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Abstract

Machine Reading at Scale (MRS) is a chal-
lenging task in which a system is given an
input query and is asked to produce a pre-
cise output by “reading” information from a
large knowledge base. The task has gained
popularity with its natural combination of in-
formation retrieval (IR) and machine compre-
hension (MC). Advancements in representa-
tion learning have led to separated progress in
both IR and MC; however, very few studies
have examined the relationship and combined
design of retrieval and comprehension at dif-
ferent levels of granularity, for development
of MRS systems. In this work, we give gen-
eral guidelines on system design for MRS by
proposing a simple yet effective pipeline sys-
tem with special consideration on hierarchical
semantic retrieval at both paragraph and sen-
tence level, and their potential effects on the
downstream task. The system is evaluated on
both fact verification and open-domain multi-
hop QA, achieving state-of-the-art results on
the leaderboard test sets of both FEVER and
HOTPOTQA. To further demonstrate the im-
portance of semantic retrieval, we present ab-
lation and analysis studies to quantify the con-
tribution of neural retrieval modules at both
paragraph-level and sentence-level, and illus-
trate that intermediate semantic retrieval mod-
ules are vital for not only effectively filtering
upstream information and thus saving down-
stream computation, but also for shaping up-
stream data distribution and providing better
data for downstream modeling.1

1 Introduction

Extracting external textual knowledge for machine
comprehensive systems has long been an impor-
tant yet challenging problem. Success requires

1Code/data made publicly available at: https://
github.com/easonnie/semanticRetrievalMRS

not only precise retrieval of the relevant informa-
tion sparsely restored in a large knowledge source
but also a deep understanding of both the selected
knowledge and the input query to give the corre-
sponding output. Initiated by Chen et al. (2017),
the task was termed as Machine Reading at Scale
(MRS), seeking to provide a challenging situation
where machines are required to do both semantic
retrieval and comprehension at different levels of
granularity for the final downstream task.

Progress on MRS has been made by improv-
ing individual IR or comprehension sub-modules
with recent advancements on representative learn-
ing (Peters et al., 2018; Radford et al., 2018; De-
vlin et al., 2018). However, partially due to the
lack of annotated data for intermediate retrieval in
an MRS setting, the evaluations were done mainly
on the final downstream task and with much less
consideration on the intermediate retrieval perfor-
mance. This led to the convention that upstream
retrieval modules mostly focus on getting better
coverage of the downstream information such that
the upper-bound of the downstream score can be
improved, rather than finding more exact infor-
mation. This convention is misaligned with the
nature of MRS where equal effort should be put
in emphasizing the models’ joint performance and
optimizing the relationship between the semantic
retrieval and the downstream comprehension sub-
tasks.

Hence, to shed light on the importance of se-
mantic retrieval for downstream comprehension
tasks, we start by establishing a simple yet ef-
fective hierarchical pipeline system for MRS us-
ing Wikipedia as the external knowledge source.
The system is composed of a term-based retrieval
module, two neural modules for both paragraph-
level retrieval and sentence-level retrieval, and a
neural downstream task module. We evaluated
the system on two recent large-scale open do-

https://github.com/easonnie/semanticRetrievalMRS
https://github.com/easonnie/semanticRetrievalMRS
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main benchmarks for fact verification and multi-
hop QA, namely FEVER (Thorne et al., 2018)
and HOTPOTQA (Yang et al., 2018), in which re-
trieval performance can also be evaluated accu-
rately since intermediate annotations on evidences
are provided. Our system achieves the start-of-
the-art results with 45.32% for answer EM and
25.14% joint EM on HOTPOTQA (8% absolute
improvement on answer EM and doubling the
joint EM over the previous best results) and with
67.26% on FEVER score (3% absolute improve-
ment over previously published systems).

We then provide empirical studies to validate
design decisions. Specifically, we prove the neces-
sity of both paragraph-level retrieval and sentence-
level retrieval for maintaining good performance,
and further illustrate that a better semantic re-
trieval module not only is beneficial to achiev-
ing high recall and keeping high upper bound for
downstream task, but also plays an important role
in shaping the downstream data distribution and
providing more relevant and high-quality data for
downstream sub-module training and inference.
These mechanisms are vital for a good MRS sys-
tem on both QA and fact verification.

2 Related Work

Machine Reading at Scale First proposed and
formalized in Chen et al. (2017), MRS has gained
popularity with increasing amount of work on
both dataset collection (Joshi et al., 2017; Welbl
et al., 2018) and MRS model developments (Wang
et al., 2018; Clark and Gardner, 2017; Htut et al.,
2018). In some previous work (Lee et al., 2018),
paragraph-level retrieval modules were mainly
for improving the recall of required information,
while in some other works (Yang et al., 2018),
sentence-level retrieval modules were merely for
solving the auxiliary sentence selection task. In
our work, we focus on revealing the relationship
between semantic retrieval at different granular-
ity levels and the downstream comprehension task.
To the best of our knowledge, we are the first to ap-
ply and optimize neural semantic retrieval at both
paragraph and sentence levels for MRS.
Automatic Fact Checking: Recent work (Thorne
and Vlachos, 2018) formalized the task of au-
tomatic fact checking from the viewpoint of
machine learning and NLP. The release of
FEVER (Thorne et al., 2018) stimulates many re-
cent developments (Nie et al., 2019; Yoneda et al.,

2018; Hanselowski et al., 2018) on data-driven
neural networks for automatic fact checking. We
consider the task also as MRS because they share
almost the same setup except that the downstream
task is verification or natural language inference
(NLI) rather than QA.
Information Retrieval Success in deep neural
networks inspires their application to information
retrieval (IR) tasks (Huang et al., 2013; Guo et al.,
2016; Mitra et al., 2017; Dehghani et al., 2017). In
typical IR settings, systems are required to retrieve
and rank (Nguyen et al., 2016) elements from a
collection of documents based on their relevance
to the query. This setting might be very different
from the retrieval in MRS where systems are asked
to select facts needed to answer a question or ver-
ify a statement. We refer the retrieval in MRS as
Semantic Retrieval since it emphasizes on seman-
tic understanding.

3 Method

In previous works, an MRS system can be com-
plicated with different sub-components processing
different retrieval and comprehension sub-tasks at
different levels of granularity, and with some sub-
components intertwined. For interpretability con-
siderations, we used a unified pipeline setup. The
overview of the system is in Fig. 1.

To be specific, we formulate the MRS system
as a function that maps an input tuple (q,K) to
an output tuple (ŷ,S) where q indicates the input
query, K is the textual KB, ŷ is the output predic-
tion, and S is selected supporting sentences from
Wikipedia. Let E denotes a set of necessary evi-
dences or facts selected from K for the prediction.
For a QA task, q is the input question and ŷ is the
predicted answer. For a verification task, q is the
input claim and ŷ is the predicted truthfulness of
the input claim. For all tasks, K is Wikipedia.

The system procedure is listed below:
(1) Term-Based Retrieval: To begin with, we
used a combination of the TF-IDF method and a
rule-based keyword matching method2 to narrow
the scope from whole Wikipedia down to a set of
related paragraphs; this is a standard procedure in
MRS (Chen et al., 2017; Lee et al., 2018; Nie et al.,
2019). The focus of this step is to efficiently select
a candidate set PI that can cover the information
as much as possible (PI ⊂ K) while keeping the

2Details of term-based retrieval are in Appendix.
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When did Robben retire 
from Bayern?

P-Level
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2019
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Fact 1: Robben said in an interview "I can 
say that this is my last year [at Bayern]...

Fact 2: On 18 May 2019, he scored 
his last league goal for Bayern...

Robben retired from 
Bayern in 2009.

Term based

Figure 1: System Overview: blue dotted arrows indicate the inference flow and the red solid arrows indicate
the training flow. Grey rounded rectangles are neural modules with different functionality. rounded rectangles.
The two retrieval modules were trained with all positive examples from annotated ground truth set and negative
examples sampled from the direct upstream modules. Thus, the distribution of negative examples is subjective to
the quality of the upstream module.

size of the set acceptable enough for downstream
processing.
(2) Paragraph-Level Neural Retrieval: After
obtaining the initial set, we compare each para-
graph in PI with the input query q using a neural
model (which will be explained later in Sec 3.1).
The outputs of the neural model are treated as the
relatedness score between the input query and the
paragraphs. The scores will be used to sort all
the upstream paragraphs. Then, PI will be nar-
rowed to a new set PN (PN ⊂ PI) by selecting
top kp paragraphs having relatedness score higher
than some threshold value hp (going out from the
P-Level grey box in Fig. 1). kp and hp would be
chosen by keeping a good balance between the re-
call and precision of the paragraph retrieval.
(3) Sentence-Level Neural Retrieval: Next, we
select the evidence at the sentence-level by de-
composing all the paragraphs in PN into sen-
tences. Similarly, each sentence is compared with
the query using a neural model (see details in
Sec 3.1) and obtain a set of sentences S ⊂ PN for
the downstream task by choosing top ks sentences
with output scores higher than some threshold hs
(S-Level grey box in Fig. 1). During evaluation, S
is often evaluated against some ground truth sen-
tence set denoted as E.
(4) Downstream Modeling: At the final step, we
simply applied task-specific neural models (e.g.,
QA and NLI) on the concatenation of all the sen-

tences in S and the query, obtaining the final out-
put ŷ.

In some experiments, we modified the setup for
certain analysis or ablation purposes which will be
explained individually in Sec 6.

3.1 Modeling and Training

Throughout all our experiments, we used BERT-
Base (Devlin et al., 2018) to provide the state-of-
the-art contextualized modeling of the input text.3

Semantic Retrieval: We treated the neural se-
mantic retrieval at both the paragraph and sen-
tence level as binary classification problems with
models’ parameters updated by minimizing binary
cross entropy loss. To be specific, we fed the query
and context into BERT as:

[CLS ]Query [SEP ]Context [SEP ]

We applied an affine layer and sigmoid activation
on the last layer output of the [CLS ] token which
is a scalar value. The parameters were updated
with the objective function:

Jretri = −
∑

i∈Tp/s
pos

log(p̂i)−
∑

i∈Tp/s
neg

log(1− p̂i)

3We used the pytorch BERT implementation
in https://github.com/huggingface/
pytorch-pretrained-BERT.

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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where p̂i is the output of the model, Tp/s
pos is the

positive set and T
p/s
neg is the negative set. As shown

in Fig. 1, at sentence level, ground-truth sentences
were served as positive examples while other sen-
tences from upstream retrieved set were served as
negative examples. Similarly at the paragraph-
level, paragraphs having any ground-truth sen-
tence were used as positive examples and other
paragraphs from the upstream term-based retrieval
processes were used as negative examples.

QA: We followed Devlin et al. (2018) for QA
span prediction modeling. To correctly handle
yes-or-no questions in HOTPOTQA, we fed the
two additional “yes” and “no” tokens between
[CLS ] and the Query as:

[CLS ] yes no Query [SEP ]Context [SEP ]

where the supervision was given to the second or
the third token when the answer is “yes” or “no”,
such that they can compete with all other predicted
spans. The parameters of the neural QA model
were trained to maximize the log probabilities of
the true start and end indexes as:

Jqa = −
∑
i

[
log(ŷsi ) + log(ŷei )

]
where ŷsi and ŷei are the predicted probability on
the ground-truth start and end position for the ith
example, respectively. It is worth noting that we
used ground truth supporting sentences plus some
other sentences sampled from upstream retrieved
set as the context for training the QA module such
that it will adapt to the upstream data distribution
during inference.

Fact Verification: Following Thorne et al.
(2018), we formulate downstream fact verifica-
tion as the 3-way natural language inference (NLI)
classification problem (MacCartney and Manning,
2009; Bowman et al., 2015) and train the model
with 3-way cross entropy loss. The input format is
the same as that of semantic retrieval and the ob-
jective is Jver = −

∑
i yi · log(ŷi), where ŷi ∈

R3 denotes the model’s output for the three veri-
fication labels, and yi is a one-hot embedding for
the ground-truth label. For verifiable queries, we
used ground truth evidential sentences plus some
other sentences sampled from upstream retrieved
set as new evidential context for NLI. For non-
verifiable queries, we only used sentences sam-
pled from upstream retrieved set as context be-
cause those queries are not associated with ground

truth evidential sentences. This detail is important
for the model to identify non-verifiable queries
and will be explained more in Sec 6. Additional
training details and hyper-parameter selections are
in the Appendix (Sec. A; Table 6).

It is worth noting that each sub-module in the
system relies on its preceding sub-module to pro-
vide data both for training and inference. This
means that there will be upstream data distribu-
tion misalignment if we trained the sub-module in
isolation without considering the properties of its
precedent upstream module. The problem is simi-
lar to the concept of internal covariate shift (Ioffe
and Szegedy, 2015), where the distribution of each
layer’s inputs changes inside a neural network.
Therefore, it makes sense to study this issue in a
joint MRS setting rather than a typical supervised
learning setting where training and test data tend
to be fixed and modules being isolated. We release
our code and the organized data both for repro-
ducibility and providing an off-the-shelf testbed to
facilitate future research on MRS.

4 Experimental Setup

MRS requires a system not only to retrieve rele-
vant content from textual KBs but also to poccess
enough understanding ability to solve the down-
stream task. To understand the impact or im-
portance of semantic retrieval on the downstream
comprehension, we established a unified exper-
imental setup that involves two different down-
stream tasks, i.e., multi-hop QA and fact verifica-
tion.

4.1 Tasks and Datasets

HOTPOTQA: This dataset is a recent large-scale
QA dataset that brings in new features: (1) the
questions require finding and reasoning over mul-
tiple documents; (2) the questions are diverse and
not limited to pre-existing KBs; (3) it offers a
new comparison question type (Yang et al., 2018).
We experimented our system on HOTPOTQA in
the fullwiki setting, where a system must find
the answer to a question in the scope of the en-
tire Wikipedia, an ideal MRS setup. The sizes
of the train, dev and test split are 90,564, 7,405,
and 7,405. More importantly, HOTPOTQA also
provides human-annotated sentence-level support-
ing facts that are needed to answer each ques-
tion. Those intermediate annotations enable evalu-
ation on models’ joint ability on both fact retrieval
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and answer span prediction, facilitating our direct
analysis on the explainable predictions and its re-
lations with the upstream retrieval.
FEVER: The Fact Extraction and VERification
dataset (Thorne et al., 2018) is a recent dataset
collected to facilitate the automatic fact check-
ing. The work also proposes a benchmark task
in which given an arbitrary input claim, candi-
date systems are asked to select evidential sen-
tences from Wikipedia and label the claim as ei-
ther SUPPORT, REFUTE, or NOT ENOUGH INFO,
if the claim can be verified to be true, false,
or non-verifiable, respectively, based on the evi-
dence. The sizes of the train, dev and test split
are 145,449, 19,998, and 9,998. Similar to HOT-
POTQA, the dataset provides annotated sentence-
level facts needed for the verification. These in-
termediate annotations could provide an accurate
evaluation on the results of semantic retrieval and
thus suits well for the analysis on the effects of
retrieval module on downstream verification.

As in Chen et al. (2017), we use Wikipedia as
our unique knowledge base because it is a compre-
hensive and self-evolving information source of-
ten used to facilitate intelligent systems. More-
over, as Wikipedia is the source for both HOT-
POTQA and FEVER, it helps standardize any fur-
ther analysis of the effects of semantic retrieval on
the two different downstream tasks.

4.2 Metrics

Following Thorne et al. (2018); Yang et al. (2018),
we used annotated sentence-level facts to calcu-
late the F1, Precision and Recall scores for eval-
uating sentence-level retrieval. Similarly, we la-
beled all the paragraphs that contain any ground
truth fact as ground truth paragraphs and used the
same three metrics for paragraph-level retrieval
evaluation. For HOTPOTQA, following Yang et al.
(2018), we used exact match (EM) and F1 met-
rics for QA span prediction evaluation, and used
the joint EM and F1 to evaluate models’ joint per-
formance on both retrieval and QA. The joint EM
and F1 are calculated as: Pj = Pa · Ps;Rj =

Ra · Rs;Fj =
2Pj ·Rj

Pj+Rj
;EMj = EMa · EMs, where

P , R, and EM denote precision, recall and EM;
the subscript a and s indicate that the scores are
for answer span and supporting facts.

For the FEVER task, following Thorne et al.
(2018), we used the Label Accuracy for evaluat-
ing downstream verification and the Fever Score

Method Ans Sup Joint

EM F1 EM F1 EM F1

Yang (2018) 24.7 34.4 5.3 41.0 2.5 17.7
Ding (2019) 37.6 49.4 23.1 58.5 12.2 35.3
whole pip. 46.5 58.8 39.9 71.5 26.6 49.2
Dev set

Yang (2018) 24.0 32.9 3.9 37.7 1.9 16.2
MUPPET 30.6 40.3 16.7 47.3 10.9 27.0
Ding (2019) 37.1 48.9 22.8 57.7 12.4 34.9
whole pip. 45.3 57.3 38.7 70.8 25.1 47.6
Test set

Table 1: Results of systems on HOTPOTQA.

Model F1 LA FS

Hanselowski (2018) - 68.49 64.74
Yoneda (2018) 35.84 69.66 65.41
Nie (2019) 51.37 69.64 66.15
Full system (single) 76.87 75.12 70.18
Dev set

Hanselowski (2018) 37.33 65.22 61.32
Yoneda (2018) 35.21 67.44 62.34
Nie (2019) 52.81 68.16 64.23
Full system (single) 74.62 72.56 67.26
Test set

Table 2: Performance of systems on FEVER. “F1” in-
dicates the sentence-level evidence F1 score. “LA” in-
dicates Label Acc. without considering the evidence
prediction. “FS”=FEVER Score (Thorne et al., 2018)

for joint performance. Fever score will award
one point for each example with the correct pre-
dicted label only if all ground truth facts were con-
tained in the predicted facts set with at most 5 el-
ements. We also used Oracle Score for the two
retrieval modules. The scores were proposed in
Nie et al. (2019) and indicate the upperbound of
final FEVER Score at one intermediate layer as-
suming all downstream modules are perfect. All
scores are averaged over examples in the whole
evaluation set.

5 Results on Benchmarks

We chose the best system based on the dev set, and
used that for submitting private test predictions on
both FEVER and HOTPOTQA4.

As can be seen in Table 1, with the proposed hi-
erarchical system design, the whole pipeline sys-

4Results can also be found at the leaderboard websites
for the two datasets: https://hotpotqa.github.io
and https://competitions.codalab.org/
competitions/18814

https://hotpotqa.github.io
https://competitions.codalab.org/competitions/18814
https://competitions.codalab.org/competitions/18814
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tem achieves new start-of-the-art on HOTPOTQA
with large-margin improvements on all the met-
rics. More specifically, the biggest improvement
comes from the EM for the supporting fact which
in turn leads to doubling of the joint EM on pre-
vious best results. The scores for answer predic-
tions are also higher than all previous best results
with ∼8 absolute points increase on EM and ∼9
absolute points on F1. All the improvements are
consistent between test and dev set evaluation.

Similarly for FEVER, we showed F1 for evi-
dence, the Label Accuracy, and the FEVER Score
(same as benchmark evaluation) for models in Ta-
ble 2. Our system obtained substantially higher
scores than all previously published results with a
∼4 and ∼3 points absolute improvement on La-
bel Accuracy and FEVER Score. In particular, the
system gains 74.62 on the evidence F1, 22 points
greater that of the second system, demonstrating
its ability on semantic retrieval.

Previous systems (Ming Ding, 2019; Yang
et al., 2018) on HOTPOTQA treat supporting fact
retrieval (sentence-level retrieval) just as an auxil-
iary task for providing extra model explainability.
In Nie et al. (2019), although they used a simi-
lar three-stage system for FEVER, they only ap-
plied one neural retrieval module at sentence-level
which potentially weaken its retrieval ability. Both
of these previous best systems are different from
our fully hierarchical pipeline approach. These
observations lead to the assumption that the per-
formance gain comes mainly from the hierarchical
retrieval and its positive effects on downstream.
Therefore, to validate the system design decisions
in Sec 3 and reveal the importance of semantic re-
trieval towards downstream, we conducted a se-
ries of ablation and analysis experiments on all the
modules. We started by examining the necessity
of both paragraph and sentence retrieval and give
insights on why both of them matters.

6 Analysis and Ablations

Intuitively, both the paragraph-level and sentence-
level retrieval sub-module help speeding up the
downstream processing. More importantly, since
downstream modules were trained by sampled
data from upstream modules, both of neural re-
trieval sub-modules also play an implicit but im-
portant role in controlling the immediate retrieval
distribution i.e. the distribution of set PN and set
S (as shown in Fig. 1), and providing better infer-

ence data and training data for downstream mod-
ules.

6.1 Ablation Studies

Setups: To reveal the importance of neural re-
trieval modules at both paragraph and sentence
level for maintaining the performance of the over-
all system, we removed either of them and ex-
amine the consequences. Because the removal of
a module in the pipeline might change the dis-
tribution of the input of the downstream mod-
ules, we re-trained all the downstream modules
accordingly. To be specific, in the system with-
out the paragraph-level neural retrieval module,
we re-trained the sentence-level retrieval module
with negative sentences directly sampled from the
term-based retrieval set and then also re-trained
the downstream QA or verification module. In
the system without the sentence-level neural re-
trieval module, we re-train the downstream QA
or verification module by sampling data from both
ground truth set and retrieved set directly from the
paragraph-level module. We tested the simplified
systems on both FEVER and HOTPOTQA.

Results: Table 3 and 4 shows the ablation re-
sults for the two neural retrieval modules at both
paragraph and sentence level on HOTPOTQA and
FEVER. To begin with, we can see that remov-
ing paragraph-level retrieval module significantly
reduces the precision for sentence-level retrieval
and the corresponding F1 on both tasks. More im-
portantly, this loss of retrieval precision also led to
substantial decreases for all the downstream scores
on both QA and verification task in spite of their
higher upper-bound and recall scores. This indi-
cates that the negative effects on downstream mod-
ule induced by the omission of paragraph-level re-
trieval can not be amended by the sentence-level
retrieval module, and focusing semantic retrieval
merely on improving the recall or the upper-bound
of final score will risk jeopardizing the perfor-
mance of the overall system.

Next, the removal of sentence-level retrieval
module induces a ∼2 point drop on EM and
F1 score in the QA task, and a ∼15 point drop
on FEVER Score in the verification task. This
suggests that rather than just enhance explain-
ability for QA, the sentence-level retrieval mod-
ule can also help pinpoint relevant information
and reduce the noise in the evidence that might
otherwise distract the downstream comprehension



2559

Method P-Level Retrieval S-Level Retrieval Answer Joint

Prec. Rec. F1 EM Prec. Rec. F1 EM F1 EM F1

Whole Pip. 35.17 87.93 50.25 39.86 75.60 71.15 71.54 46.50 58.81 26.60 49.16
Pip. w/o p-level 6.02 89.53 11.19 0.58 29.57 60.71 38.84 31.23 41.30 0.34 19.71
Pip. w/o s-level 35.17 87.92 50.25 - - - - 44.77 56.71 - -

Table 3: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on HOTPOTQA.

Method P-Level Retrieval S-Level Retrieval Verification

Orcl. Prec. Rec. F1 Orcl. Prec. Rec. F1 LA FS L-F1 (S/R/N)

Whole Pip. 94.15 48.84 91.23 63.62 88.92 71.29 83.38 76.87 70.18 75.01 81.7/75.7/67.1
Pip. w/o p-level 94.69 18.11 92.03 30.27 91.07 44.47 86.60 58.77 61.55 67.01 76.5/72.7/40.8
Pip. w/o s-level 94.15 48.84 91.23 63.62 - - - - 55.92 61.04 72.1/67.6/27.7

Table 4: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on FEVER.
“LA”=Label Accuracy; “FS”=FEVER Score; “Orcl.” is the oracle upperbound of FEVER Score assuming all
downstream modules are perfect. “L-F1 (S/R/N)” means the classification f1 scores on the three verification la-
bels: SUPPORT, REFUTE, and NOT ENOUGH INFO.

module. Another interesting finding is that with-
out sentence-level retrieval module, the QA mod-
ule suffered much less than the verification mod-
ule; conversely, the removal of paragraph-level re-
trieval neural induces a 11 point drop on answer
EM comparing to a ∼9 point drop on Label Accu-
racy in the verification task. This seems to indicate
that the downstream QA module relies more on
the upstream paragraph-level retrieval whereas the
verification module relies more on the upstream
sentence-level retrieval. Finally, we also evalu-
ate the F1 score on FEVER for each classifica-
tion label and we observe a significant drop of F1
on NOT ENOUGH INFO category without retrieval
module, meaning that semantic retrieval is vital for
the downstream verification module’s discrimina-
tive ability on NOT ENOUGH INFO label.

6.2 Sub-Module Change Analysis

To further study the effects of upstream seman-
tic retrieval towards downstream tasks, we change
training or inference data between intermediate
layers and then examine how this modification
will affect the downstream performance.

6.2.1 Effects of Paragraph-level Retrieval

We fixed hp = 0 (the value achieving the best
performance) and re-trained all the downstream
parameters and track their performance as kp
(the number of selected paragraph) being changed
from 1 to 12. The increasing of kp means a poten-
tial higher coverage of the answer but more noise
in the retrieved facts. Fig. 2 shows the results.
As can be seen that the EM scores for supporting
fact retrieval, answer prediction, and joint perfor-

Figure 2: The results of EM for supporting fact, answer
prediction and joint score, and the results of supporting
fact precision and recall with different values of kp at
paragraph-level retrieval on HOTPOTQA.

mance increase sharply when kp is changed from
1 to 2. This is consistent with the fact that at least
two paragraphs are required to ask each question
in HOTPOTQA. Then, after the peak, every score
decrease as kp becomes larger except the recall of
supporting fact which peaks when kp = 4. This
indicates that even though the neural sentence-
level retrieval module poccesses a certain level of
ability to select correct facts from noisier upstream
information, the final QA module is more sensitive
to upstream data and fails to maintain the overall
system performance. Moreover, the reduction on
answer EM and joint EM suggests that it might
be risky to give too much information for down-
stream modules with a unit of a paragraph.

6.2.2 Effects of Sentence-level Retrieval
Similarly, to study the effects of neural sentence-
level retrieval module towards downstream QA
and verification modules, we fixed ks to be 5 and
set hs ranging from 0.1 to 0.9 with a 0.1 interval.
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Figure 3: The results of EM for supporting fact, answer
prediction and joint score, and the results of supporting
fact precision and recall with different values of hs at
sentence-level retrieval on HOTPOTQA.

Figure 4: The results of Label Accuracy, FEVER
Score, and Evidence F1 with different values of hs at
sentence-level retrieval on FEVER.

Then, we re-trained the downstream QA and ver-
ification modules with different hs value and ex-
perimented on both HOTPOTQA and FEVER.
Question Answering: Fig. 3 shows the trend of
performance. Intuitively, the precision increase
while the recall decrease as the system becomes
more strict about the retrieved sentences. The EM
score for supporting fact retrieval and joint per-
formance reaches their highest value when hs =
0.5, a natural balancing point between precision
and recall. More interestingly, the EM score for
answer prediction peaks when hs = 0.2 and
where the recall is higher than the precision. This
misalignment between answer prediction perfor-
mance and retrieval performance indicates that un-
like the observation at paragraph-level, the down-
stream QA module is able to stand a certain
amount of noise at sentence-level and benefit from
a higher recall.
Fact Verification: Fig. 4 shows the trends for La-
bel Accuracy, FEVER Score, and Evidence F1 by
modifying upstream sentence-level threshold hs.
We observed that the general trend is similar to

Answer Type Total Correct Acc. (%)

Person 50 28 56.0
Location 31 14 45.2
Date 26 13 50.0
Number 14 4 28.6
Artwork 19 7 36.8
Yes/No 17 12 70.6
Event 5 2 40.0
Common noun 11 3 27.3
Group/Org 17 6 35.3
Other PN 20 9 45.0

Total 200 98 49.0

Table 5: System performance on different answer
types. “PN”= Proper Noun
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Figure 5: Proportion of answer types.

that of QA task where both the label accuracy and
FEVER score peak at hs = 0.2 whereas the re-
trieval F1 peaks at hs = 0.5. Note that, although
the downstream verification could take advantage
of a higher recall, the module is more sensitive to
sentence-level retrieval comparing to the QA mod-
ule in HOTPOTQA. More detailed results are in
the Appendix.

6.3 Answer Breakdown

We further sample 200 examples from HOT-
POTQA and manually tag them according to sev-
eral common answer types (Yang et al., 2018).
The proportion of different answer types is shown
in Figure 5. The performance of the system on
each answer type is shown in Table 5. The most
frequent answer type is ’Person’ (24%) and the
least frequent answer type is ’Event’ (2%). It is
also interesting to note that the model performs
the best in Yes/No questions as shown in Table 5,
reaching an accuracy of 70.6%.
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Question: Wojtek Wolski played for what team based
in the Miami metropolitan area?
GT Answer: Florida Panthers
GT Facts:
[Florida Panthers,0]: The Florida Panthers are a
professional ice hockey team based in the Miami
metropolitan area. (P-Score : 0.99; S-Score : 0.98)
[Wojtek Wolski,1]: In the NHL, he has played for
the Colorado Avalanche, Phoenix Coyotes, New York
Rangers, Florida Panthers, and the Washington Capi-
tals. (P-Score : 0.98; S-Score : 0.95)

Distracting Fact:
[History of the Miami Dolphins,0]: The Miami
Dolphins are a professional American football fran-
chise based in the Miami metropolitan area. (P-Score :
0.56; S-Score : 0.97)

Wrong Answer : The Miami Dolphins

Figure 6: An example with a distracting fact. P-Score
and S-Score are the retrieval score at paragraph and
sentence level respectively. The full pipeline was able
to filter the distracting fact and give the correct answer.
The wrong answer in the figure was produced by the
system without paragraph-level retrieval module.

6.4 Examples
Fig. 6 shows an example that is correctly handled
by the full pipeline system but not by the system
without paragraph-level retrieval module. We can
see that it is very difficult to filter the distract-
ing sentence after sentence-level either by the sen-
tence retrieval module or the QA module.

Above findings in both FEVER and HOT-
POTQA bring us some important guidelines for
MRS: (1) A paragraph-level retrieval module is
imperative; (2) Downstream task module is able
to undertake a certain amount of noise from
sentence-level retrieval; (3) Cascade effects on
downstream task might be caused by modification
at paragraph-level retrieval.

7 Conclusion

We proposed a simple yet effective hierarchical
pipeline system that achieves state-of-the-art re-
sults on two MRS tasks. Ablation studies demon-
strate the importance of semantic retrieval at both
paragraph and sentence levels in the MRS sys-
tem. The work can give general guidelines on
MRS modeling and inspire future research on the
relationship between semantic retrieval and down-
stream comprehension in a joint setting.
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Appendix

A Training Details

Module BS. # E. k h

P-Level Retri. 64 3 {2, 5} {5e-3, 0.01, 0.1, 0.5}
S-Level Retri. 128 3 {2, 5} [0.1-0.5]
QA 32 5 - -
Verification 32 5 - -

Table 6: Hyper-parameter selection for the full pipeline
system. h and k are the retrieval filtering hyper-
parameters mentioned in the main paper. P-level and
S-level indicate paragraph-level and sentence-level re-
spectively. “{}” means values enumerated from a set.
“[]” means values enumerated from a range with inter-
val=0.1 “BS.”=Batch Size “# E.”=Number of Epochs

The hyper-parameters were chosen based on the
performance of the system on the dev set. The
hyper-parameters search space is shown in Table 6
and the learning rate was set to 10−5 in all experi-
ments.

B Term-Based Retrieval Details

FEVER We used the same key-word matching
method in Nie et al. (2019) to get a candidate set
for each query. We also used TF-IDF (Chen et al.,
2017) method to get top-5 related documents for
each query. Then, the two sets were combined to
get final term-based retrieval set for FEVER. The
mean and standard deviation of the number of the
retrieved paragraph in the merged set were 8.06
and 4.88.

HOTPOTQA We first used the same procedure
on FEVER to get an initial candidate set for each
query in HOTPOTQA. Because HOTPOTQA re-
quires at least 2-hop reasoning for each query, we
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hp
S-Level Retrieval Answer Joint

EM Prec. Rec. F1 EM F1 EM F1 Prec. Rec.

0 3.17 42.97 81.20 55.03 46.95 59.73 1.81 37.42 29.99 57.66
0.1 30.06 65.26 78.50 69.72 47.48 59.78 19.62 47.86 46.09 55.63
0.2 34.83 69.59 76.47 71.28 47.62 59.93 22.89 49.15 49.24 54.53
0.3 37.52 72.21 74.66 71.81 47.14 59.51 24.63 49.44 50.67 53.55
0.4 39.16 74.17 72.89 71.87 46.68 58.96 25.81 49.18 51.62 51.90
0.5 39.86 75.60 71.15 71.54 46.50 58.81 26.60 49.16 52.59 50.83
0.6 39.80 76.59 69.05 70.72 46.22 58.31 26.53 48.48 52.86 49.48
0.7 38.95 77.47 66.80 69.71 45.29 57.47 25.96 47.59 53.06 47.86
0.8 37.22 77.71 63.70 67.78 44.30 55.99 24.67 45.92 52.41 45.32
0.9 32.60 75.60 57.07 62.69 42.08 52.85 21.44 42.26 50.48 40.61

Table 7: Detailed Results of downstream sentence-level retrieval and question answering with different values of
hs on HOTPOTQA.

then extract all the hyperlinked documents from
the retrieved documents in the initial candidate set,
rank them with TF-IDF (Chen et al., 2017) score
and then select top-5 most related documents and
add them to the candidate set. This gives the fi-
nal term-based retrieval set for HOTPOTQA. The
mean and standard deviation of the number of the
retrieved paragraph for each query in HOTPOTQA
were 39.43 and 16.05.

C Detailed Results

• The results of sentence-level retrieval and
downstream QA with different values of hs
on HOTPOTQA are in Table 7.

• The results of sentence-level retrieval and
downstream verification with different values
of hs on FEVER are in Table 8.

• The results of sentence-level retrieval and
downstream QA with different values of kp
on HOTPOTQA are in Table 9.

D Examples and Case Study

We further provide examples, case study and error
analysis for the full pipeline system. The examples
are shown from Tables 11, 12, 13, 14, 15. The ex-
amples show high diversity on the semantic level
and the error occurs often due to the system’s fail-
ure of extracting precise (either wrong, surplus or
insufficient) information from KB.
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hs
S-Level Retrieval Verification

Precision Recall F1 Label Accuracy FEVER Score

0 26.38 89.28 40.74 71.93 67.26
0.1 61.41 86.27 71.51 74.73 70.08
0.2 71.29 83.38 76.87 75.03 70.13
0.3 76.45 81.08 78.70 74.73 69.55
0.4 80.52 78.95 79.73 73.57 68.70
0.5 83.76 76.31 79.85 73.30 68.39
0.6 86.73 72.70 79.10 71.85 66.96
0.7 89.91 67.71 77.25 69.53 65.15
0.8 93.22 60.16 73.13 65.73 62.00
0.9 96.52 47.63 63.78 58.98 56.51

Table 8: Results with different hs on FEVER.

kp
S-Level Retrieval Answer Joint

EM Prec. Rec. F1 EM F1 EM F1 Prec. Rec.

1 0 81.28 40.64 53.16 26.77 35.76 0 21.54 33.41 17.32
2 39.86 75.60 71.15 71.54 46.56 58.74 26.6 49.09 52.54 50.79
3 10.53 59.54 74.13 63.92 43.63 55.51 7.09 40.61 38.52 49.20
4 6.55 50.60 74.46 57.98 40.42 51.99 4.22 34.57 30.84 45.98
5 4.89 45.27 73.60 53.76 39.02 50.36 2.97 32.14 26.92 43.89
6 3.70 42.22 71.84 51.04 37.35 48.41 2.36 28.66 24.37 41.63
7 3.13 40.22 70.35 49.15 36.91 47.70 2.05 27.49 23.10 40.60
8 2.88 38.77 69.28 47.83 36.28 46.99 1.88 26.58 22.13 39.85
9 2.57 37.67 68.46 46.81 35.71 46.30 1.68 25.77 21.32 38.87

10 2.31 36.74 67.68 45.94 35.07 45.74 1.50 25.05 20.56 38.21
11 2.09 35.97 67.04 45.21 34.96 45.56 1.39 24.65 20.18 37.60
12 1.89 35.37 66.60 44.67 34.09 44.74 1.22 23.99 19.57 36.98

Table 9: Detailed Results of downstream sentence-level retrieval and question answering with different values of
kp on HOTPOTQA.

Question: D1NZ is a series based on what oversteering technique?

Ground Truth Facts: (D1NZ, 0) D1NZ is a production car drifting series in New Zealand.
(Drifting (motorsport), 0) Drifting is a driving technique where the driver
intentionally oversteers...

Ground Truth Answer: Drifting

Predicted Facts: (D1NZ, 0) D1NZ is a production car drifting series in New Zealand.
(Drifting (motorsport), 0) Drifting is a driving technique where the driver
intentionally oversteers...

Predicted Answer: Drifting

Table 10: HotpotQA correct prediction with sufficient evidence.
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Question: The football manager who recruited David Beckham managed Manchester United
during what timeframe?

Ground Truth Facts: (1995-96 Manchester United F.C. season, 2) Alex Ferguson had sold experienced
players Paul Ince , Mark Hughes and Andrei Kanchelskis...
(1995-96 Manchester United F.C. season,3) Instead , he had drafted in young
players like Nicky Butt, David Beckham, Paul Scholes...
(Alex Ferguson,0) Sir Alexander Chapman Ferguson... who managed Manchester
United from 1986 to 2013.

Ground Truth Answer: from 1986 to 2013

Predicted Facts: (Matt Busby,0) Sir Alexander Matthew Busby , CBE... who managed Manchester
United between 1945 and 1969...

Predicted Answer: 1945 and 1969

Table 11: HotpotQA incorrect prediction with insufficient/wrong evidence.

Question: Where did Ian Harland study prior to studying at the oldest college at the University
of Cambridge?

Ground Truth Facts: (Ian Harland,0) From a clerical family... Harland was educated at
The Dragon School in Oxford and Haileybury.
(Ian Harland,1) He then went to university at Peterhouse, Cambridge, taking a law
degree.
(Peterhouse, Cambridge, 1) It is the oldest college of the university...

Ground Truth Answer: The Dragon School in Oxford

Predicted Facts: (Ian Harland,0) From a clerical family... Harland was educated at
The Dragon School in Oxford and Haileybury.
(Ian Harland,1) He then went to university at Peterhouse, Cambridge, taking a law
degree.
(Peterhouse, Cambridge, 1) It is the oldest college of the university...
(Ian Harland, 2) After two years as a schoolmaster at Sunningdale School he studied
for the priesthood at Wycliffe Hall, Oxford and be

Predicted Answer: Wycliffe Hall , Oxford

Table 12: HotpotQA incorrect prediction caused by extra incorrect information.

Claim: Heroes’ first season had 12 episodes.

Ground Truth Facts: (Heroes (U.S. TV series), 8) The critically acclaimed first season had a run of 23 episodes
and garnered an average of 14.3 million viewers in the United States, receiving the highest
rating for an NBC drama premiere in five years.

Ground Truth Label: REFUTES

Predicted Facts: (Heroes (U.S. TV series), 8) The critically acclaimed first season had a run of 23 episodes
and garnered an average of 14.3 million viewers in the United States, receiving the highest
rating for an NBC drama premiere in five years.

Predicted Label: REFUTES

Table 13: FEVER correct prediction with sufficient evidence

Claim: Azithromycin is available as a generic curtain.

Ground Truth Facts: (Azithromycin, 17) Azithromycin is an antibiotic useful for the treatment of a number of
bacterial infections.
(Azithromycin, 11) Azithromycin is an azalide , a type of macrolide antibiotic.
(Azithromycin, 0) It is available as a generic medication and is sold under many trade names
worldwide.

Ground Truth Label: REFUTES

Predicted Facts: (Azithromycin, 17) It is available as a generic medication and is sold under many trade names
worldwide.

Predicted Label: NOT ENOUGH INFO

Table 14: FEVER incorrect prediction due to insufficient evidence
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Claim: University of Chicago Law School is ranked fourth by Brain Leiter on the ”Top 15 Schools”
From Which the Most ‘PrestigiousĹaw Firms Hire New Lawyers.”

Ground Truth Facts: (University of Chicago Law School,6) Chicago is ranked second by Brian Leiter of the
University of Chicago Law School on the Top 15 Schools From Which the Most Prestigious
Law Firms Hire New Lawyers, and first for Faculty quality based on American Academy of
Arts and Sciences Membership.

Ground Truth Label: REFUTES

Predicted Facts: (University of Chicago Law School,6) Chicago is ranked second by Brian Leiter of the
University of Chicago Law School on the Top 15 Schools From Which the Most Prestigious
Law Firms Hire New Lawyers, and first for Faculty quality based on American Academy of
Arts and Sciences Membership.
(University of Chicago Law School,4) U.S. News and World Report ranks Chicago fourth
among U.S. law schools, and it is noted for its influence on the economic analysis of law.

Predicted Label: NOT ENOUGH INFO

Table 15: FEVER incorrect prediction due to extra wrong evidence


