Set 2 l
Ernest Cline

Query W) Author, Author (novel) Query Cline (biology)
e (200 & —> Ready Player One
Generator 1 Armada Generator 2 Patsy Cline (album) ’
L LI Paragraph
L N Set
v search = ¢ search (9.9
novel Py the au’t.hor Y Ernest Cline searcl Y
of “Armada e N
WIKIPEDIA ‘WIKIPEDIA
The Free Encyclopedia The Free Encyclopedia

Figure 2: Model overview of GOLDEN Retriever. Given an open-domain multi-hop question, the model iteratively
retrieves more context documents, and concatenates all retrieved context for a QA model to answer from.

or building computationally expensive search en-
gines that are less interpretable to humans, we pro-
pose to leverage text-based IR engines for inter-
pretability, and generate different search queries
as each reasoning step unfolds. In the very first
hop of reasoning, GOLDEN Retriever is presented
the original question ¢, from which it generates
a search query ¢; that retrieves supporting docu-
ment dq.° Then for each of the subsequent rea-
soning steps (kK = 2,...,5), GOLDEN Retriever
generates a query g from the question and the
available context, (¢, dy, . .., di_1). This formula-
tion allows the model to generate queries based on
information revealed in the supporting facts (see
Figure 2, for example).

We note that GOLDEN Retriever is much more
efficient, scalable, and interpretable at retrieving
gold documents compared to its neural retrieval
counterparts. This is because GOLDEN Retriever
does not rely on a QA-specific IR engine tuned to
a specific dataset, where adding new documents
or question types into the index can be extremely
inefficient. Further, GOLDEN Retriever generates
queries in natural language, making it friendly to
human interpretation and verification. One core
challenge in GOLDEN Retriever, however, is to
train query generation models in an efficient man-
ner, because the search space for potential queries
is enormous and off-the-shelf IR engines are not
end-to-end differentiable. We outline our solution
to this challenge in the following sections.

3.3 Query Generation

For each reasoning step, we need to generate the
search query given the original question ¢ and

3For notational simplicity, d, denotes the supporting doc-
ument needed to complete the k-th step of reasoning. We also
assume that the goal of each IR query is to retrieve one and
only one gold supporting document in its top n results.

some context of documents we have already re-
trieved (initially empty). This query generation
problem is conceptually similar to the QA task in
that they both map a question and some context
to a target, only instead of an answer, the target
here is a search query that helps retrieve the de-
sired supporting document for the next reasoning
step. Therefore, we formulate the query genera-
tion process as a question answering task.

To reduce the potentially large space of possi-
ble queries, we favor a QA model that extracts
text spans from the context over one that gener-
ates free-form text as search queries. We therefore
employ DrQA’s Document Reader model (Chen
et al., 2017), which is a relatively light-weight re-
current neural network QA model that has demon-
strated success in few-document QA. We adapt it
to query generation as follows.

For each reasoning step k = 1,...,.5, given a
question ¢ and some retrieval context C} which
ideally contains the gold supporting documents
di,...,dr_1, we aim to generate a search query
qr, that helps us retrieve dj. for the next reasoning
step. A Document Reader model is trained to se-
lect a span from CY, as the query

qr = Gk(q) Ck)u

where G is the query generator. This query
is then used to search for supporting documents,
which are concatenated with the current retrieval
context to update it

Ck-i—l = Ck [IRn(qk)
where IR, (gx) is the top n documents retrieved
from the search engine using ¢, and C; = ¢.°
At the end of the retrieval steps, we provide g as
question along with C's as context to the final few-

%In the query result, the title of each document is delim-
ited with special tokens <t > and </t > before concatenation.

2593

Question Hop 1 Oracle Hop 2 Oracle
What government position was held by the woman who portrayed Corliss Archer in the Shirley Temple
Corliss Archer in the film Kiss and Tell? film Kiss and Tell
Scott Parkin has been a vocal critic of Exxonmobil and another cor- Scott Parkin Halliburton

poration that has operations in how many countries?

Are Giuseppe Verdi and Ambroise Thomas both Opera composers?

Giuseppe Verdi Ambroise Thomas

Table 1: Example oracle queries on the HOTPOTQA dev set.

document QA component detailed in Section 3.5
to obtain the final answer to the original question.

To train the query generators, we follow the
steps above to construct the retrieval contexts, but
during training time, when dj, is not part of the
IR result, we replace the lowest ranking document
with dj, before concatenating it with C to make
sure the downstream models have access to neces-
sary context.

3.4 Deriving Supervision Signal for Query
Generation

When deriving supervision signal to train our
query generators, the potential search space is
enormous for each step of reasoning even if we
constrain ourselves to predicting spans from the
context. This is aggravated by multiple hops of
reasoning required by the question. One solution
to this issue is to train the query generators with
reinforcement learning (RL) techniques (e.g., RE-
INFORCE (Sutton et al., 2000)), where (Nogueira
and Cho, 2017) and (Buck et al., 2018) are exam-
ples of one-step query generation with RL. How-
ever, it is computationally inefficient, and has high
variance especially for the second reasoning step
and forward, because the context depends greatly
on what queries have been chosen previously and
their search results.

Instead, we propose to leverage the limited su-
pervision we have about the gold supporting docu-
ments di, . . ., dg to narrow down the search space.
The key insight we base our approach on is that
at any step of open-domain multi-hop reasoning,
there is some semantic overlap between the re-
trieval context and the next document(s) we wish
to retrieve. For instance, in our Armada example,
when the retrieval context contains only the ques-
tion, this overlap is the novel itself; after we have
expanded the retrieval context, this overlap be-
comes the name of the author, Ernest Cline. Find-
ing this semantic overlap between the retrieval
context and the desired documents not only reveals

the chain of reasoning naturally, but also allows us
to use it as the search query for retrieval.

Because off-the-shelf IR systems generally op-
timize for shallow lexical similarity between query
and candidate documents in favor of efficiency, a
good proxy for this overlap is locating spans of
text that have high lexical overlap with the in-
tended supporting documents. To this end, we
propose a simple yet effective solution, employing
several heuristics to generate candidate queries:
computing the longest common string/sequence
between the current retrieval context and the ti-
tle/text of the intended paragraph ignoring stop
words, then taking the contiguous span of text that
corresponds to this overlap in the retrieval con-
text. This allows us to not only make use of entity
names, but also textual descriptions that better lead
to the gold entities. It is also more generally ap-
plicable than question decomposition approaches
(Talmor and Berant, 2018; Min et al., 2019b), and
does not require additional annotation for decom-
position.

Applying various heuristics results in a hand-
ful of candidate queries for each document, and
we use our IR engine (detailed next) to rank them
based on recall of the intended supporting docu-
ment to choose one as the final oracle query we
train our query generators to predict. This allows
us to train the query generators in a fully super-
vised manner efficiently. Some examples of oracle
queries on the HOTPOTQA dev set can be found
in Table 1. We refer the reader to Appendix B
for more technical details about our heuristics and
how the oracle queries are derived.

Oracle Query vs Single-hop Query We evalu-
ate the oracle query against the single-hop query,
i.e., querying with the original question, on the
HOTPOTQA dev set. Specifically, we compare the
recall of gold paragraphs, because the greater the
recall, the fewer documents we need to pass into
the expensive neural multi-hop QA component.

2594

100
80 - *
S
= 60| .
<
g
. 40 =
&)
20 =
0 \ | L I 1 \
1 2 5 10 20 50
Number of Retrieved Documents
- o- Single-hop d1 Single-hop da
—e— Oracle d; Oracle d»
Figure 3: Recall comparison between single-hop

queries and GOLDEN Retriever oracle queries for both
supporting paragraphs on the HOTPOTQA dev set.
Note that the oracle queries are much more effective
than the original question (single-hop query) at retriev-
ing target paragraphs in both hops.

We index the English Wikipedia dump with
introductory paragraphs provided by the HOT-
POTQA authors’ with Elasticsearch 6.7 (Gorm-
ley and Tong, 2015), where we index the titles
and document text in separate fields with bigram
indexing enabled. This results in an index with
5,233,329 total documents. At retrieval time, we
boost the scores of any search result whose title
matches the search query better — this results in a
better recall for entities with common names (e.g.,
“Armada” the novel). For more details about how
the IR engine is set up and the effect of score
boosting, please refer to Appendix A.

In Figure 3, we compare the recall of the two
gold paragraphs required for each question in
HOTPOTQA at various number of documents re-
trieved (R@n) for the single-hop query and the
multi-hop queries generated from the oracle. Note
that the oracle queries are much more effective
at retrieving the gold paragraphs than the original
question in both hops. For instance, if we com-
bine R@5 of both oracles (which effectively re-
trieves 10 documents from two queries) and com-
pare that to R@10 for the single-hop query, the or-
acle queries improve recall for d; by 6.68%, and
that for dy by a significant margin of 49.09%.%

"https://hotpotga.github.io/
wiki-readme.html

8Since HOTPOTQA does not provide the logical order its
gold entities should be discovered, we simply call the doc-
ument d; which is more easily retrievable with the queries,
and the other as d».

Supporting

fact? Start token

End token yes/no/span
A
I

= e
D O @S @S

Self Attention

o

concat

residual

concat

concat

Paragraphs Question

Figure 4: Question answering component in GOLDEN
Retriever. (Best viewed in color)

This means that the final QA model will need to
consider far fewer documents to arrive at a decent
set of supporting facts that lead to the answer.

3.5 Question Answering Component

The final QA component of GOLDEN Retriever is
based on the baseline model presented in (Yang
et al., 2018), which is in turn based on BiDAF++
(Clark and Gardner, 2017). We make two ma-
jor changes to this model. Yang et al. (2018)
concatenated all context paragraphs into one long
string to predict span begin and end offsets for
the answer, which is potentially sensitive to the
order in which these paragraphs are presented
to the model. We instead process them sepa-
rately with shared encoder RNN parameters to
obtain paragraph order-insensitive representations
for each paragraph. Span offset scores are pre-
dicted from each paragraph independently before
finally aggregated and normalized with a global
softmax operation to produce probabilities over
spans. The second change is that we replace all
attention mechanism in the original model with
self attention layers over the concatenated ques-
tion and context. To differentiate context para-
graph representations from question representa-
tions in this self-attention mechanism, we indicate
question and context tokens by concatenating a 0/1
feature at the input layer. Figure 4 illustrates the
QA model architecture.

2595

https://hotpotqa.github.io/wiki-readme.html
https://hotpotqa.github.io/wiki-readme.html

System Answer Sup Fact Joint
EM Fy EM Fy EM F,

Baseline (Yang et al., 2018) 2523 3440 507 40.69 2.63 17.85
GRN + BERT 29.87 39.14 13.16 49.67 8.26 25.84
MUPPET (Feldman and El-Yaniv, 2019) 30.61 40.26 16.65 47.33 10.85 27.01
CogQA (Ding et al., 2019) 37.12 48.87 2282 57.69 1242 3492
PR-Bert 4333 53.79 2190 59.63 14.50 39.11
Entity-centric BERT Pipeline 41.82 53.09 2626 57.29 17.01 39.18
BERT pip. (contemporaneous) 4532 57.34 38.67 70.83 25.14 47.60
GOLDEN Retriever 37.92 4858 30.69 6424 18.04 39.13

Table 2: End-to-end QA performance of baselines and our GOLDEN Retriever model on the HOTPOTQA fullwiki
test set. Among systems that were not published at the time of submission of this paper, “BERT pip.” was
submitted to the official HOTPOTQA leaderboard on May 15" (thus contemporaneous), while “Entity-centric
BERT Pipeline” and “PR-Bert” were submitted after the paper submission deadline.

4 Experiments

4.1 Data and Setup

We evaluate our models in the fullwiki setting of
HoTPOTQA (Yang et al., 2018). HOTPOTQA is
a question answering dataset collected on the En-
glish Wikipedia, containing about 113k crowd-
sourced questions that are constructed to require
the introduction paragraphs of two Wikipedia arti-
cles to answer. Each question in the dataset comes
with the two gold paragraphs, as well as a list
of sentences in these paragraphs that crowdwork-
ers identify as supporting facts necessary to an-
swer the question. A diverse range of reasoning
strategies are featured in HOTPOTQA, including
questions involving missing entities in the ques-
tion (our Armada example), intersection questions
(What satisfies property A and property B?), and
comparison questions, where two entities are com-
pared by a common attribute, among others. In the
few-document distractor setting, the QA models
are given ten paragraphs in which the gold para-
graphs are guaranteed to be found; in the open-
domain fullwiki setting, which we focus on, the
models are only given the question and the entire
Wikipedia. Models are evaluated on their answer
accuracy and explainability, where the former is
measured as overlap between the predicted and
gold answers with exact match (EM) and unigram
F1, and the latter concerns how well the predicted
supporting fact sentences match human annotation
(Supporting Fact EM/F). A joint metric is also re-
ported on this dataset, which encourages systems
to perform well on both tasks simultaneously.

We use the Stanford CoreNLP toolkit (Manning
et al., 2014) to preprocess Wikipedia, as well as to
generate POS/NER features for the query genera-
tors, following (Yang et al., 2018) and (Chen et al.,
2017). We always detokenize a generated search
query before sending it to Elasticsearch, which has
its own preprocessing pipeline. Since all ques-
tions in HOTPOTQA require exactly two support-
ing documents, we fix the number of retrieval steps
of GOLDEN Retriever to S = 2. To accommo-
date arbitrary steps of reasoning in GOLDEN Re-
triever, a stopping criterion is required to deter-
mine when to stop retrieving for more support-
ing documents and perform few-document ques-
tion answering, which we leave to future work.
During training and evaluation, we set the num-
ber of retrieved documents added to the retrieval
context to 5 for each retrieval step, so that the to-
tal number of paragraphs our final QA model con-
siders is 10, for a fair comparison to (Yang et al.,
2018).

We include hyperparameters and training de-
tails in Appendix C for reproducibility.

4.2 End-to-end Question Answering

We compare the end-to-end performance of
GOLDEN Retriever against several QA systems
on the HOTPOTQA dataset: (1) the baseline pre-
sented in (Yang et al., 2018), (2) CogQA (Ding
et al., 2019), the top-performing previously pub-
lished system, and (3) other high-ranking sys-
tems on the leaderboard. As shown in Table 2,
GOLDEN Retriever is much better at locating the
correct supporting facts from Wikipedia compared

2596

Setting AnsF; SupF; R@10"
GOLDEN Retriever 49.79 64.58 75.46
Single-hop query 38.19 54.82 62.38
HoTPOTQA IR 36.34 46.78 55.71
Table 3: Question answering and IR performance

amongst different IR settings on the dev set. We ob-
serve that although improving the IR engine is help-
ful, most of the performance gain results from the iter-
ative retrieve-and-read strategy of GOLDEN Retriever.
(*: for GOLDEN Retriever, the 10 paragraphs are com-
bined from both hops, 5 from each hop.)

to CogQA, as well as most of the top-ranking sys-
tems. However, the QA performance is handi-
capped because we do not make use of pretrained
contextualization models (e.g., BERT) that these
systems use. We expect a boost in QA perfor-
mance from adopting these more powerful ques-
tion answering models, especially ones that are
tailored to perform few-document multi-hop rea-
soning. We leave this to future work.

To understand the contribution of GOLDEN Re-
triever’s iterative retrieval process compared to
that of the IR engine, we compare the performance
of GOLDEN Retriever against two baseline sys-
tems on the dev set: one that retrieves 10 support-
ing paragraphs from Elasticsearch with the origi-
nal question, and one that uses the IR engine pre-
sented in HOTPOTQA..? In all cases, we use the
QA component in GOLDEN Retriever for the fi-
nal question answering step. As shown in Table 3,
replacing the hand-engineered IR engine in (Yang
et al., 2018) with Elasticsearch does result in some
gain in recall of the gold documents, but that
does not translate to a significant improvement in
QA performance. Further inspection reveals that
despite Elasticsearch improving overall recall of
gold documents, it is only able to retrieve both
gold documents for 36.91% of the dev set ques-
tions, in comparison to 28.21% from the IR en-
gine in (Yang et al., 2018). In contrast, GOLDEN
Retriever improves this percentage to 61.01%, al-
most doubling the recall over the single-hop base-
line, providing the QA component a much better
set of context documents to predict answers from.

Lastly, we perform an ablation study in which
we replace our query generator models with our
query oracles and observe the effect on end-to-end

“For the latter, we use the fullwiki test input file the au-
thors released, which contains the top-10 IR output from that
retrieval system with the question as the query.

System AnsF; SupF; JointF,
GOLDEN Retriever 49.79 64.58 40.21
w/ Hop 1 oracle 52.53 68.06 42.68
w/ Hop 1 & 2 oracles 62.32 77.00 52.18

Table 4: Pipeline ablative analysis of GOLDEN Re-
triever end-to-end QA performance by replacing each
query generator with a query oracle.

performance. As can be seen in Table 4, replacing
(1 with the oracle only slightly improves end-to-
end performance, but further substituting G2 with
the oracle yields a significant improvement. This
illustrates that the performance loss is largely at-
tributed to G rather than GG, because G5 solves
a harder span selection problem from a longer re-
trieval context. In the next section, we examine the
query generation models more closely by evaluat-
ing their performance without the QA component.

4.3 Analysis of Query Generation

To evaluate the query generators, we begin by de-
termining how well they emulate the oracles. We
evaluate them using Exact Match (EM) and F; on
the span prediction task, as well as compare their
queries’ retrieval performance against the oracle
queries. As can be seen in Table 6, the perfor-
mance of GG is worse than that of Gy in gen-
eral, confirming our findings on the end-to-end
pipeline. When we combine them into a pipeline,
the generated queries perform only slightly better
on d; when a total of 10 documents are retrieved
(89.91% vs 87.85%), but are significantly more
effective for do (61.01% vs 36.91%). If we fur-
ther zoom in on the retrieval performance on non-
comparison questions for which finding the two
entities involved is less trivial, we can see that the
recall on dy improves from 27.88% to 53.23%, al-
most doubling the number of questions we have
the complete gold context to answer. We note that
the IR performance we report on the full pipeline
is different to that when we evaluate the query gen-
erators separately. We attribute this difference to
the fact that the generated queries sometimes re-
trieve both gold documents in one step.

To better understand model behavior, we also
randomly sampled some examples from the dev
set to compare the oracle queries and the predicted
queries. Aside from exact matches, we find that
the predicted queries are usually small variations
of the oracle ones. In some cases, the model se-
lects spans that are more natural and informative

2597

Question

Predicted g1 Predicted g»

(1) What video game character did the voice actress in the
animated film Alpha and Omega voice?

voice actress in the animated film
Alpha and Omega (animated film
Alpha and Omega voice)

Hayden Panettiere

(2) What song was created by the group consisting of Jef-
frey Jey, Maurizio Lobina and Gabry Ponte and released
on 15 January 1999?

Jeffrey Jey (group consisting of
Jeffrey Jey, Maurizio Lobina and
Gabry Ponte)

Gabry Ponte and released
on 15 January 1999 (“Blue
(Da Ba Dee)”)

(3) Yau Ma Tei North is a district of a city with how many
citizens?

Yau Ma Tei North Yau Tsim Mong District of

Hong Kong (Hong Kong)

(4) What company started the urban complex development
that included the highrise building, The Harmon?

highrise building, The Harmon CityCenter

Table 5: Examples of predicted queries from the query generators on the HOTPOTQA dev set. The oracle query is
displayed in blue in parentheses if it differs from the predicted one.

Span
Model EM F R@5
Gy 5140 78.75 85.86
Gy 52.29 63.07 64.83

Table 6: Span prediction and IR performance of the
query generator models for Hop 1 (G1) and Hop 2 (G3)
evaluated separately on the HOTPOTQA dev set.

(Example (1) in Table 5). When they differ a bit
more, the model is usually overly biased towards
shorter entity spans and misses out on informa-
tive information (Example (2)). When there are
multiple entities in the retrieval context, the model
sometimes selects the wrong entity, which sug-
gests that a more powerful query generator might
be desirable (Example (3)). Despite these issues,
we find that these natural language queries make
the reasoning process more interpretable, and eas-
ier for a human to verify or intervene as needed.

Limitations Although we have demonstrated
that generating search queries with span selection
works in most cases, it also limits the kinds of
queries we can generate, and in some cases leads
to undesired behavior. One common issue is that
the entity of interest has a name shared by too
many Wikipedia pages (e.g., “House Rules” the
2003 TV series). This sometimes results in the
inclusion of extra terms in our oracle query to ex-
pand it (e.g., Example (4) specifies that “The Har-
mon” is a highrise building). In other cases, our
span oracle makes use of too much information
from the gold entities (Example (2), where a hu-
man would likely query for “Eiffel 65 song re-
leased 15 January 1999 because “Blue’ is not the
only song mentioned in d;). We argue, though,

these are due to the simplifying choice of span se-
lection for query generation and fixed number of
query steps. We leave extensions to future work.

5 Conclusion

In this paper, we presented GOLDEN (Gold En-
tity) Retriever, an open-domain multi-hop ques-
tion answering system for scalable multi-hop rea-
soning. Through iterative reasoning and retrieval,
GOLDEN Retriever greatly improves the recall of
gold supporting facts, thus providing the question
answering model a much better set of context doc-
uments to produce an answer from, and demon-
strates competitive performance to the state of the
art. Generating natural languages queries for each
step of reasoning, GOLDEN Retriever is also more
interpretable to humans compared to previous neu-
ral retrieval approaches and affords better under-
standing and verification of model behavior.

Acknowledgements

The authors would like to thank Robin Jia among
other members of the Stanford NLP Group, as well
as the anonymous reviewers for discussions and
comments on earlier versions of this paper. Peng
Qi would also like to thank Suprita Shankar, Jamil
Dhanani, and Suma Kasa for early experiments on
BiDAF++ variants for HOTPOTQA. This research
is funded in part by Samsung Electronics Co., Ltd.
and in part by the SAIL-JD Research Initiative.

References

Christian Buck, Jannis Bulian, Massimiliano Cia-
ramita, Wojciech Gajewski, Andrea Gesmundo, Neil
Houlsby, and Wei Wang. 2018. Ask the right ques-
tions: Active question reformulation with reinforce-

2598

ment learning. In Proceedings of the International
Conference on Learning Representations.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Jifan Chen and Greg Durrett. 2019. Understanding
dataset design choices for multi-hop reasoning. In
Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 55th Annual Meeting
of the Association of Computational Linguistics.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question
answering. In International Conference on Learn-
ing Representations.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2019.
Question answering by reasoning across documents
with graph convolutional networks. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics

(NAACL).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language un-
derstanding. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang,
and Jie Tang. 2019. Cognitive graph for multi-hop
reading comprehension at scale. In Proceedings of
the 57th Annual Meeting of the Association of Com-
putational Linguistics.

Yair Feldman and Ran El-Yaniv. 2019. Multi-hop para-
graph retrieval for open-domain question answering.
In Proceedings of the 57th Annual Meeting of the As-
sociation of Computational Linguistics.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: The definitive guide: A distributed real-time
search and analytics engine. O’Reilly Media, Inc.

Ahmed Hassan Awadallah, Ryen W White, Patrick
Pantel, Susan T Dumais, and Yi-Min Wang. 2014.
Supporting complex search tasks. In Proceedings of
the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management,
pages 829-838. ACM.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Bernhard Kratzwald and Stefan Feuerriegel. 2018.
Adaptive document retrieval for deep question an-
swering. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,

pages 55-60.

Rishabh Mehrotra, Prasanta Bhattacharya, and Em-
ine Yilmaz. 2016. Deconstructing complex search
tasks: A bayesian nonparametric approach for ex-
tracting sub-tasks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 599-605.

Rishabh Mehrotra and Emine Yilmaz. 2017. Extract-
ing hierarchies of search tasks & subtasks via a
bayesian nonparametric approach. In Proceedings
of the 40th International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, pages 285-294. ACM.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gard-
ner, Hannaneh Hajishirzi, and Luke Zettlemoyer.
2019a. Compositional questions do not necessi-
tate multi-hop reasoning. In Proceedings of the
Annual Conference of the Association of Computa-
tional Linguistics.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and
Hannaneh Hajishirzi. 2019b. Multi-hop reading
comprehension through question decomposition and
rescoring. In Proceedings of the Annual Conference
of the Association of Computational Linguistics.

Kyosuke Nishida, Itsumi Saito, Atsushi Otsuka, Hisako
Asano, and Junji Tomita. 2018. Retrieve-and-
read: Multi-task learning of information retrieval
and reading comprehension. In Proceedings of the
27th ACM International Conference on Informa-
tion and Knowledge Management, pages 647-656.
ACM.

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-
oriented query reformulation with reinforcement
learning.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQUAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics.

2599

https://openreview.net/forum?id=HkfPSh05K7
https://openreview.net/forum?id=HkfPSh05K7
https://openreview.net/forum?id=HkfPSh05K7
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford,
et al. 1995. Okapi at trec-3. Nist Special Publica-
tion Sp, 109:109.

Richard S. Sutton, David A. McAllester, Satinder P.
Singh, and Yishay Mansour. 2000. Policy gradi-
ent methods for reinforcement learning with func-
tion approximation. In Advances in Neural Infor-
mation Processing Systems, pages 1057—-1063.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association of Computational Linguis-
tics, 6:287-302.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question
answering. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Victor Zhong, Caiming Xiong, Nitish Shirish Keskar,
and Richard Socher. 2019. Coarse-grain fine-grain
coattention network for multi-evidence question an-
swering. In Proceedings of the International Con-
ference on Learning Representations.

2600

A Elasticsearch Setup

A.1 Setting Up the Index

We start from the Wikipedia dump file containing
the introductory paragraphs used in HOTPOTQA
that Yang et al. (2018) provide,'? and add the fields
corresponding to Wikipedia page titles and the in-
troductory paragraphs (text) into the index.

For the title, we use Elasticsearch’s simple
analyzer which performs basic tokenization and
lowercasing of the content. For the text, we join
all the sentences and use the standard analyzer
which further allows for removal of punctuation
and stop words. For both fields, we index an aux-
iliary field with bigrams using the shingle fil-
ter,'! and perform basic asciifolding to map
non ASCII characters to a similar ASCII character
(e.g., “€"— “e”).

At search time, we launch a multi_match
query against all fields with the same query, which
performs a full-text query employing the BM25
ranking function (Robertson et al., 1995) with all
fields in the index, and returns the score of the
best field for ranking by default. To promote doc-
uments whose title match the search query, we
boost the search score of all title-related fields by
1.25 in this query.

A.2 Reranking Search Results

In Wikipedia, it is common that pages or en-
tity names share rare words that are important to
search engines, and a naive full-text search IR sys-
tem will not be able to pick the one that matches
the query the best. For instance, if one set up Elas-
ticsearch according to the instructions above and
searched for “George W. Bush”, he/she would be
surprised to see that the actual page is not even in
the top-10 search results, which contains entities
such as “George W. Bush Childhood Home” and
“Bibliography of George W. Bush”.

To this end, we propose to rerank these query
results with a simple but effective heuristic that al-
leviates this issue. We would first retrieve at least
50 candidate documents for each query for consid-
eration, and boost the query scores of documents
whose title exactly matches the search query, or is
a substring of the search query. Specifically, we

https://hotpotga.github.io/
wiki-readme.html

Unttps://www.elastic.co/quide/
en/elasticsearch/reference/6.7/
analysis-shingle-tokenfilter.html

IR System R@10 for di R@10 for d-
Final system 87.85 36.91
w/o Title Boosting 86.85 32.64
w/o Reranking 86.32 34.77
w/o Both 84.67 29.55

Table 7: IR performance (recall in percentages) of var-
ious Elasticsearch setups on the HOTPOTQA dev set
using the original question.

multiply the document score by a heuristic con-
stant between 1.05 and 1.5, depending on how
well the document title matches the query, before
reranking all search results. This results in a sig-
nificant improvement in these cases. For the query
“George W. Bush”, the page for the former US
president is ranked at the top after reranking. In
Table 7, we also provide results from the single-
hop query to show the improvement from title
score boosting introduced from the previous sec-
tion and reranking.

B Oracle Query Generation

We mainly employ three heuristics to find the se-
mantic overlap between the retrieval context and
the desired documents: longest common subse-
quence (LCS), longest common substring (LC-
SubStr), and overlap merging which generalizes
the two. Specifically, the overlap merging heuris-
tic looks for contiguous spans in the retrieval con-
text that have high rates of overlapping tokens
with the desired document, determined by the total
number of overlapping tokens divided by the total
number of tokens considered in the span.

In all heuristics, we ignore stop words and low-
ercase the rest in computing the spans to capture
more meaningful overlaps, and finally take the
span in the retrieval context that all the overlap-
ping words are contained in. For instance, if the
retrieval context contains “the GOLDEN Retriever
model on HOTPOTQA” and the desired document
contains “GOLDEN Retriever on the HOTPOTQA
dataset”, we will identify the overlapping terms
as “GOLDEN”, “Retriever”, and “HOTPOTQA”,
and return the span “GOLDEN Retriever model on
HOTPOTQA” as the resulting candidate query.

To generate candidates for the oracle query,
we apply the heuristics between combinations of
{cleaned question, cleaned question without punc-
tuation} x {cleaned document title, cleaned para-
graph}, where cleaning means stop word removal
and lowercasing. Once oracle queries are gener-

2601

https://hotpotqa.github.io/wiki-readme.html
https://hotpotqa.github.io/wiki-readme.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/analysis-shingle-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/analysis-shingle-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/analysis-shingle-tokenfilter.html

Hyperparameter

Values

Learning rate
Finetune embeddings
Epoch

Batch size

Hidden size

Max sequence length
Dropout rate

5x1074,1x1073
0, 200, 500, 1000
25,40

32, 64,128

64, 128, 256, 512, 768
15, 20, 30, 50, 100
0.3, 0.35, 0.4, 0.45

Table 8: Hyperparameter settings for the query gener-
ators. The final hyperparameters for the Hop 1 query
generator are shown in bold, and those for the Hop 2
query generator are shown in underlined itallic.

ated, we launch these queries against Elasticsearch
to determine the rank of the desired paragraph. If
multiple candidate queries are able to place the de-
sired paragraph in the top 5 results, we further rank
the candidate queries by other metrics (e.g., length
of the query) to arrive at the final oracle query to
train the query generators. We refer the reader to
our released code for further details.

C Training Details

C.1 Query Generators

Once the oracle queries are generated, we train our
query generators to emulate them on the training
set, and choose the best model with F; in span se-
lection on the dev set. We experiment with hyper-
parameters such as learning rate, training epochs,
batch size, number of word embeddings to fine-
tune, among others, and report the final hyperpa-
rameters for both query generators (G and G2) in
Table 8.

C.2 Question Answering Model

Our final question answering component is trained
with the paragraphs produced by the oracle queries
(5 from each hop, 10 in total), with d; and d» in-
serted to replace the lowest ranking paragraph in
each hop if they are not in the set already.

We develop our model based on the baseline
model of Yang et al. (2018), and reuse the same
default hyperparameters whenever possible. The
main differences in the hyperparameters are: we
optimize our QA model with Adam (with default
hyperparameters) (Kingma and Ba, 2015) instead
of stochastic gradient descent with a larger batch
size of 64; we anneal the learning rate by 0.5 with
a patience of 3 instead of 1, that is, we multiply the
learning rate by 0.5 after three consecutive failures
to improve dev Fy; we clip the gradient down to a

maximum ¢ norm of 5; we apply a 10% dropout
to the model, for which we have increased the hid-
den size to 128; and use 10 as the coefficient by
which we multiply the supporting facts loss, be-
fore mixing it with the span prediction loss. We
configure the model to read 10 context paragraphs,
and limit each paragraph to at most 400 tokens in-
cluding the title.

2602

