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Abstract 

Answering multiple-choice questions in a 

setting in which no supporting documents 

are explicitly provided continues to stand 

as a core problem in natural language 

processing. The contribution of this article 

is two-fold. First, it describes a method 

which can be used to semantically rank 

documents extracted from Wikipedia or 

similar natural language corpora. Second, 

we propose a model employing the 

semantic ranking that holds the first place 

in two of the most popular leaderboards for 

answering multiple-choice questions: ARC 

Easy and Challenge. To achieve this, we 

introduce a self-attention based neural 

network that latently learns to rank 

documents by their importance related to a 

given question, whilst optimizing the 

objective of predicting the correct answer. 

These documents are considered relevant 

contexts for the underlying question. We 

have published the ranked documents so 

that they can be used off-the-shelf to 

improve downstream decision models. 

1 Introduction 

The article at hand devotes to the problem of 

answering multiple-choice questions where the 

input consists of an inquiry expressed solely in raw 

natural language along with a small set of 

candidate answers (usually 4) from which only one 

is correct. Moreover, we are targeting questions 

from a field of science (e.g. chemistry, biology) as 

they are distinctly more challenging to answer than 

regular questions (Clark et al., 2018). A relevant 

example of such a question is the following: 

Which of the following is an example of a 

physical change? (A) Lighting a match (B) 

Breaking a glass (C) Burning of gasoline 

(D) Rusting of iron 

An important characteristic of all solutions 

developed for this task is that they are not given 

explicitly any external information in the form of 

documents supporting the correct answer or semi-

structured information. However, external 

information is highly desirable, especially domain 

and common-sense knowledge. Thus, most of the 

state of the art solutions (Pîrtoacă et al., 2018; 

Nicula et al., 2018; Ni et al., 2018; Zhang et al., 

2018) are using a two-step architecture, as shown 

in Figure 1. In the first phase, an information 

retrieval (IR) engine lexically searches for relevant 

supporting paragraphs in Wikipedia and other 

corpora considered relevant for the task. Having 

extracted some pertinent paragraphs (usually only 

one per candidate answer), potentially containing 

relevant information, a machine learning model is 

employed in the second step to reason about tuples 

(question, candidate answer, external 

information). Various downstream decision 

models are trained to infer whether the candidate 

answer is correct given the external information: 

transformers (Pan et al., 2019), attention models 

(Clark et al., 2018; Ni et al., 2018), or support 

vector machines (Clark et al., 2016). 

However, it has been previously reported that a 

retrieval-based engine alone is not able to return 

relevant documents from the reference corpora 

(Pîrtoacă et al., 2018; Zhang et al., 2018). 

Depending on the dataset used as an external 

reference, about 50% of the questions have 

insufficient and irrelevant support from a standard 

retrieval model (Zhang et al., 2018). Therefore, the 

decision engine that relies on the quality of the 

supporting documents will be highly affected. 

Irrelevant documents disturb the training process 

since the models are trained on “wrong” (or noisy) 
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data. As a result, the end-to-end performance of 

question answering (QA) systems decreases 

considerably. This article improves the current 

retrieval scheme by semantically ranking the 

retrieved documents, placing the most relevant 

ones at the top with a neural self-attention model. 

We conduct our experiments on two significant 

datasets containing science-related multiple-

choice questions collected from official 

examinations: ARC Easy and ARC Challenge 

(Clark et al., 2018). The former consists of easier 

questions, whereas the latter incorporates more 

difficult queries that require inference and external 

knowledge. In the results section, we are going to 

observe that our approach achieves state-of-the-art 

accuracy on both datasets whilst acknowledging 

their core difference stated by the large gap in the 

performance: about 28% difference in the accuracy 

between Easy and Challenge questions. 

In this paper, we make the following important 

contributions: 

1) We introduce a neural network architecture, 

called Attentive Ranker that latently learns to rank 

supporting documents at a semantic level. The 

classifier is trained to predict the correct answer to 

a multiple-choice question achieving state of the 

art accuracy on the two ARC datasets: Easy 

(72.30%) and Challenge (44.72%). 

2) We show that the set of documents computed 

by our semantic ranking system can be off-the-

shelf adopted by various downstream classifiers to 

boost their performance (by up to 7%). 

2 Related Work  

A lot of effort has been invested to extract more 

relevant external documents from natural language 

corpora to improve QA systems. One approach is 

to identify the essential terms in questions 

(Pîrtoacă et al., 2018; Khashabi et al., 2017) and 

use these terms to improve the quality of the 

                                                             
1 Available at http://allenai.org/data.html 

extracted documents. Essential terms are 

particularly useful for long questions that are 

intentionally injected with noisy information by 

teachers to assess the reading comprehension of 

examined students (which is the case of the ARC 

dataset, collected indeed from examinations). 

Pîrtoacă et al. (2018) propose a neural network 

architecture, with a small number of parameters, 

trained to annotate each term in the question with 

an essentialness score from 0 to 5. The architecture 

is based on LSTM units (Hochreiter and 

Schmidhuber, 1997) but with some pre-computed 

features added to the input to overcome the 

problem of small datasets: part of speech, a 

concreteness score for each term (Brysbaert et al., 

2014), dependency relations from the parsing tree. 

The authors show that using the essential terms to 

extract documents improves the accuracy of 

multiple-choice QA systems by up to 4% on the 

ARC dataset (versus a standard IR approach). This 

highlights that more relevant documents are 

retrieved using essential terms. 

In a similar spirit, Khashabi et al. (2017) report 

the importance of essential terms for the same 

multiple-choice QA task but on different datasets. 

They propose an essential term classifier in the 

form of a linear Support Vector Machine (SVM) 

trained on syntactic and semantic features 

extracted from the question. In total, about 120 

types of features (with their combinations) are fed 

into the classifier. Incorporating the computed 

essential terms in the IR engine yields an increase 

in the number of questions correctly answered by 

up to 5% on the REGENTS and the AI2PUBLIC 

datasets1. 

Furthermore, Jansen et al. (2017) formulate the 

multiple-choice question answering problem into 

extracting answer justifications and then ranking 

them. A perceptron is trained to jointly rank the 

answers along together with their justifications 

considering the relevance of justifications as a 

latent variable. The ranking model is tested on a 

corpus of 1,000 primary school questions, 

answering 44% of the questions correctly, 

empirically showing that about 57% of the 

justifications are meaningful. 

On another note, the state of the art downstream 

decision models are mainly based on transformers 

(Vaswani et al., 2017) and pre-retrained language 

models (Devlin et al., 2018; Radford et al., 2019). 

 

Figure 1: The general high-level architecture of a 
question answering system 

http://allenai.org/data.html
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Sun et al. (2018) present some reading strategies 

for machine reading comprehension such as back 

and forth reading or highlighting. These strategies 

are carried out by fine-tuning a generative 

transformer (GPT) (Radford, 2018). Their model 

was the state of the art approach on the ARC 

dataset (both Easy and Challenge) prior to our 

proposed model. 

Previous work has shown that the performance 

of models on QA datasets drops dramatically when 

a document is not provided to support answering 

the question. Chen et al. (2017) proposed a model, 

called DrQA, that was trained on the SQuAD 1.1 

dataset (Rajpurkar et al., 2016) to find the correct 

answer to open-domain questions. When a valid 

document is provided - guaranteed to contain the 

correct answer - the exact match (EM) score 

obtained by DrQA is 69.5. However, when the 

supporting document has to be retrieved from 

Wikipedia, by an information retrieval engine, the 

EM score drops to 27.1. This suggests that research 

has to be invested in improving retrieval strategies 

and candidate document ranking methods. 

As this related work section suggests, the main 

direction currently approached for increasing the 

quality of the extracted documents is to employ 

essential term information in a form or another and 

blend this knowledge in the query sent to the 

retrieval engine. Our paper proposes a completely 

different strategy, which is based on semantically 

ranking the extracted documents using a neural 

network that learns to select the most meaningful 

and discriminative documents for a given question. 

3 Proposed approach 

We briefly describe how an IR engine is used to 

extract external information (e.g. supporting 

documents) from natural language resources like 

Wikipedia to support QA systems. Then, the paper 

continues with our proposed approach towards 

rectifying the shortcomings of the current 

retrieval-based extraction methods. 

3.1 Extracting supporting documents 

It is undeniable that external information is deeply 

required in some form or another for answering a 

given question. Humans capture that information 

by learning, by experiencing and from common-

sense knowledge. For machine learning models, 

external information is injected as input during 

                                                             
2 http://data.allenai.org/arc/arc-corpus/ 

training. Given a question and a candidate answer, 

documents containing information relevant to each 

(question, candidate answer) pair are usually 

extracted from raw text corpora (Pîrtoacă et al., 

2018, Nicula et al., 2018). For the example 

question mentioned earlier in this paper, a good 

supporting document would be the following one: 

“When a glass is broken, a lot of small sharp glass 

pieces are formed and spread around.” Given this 

information, a decision component such as a neural 

network should be able to deduce that “breaking a 

glass” is indeed an “example of a physical 

change”, thus predicting the correct answer. 

Natural language corpora like Wikipedia, ARC 

Corpus2 , or a large collection of science books 

crawled from the World Wide Web (Pîrtoacă et al., 

2018) are split into articles, paragraphs, or even at 

the sentence level and then indexed using various 

search engines: Lucene (Białecki et al., 2012) or 

ElasticSearch (Gormley and Tong, 2015), to make 

the entire query process a lot faster. After the 

indexing phase is completed, queries are sent to the 

IR engine in the format “question tokens” AND 

“answer tokens”, thus retrieving documents that 

contain tokens from the question and tokens from 

the answer (at least one from each) which are, 

desirably, semantically relevant – and they should 

be up to one point, depending on the question 

difficulty and how it is formulated. Notice that for 

each candidate answer, a set of documents are 

retrieved and they will be used by some decision 

engine to derive if the candidate answer is correct 

or not. In some cases, no decision engine is used at 

all and the candidate answer with the highest 

matching score (for example, TF-IDF (Manning et 

al., 2010)) is predicted as the correct one. During 

this paper, we will refer to this simple approach as 

the “IR baseline”. 

In this paper, we will build upon the 

aforementioned IR baseline by adding a layer on 

the top of it, which is a neural network capable of 

latently learning to better rank the documents (as 

compared to the IR baseline). 

http://data.allenai.org/arc/arc-corpus/
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3.2 Towards a better retrieval engine 

An important problem of QA systems is the IR 

approach for extracting relevant documents. Using 

a token-based retrieval (Lucene, ElasticSearch) 

and keeping the most relevant document as dictated 

by a lexical score (e.g. TF-IDF, Okapi BM25 

(Manning et al., 2010)) does not produce relevant 

supporting documents for a significant proportion 

of the questions (Zhang et al., 2018). Our work is 

a trade-off between the computational 

performance of such systems and the expressivity 

of semantic level retrieval. Our main research 

hypothesis is that semantically ranking the first N 

(e.g. N = 100 or 500) returned documents instead 

of sorting them by a lexical metric produces better 

results and delivers more meaningful documents 

for answering the question at hand. In other words, 

some better documents can be found in the first N 

(where N is a small number), but the best is not 

always the one with the highest lexical (e.g. TF-

IDF) score. We are going to validate our hypothesis 

in the results section by showing that we can 

achieve state-of-the-art accuracy on both ARC 

Easy and Challenge, significantly improving the 

performance of the same decision model without 

the proposed semantic ranking.  

In order to semantically discern relevant and 

irrelevant documents for a given question, we are 

designing a set of discriminators, each receiving a 

tuple (question, candidate answer, and document) 

and returning a confidence score. A higher score 

means that the document contains relevant 

information for answering the question, whereas a 

score equal to 0 signifies a document that can be 

ignored as it is noisy or unrelated. These 

discriminators are the core idea in our approach 

and they will be used further on to learn how to 

rank the documents. As will be expanded, these are 

deep learning models pre-trained to achieve some 

particular (semantically related) objective. In the 

next sections, various discriminators are 

illustrated, and, after that, we present how they are 

combined to produce the final ranking model. 

3.3 Document relevance discriminator 

This discriminator’s purpose is to determine 

whether or not the document has any significance 

in answering the question at hand. It ignores the 

candidate answer and takes into account only the 

question and the document. The intuition is that 

some documents are clearly not helpful for the 

question as they do not contain any relevant 

information. For example, consider the question: 

“How many electrons does a hydrogen atom 

have?” and the following two possible extracted 

documents: “The hydrogen atom is an electrically 

neutral atom, usually denoted using the symbol 

H.“, and “The hydrogen is a chemical element with 

a single electron orbiting its nucleus.” It is clear 

that the second context is relevant, whilst the first 

one is not that important. Therefore, in the ranking 

process, we should place the latter, lower in the list 

of candidate documents, because semantically it is 

not relevant for the question at hand, although it 

has a large TF-IDF score. 

We have constructed this discriminator by 

training a neural network on an adapted version of 

the SQuAD 2.0 dataset (Rajpurkar et al., 2018). 

The network receives a question and a document 

as input and produces a score between 0 and 1, 

correlated with the significance of the document 

for the question. 

The SQuAD 2.0 dataset has the following 

structure: a paragraph of raw text and a question 

targeting the information in the paragraph. The 

answer can be either a span from the paragraph or 

“not answerable”, meaning that an answer cannot 

be deduced based solely on the information in the 

paragraph. Observe the duality of the task: a “not 

answerable” entry also means that the paragraph is 

not relevant to the question. This is the key insight 

that we are going to exploit. We adopted the 

SQuAD 2.0 dataset, but translated the task into a 

binary one: is the question answerable or not? 

Notice that if an answer exists, we pay no attention 

to the answer itself, the important fact being that 

the paragraph contains an answer for the question. 

The resulting dataset has about 100k questions 

where an answer exists and 50k questions with no 

valid answer in the given paragraph. 

The dataset size is generous enough to enable 

training deep neural architectures. We have tried 

four different neural networks to play the role of a 

document relevance discriminator. The first model 

encodes the question and the document via 2 layers 

of independent Gated Recurrent Unit (GRU) cells 

Model Validation Accuracy 

GRU with GloVe 59.04% 

GRU with ELMo 60.90% 

BERT Base 75.30% 

BERT Large 80.43% 

Table 1: Discriminative performance of the models 

on the adapted SQuAD 2.0 validation set 
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(Cho et al., 2014) with the words embedded into a 

50-dimensional vector space using pre-trained 

GloVe word vectors (Pennington et al., 2014). 

Replacing GRU with Long-Short Term Memory 

(LSTM) cells (Hochreiter and Schmidhuber, 1997) 

gives similar performance but the training 

procedure is computationally more expensive. On 

top of the representations computed by the GRUs, 

we added 2 layers of feed-forward connections, the 

decision phase of the network. 

In the second approach, we replaced the first 

layer of GRUs with the more expressive ELMo 

encoder (Peters et al., 2018). The other parts of the 

architecture have not been modified. 

Last but not least, we deployed a pre-trained 

transformer, BERT (Devlin et al., 2018), both the 

base version with 12 layers and the large version 

with 24 layers of transformers. BERT is currently 

the state-of-the-art approach in multiple NLP tasks 

including open-domain question answering and 

reading comprehension (Devlin et al., 2018). We 

fine-tuned the model on the SQuAD 2.0 dataset, 

with the following hyperparameters: learning rate: 

3e-5, warm-up steps: 10% (refer to the BERT 

paper (Devlin et al., 2018) for further details), 

sequence length: 425 tokens, batch size: 24 for 

BERT Large and 10 for BERT base. In order to 

fine-tune BERT Large, we employed one Tensor 

Processing Unit (TPU) for about 2 hours. The 

tokenization has been done following the 

recommendations in the original paper (Devlin et 

al., 2018) and the input to the network as the 

following structure: “[CLS] question [SEP] 

supporting document [SEP]”.  

These four different discriminators were trained 

with the objective of discerning between relevant 

and irrelevant supporting documents for a given 

question. Their binary accuracies are reported in 

Table 1. All models were trained on the modified 

SQuAD 2.0 train split and the performance is 

reported on the validation dataset. The 

effectiveness of the BERT Large model is much 

better than the others, as expected. Therefore, this 

fine-tuned model is chosen as the final document 

relevance discriminator (DRD). 

3.4 Answer verifier discriminator 

The purpose of the second discriminator is to probe 

whether the answer can be inferred to be correct 

given the supporting document. Of course, we 

want to rank documents taking into account if they 

can be used to find the correct answer. Please 

notice the core difference between the DRD and 

the answer verifier discriminator (ARD). The latter 

is also considering the answer at hand, whereas the 

former only examines the question and the given 

supporting document. 

Training the discriminator is performed on the 

RACE (Reading Comprehension Dataset) which is 

also collected from English Examinations (Lai et 

al., 2017). The structure of the dataset is perfect for 

our situation. It contains multiple-choice questions 

with relevant supporting paragraphs for the correct 

answer. It is guaranteed that the answer can be 

deduced by understanding the information in the 

associated paragraph. We transform this dataset 

into tuples (question, candidate answer, 

paragraph) that are labeled either as negative, 

meaning that the answer cannot be verified using 

the paragraph (for incorrect answers), or as 

positive – reinforcing the fact that the paragraph 

can be used to infer that the answer is correct. The 

RACE dataset is extremely suitable in this 

situation as it always provides a paragraph that is 

relevant to the question. This is not the case for the 

ARC dataset, in which no supporting document is 

given – thus, one has to be extracted and it is not 

guaranteed to be always the “right” document. 

We have fine-tuned the BERT Large model on 

the joined RACE middle-school and RACE high-

school datasets, totaling near 100k questions with 

28k documents. Each question generates 4 entries 

for the ARD: the 3 wrong answers generate 3 

negative examples and the correct answer 

generates one positive example. 

The hyperparameters used for fine-tuning BERT 

are similar to the DRD discriminator, with 

differences in the maximum sequence length (512 

tokens for RACE vs. 425 tokens for SQuAD 2.0). 

These hyperparameters were found by trying 

multiple sensible assignments and selecting the 

best one according to the validation error. Results 

are reported in the next section on the test split.  

Each tuple (question, answer, and document) is 

fed into the BERT model as: “[CLS] question 

[SEP] answer [SEP] document [SEP]”. The final 

accuracy of the model on the merged RACE 

middle and high test datasets is 68.28%. 

As a remark, we want to highlight that both the 

DRD and ARD discriminators have been trained 

on different datasets than the final multiple choice 

QA model, which is trained and evaluated on the 

ARC Easy and Challenge datasets. Hence, our 

intuition was that transfer learning will succeed 
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even though there are some core differences in the 

nature of the datasets. 

3.5 TF-IDF discriminator 

We decided to also consider the TF-IDF score 

computed by Lucene as the third discriminator. 

This is a lexical (non-semantic) discriminator but 

it might helpful for simpler questions, especially 

the ones in the ARC Easy dataset. 

3.6 Ranking architecture 

We have described three discriminators whose 

purpose is to discern between relevant and useless 

documents extracted by the IR engine. As 

mentioned, our proposed approach is to retrieve the 

first 𝑁 documents and then rank them taking into 

account a semantic criterion (as dictated by the 

pre-trained discriminators). In this section, we are 

going to describe a neural network that is latently 

learning to rank the extracted documents whilst 

selecting the correct answer to the question. 

In the ARC dataset, more than 95% of the 

questions have exactly 4 candidate answers and 

only one is correct. For a given question and a 

candidate answer, we pass the extracted 𝑁 

documents though the set of discriminators 

obtaining a list of scores, one for each 

discriminator. These scores need to be combined 

into a final answer score by a mechanism, called 

Attentive Ranker, inspired from self-attention 

which we will describe in the next paragraphs.  

As shown in Figure 2, each supporting 

document is associated with a list of scores 

computed by the discriminators. These scores are 

projected into a higher dimensional space using a 

learned projection matrix (we will denote by 𝐷 the 

dimension of the projection space – in our 

experiments,  𝐷 = 32). We then apply an attention 

mechanism over the semantically labeled 

documents to select the most relevant ones for a 

given candidate answer. Let 𝐴  be a 𝐷 𝑥 𝑁  matrix 

where each column is the encoding of a document 

after applying the set of discriminators and the 

projection step. As we are fetching 𝑁  documents 

using the IR engine, matrix 𝐴  has 𝑁 columns. 

Notice that this matrix encodes all the information 

for a given candidate answer. Next, inspired by the 

self-attention mechanism (Vaswani et al., 2017), 

we developed a way to relate documents between 

each other in order to compute a global 

representation for them. First of all, we project 

each row of the matrix 𝐴 into a key space (with 𝑀 

dimensions) whose purpose is to encode aspects 

about the quality (relevance) of the associated 

document (a column in matrix 𝐴): 

 𝐾 = tanh (𝑊𝑘𝐴 ⨁ 𝑏𝑘) (1) 

where 𝐴 ∈ ℝ𝐷𝑥𝑁 , 𝑊𝑘 ∈ ℝ𝑀𝑥𝐷 , 𝑏𝑘 ∈ ℝ𝑀  and by 

the ⨁ operator, we denote the addition of a vector 

to each column of a matrix (here and throughout 

the rest of the paper). Second, each column of 

matrix 𝐴  is encoded into a value space (with 𝑄 

dimensions), which is going to dictate the output of 

the attention mechanism: 

 𝑉 = relu (𝑊𝑉𝐴 ⨁ 𝑏𝑉)  (2) 

where 𝑊𝑉 ∈ ℝ𝑄𝑥𝐷 , 𝑏𝑉 ∈ ℝ𝑄. The intuition is that 
the value space is dictating what the output of the 

attention should be, whereas the key space encodes 

necessary information about which elements 
(documents in our case) the network should pay 

attention to. Third, we normalize the key vectors 

using the softmax function: 

 𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑃𝐾 ⨁ 𝑏𝑃)  (3) 

where 𝑊𝑃 ∈ ℝ1𝑥𝑀 , 𝑏𝑃 ∈  ℝ and the bias is added 

to each element of  𝑃 ∈ ℝ1𝑥𝑁 .  As a result, the 

weights in 𝑃  dictate to what extent the network 

should attend each document. The output of the 

layer is the weighted sum of the value vectors: 

 𝑌 = 𝑉𝑃𝑇  (4) 

The same procedure is applied to all candidate 

answers and the attention weights are shared 

because we want to have the same representation 

regardless of the position of the answer in the 

candidate list (e.g. answer A, B, C, or D). Figure 2 

shows the entire encoding procedure and how the 

attention network is applied. 

Observe the fact that for each candidate answer 

a score (a vector with the dimension of the value 

space) is obtained by applying a general function. 

This score is further used to infer which of the four 

possible answers is, indeed, correct. This decision 

 

Figure 2: Applying discriminators for a candidate 

answer and ranking the documents 
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step is accomplished by a simple feed-forward 

network (Figure 3). 

As a result, one can view this architecture as a 

feedback loop system. The neural network learns 

to predict the correct answer. In order to predict the 

correct answer, it is constrained to select more 

relevant documents. More relevant documents 

result in better classification, and so on. Thus, the 

proposed QA self-attention model, called Attentive 

Ranker, is jointly Answering questions by learning 

to rank and Learning to rank by answering 

questions. 

In the following section, we highlight how the 

Attentive Ranker can improve QA systems by 

combining semantic information from a small 

number of supporting documents extracted with an 

IR engine. 

4 Results 

We report our model performance on two of the 

most important multiple-choice science questions 

datasets: ARC Easy and ARC Challenge (Table 2). 

During training, due to the small size of the 

datasets, we experienced a large variance in 

performance. To partially overcome this issue, we 

have trained the models a number of times with 

different random initialization and kept the weights 

producing the lowest validation loss as the final 

weights for the QA model. 

We have used two knowledge bases in order to 

retrieve external supporting information: the ARC 

Corpus (Clark et al., 2018) which contains 14M 

science-related sentences and a book collection 

(Pîrtoacă et al., 2018) consisting of about 35 books 

crawled from online resources such as CK12 3 . 

Hereinafter, when we mention top 𝑁  retrieved 

documents, it means that top 𝑁 / 2  are fetched 

from ARC Corpus and 𝑁 / 2  are extracted from 

                                                             
3 https://www.ck12.org/ 

the book collection, giving the two knowledge 

bases equal importance.  

The ranking neural network is trained for about 

50 epochs, batch size 128, with categorical cross 

entropy loss, optimized using Adam (Kingma and 

Ba, 2014). 

First, it is important to observe the impact of the 

number of documents, 𝑁 , on the model’s 

performance (refer to Figure 4 and Figure 5). 

Considering more than one document improves the 

accuracy, thus verifying our initial assumption that 

relevant supporting documents can be found in the 

first 𝑁, but it is not always the case that the first 

one is the most relevant. As it can be observed in 

Figures 4 and 5, there is a large improvement in 

accuracy when increasing from 1 to 5 documents. 

The accuracy continues to increase for both ARC 

Easy and ARC Challenge until it reaches a 

maximum at about 40 documents. Thus, for the 

next experiments, we set the number of documents 

to 40 (20 from the ARC corpus and 20 from the 

science book collection). 

 

Figure 3: Applying discriminators for a candidate 

answer and ranking the documents 

Dataset Train Dev Test 

ARC Easy 2,251 570 2,376 

ARC Challenge 1,119 299 1,172 

Table 2: Number of questions in the ARC dataset 

 

 

Model Accuracy 

Random guess 25.00% 

IR Solver 62.55% 

Reading Strategies (previous SOTA) 68.90% 

Attentive Ranker (ours) 72.30% 

Table 3: Results on ARC Easy test  

 

 

Model Accuracy 

Random guess 25.00% 

BERT (our implementation) 40.00% 

Reading Strategies 42.32% 

BERT (previous SOTA - Microsoft) 44.62% 

Attentive Ranker (ours) 44.72% 

Table 4: Results on ARC Challenge test  

 

 

Dataset TFD +DRD +AVD 

ARC Easy 63.89% 67.48% 72.30% 

ARC Challenge 26.70% 34.16% 44.72% 

Table 5: The impact of adding more discriminators 

on the test set accuracy 

 

 

https://www.ck12.org/
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Second, we verified the model performance on 

the ARC test sets in order to check how the model 

generalizes on unseen data and to compare it with 

other top models in the ARC public leaderboard 

(https://leaderboard.allenai.org/arc/subm

issions/public). A summary of the results is 

reported in Table 3 and Table 4. In both cases, our 

Attentive Ranker model outperforms the current 

state-of-the-art (SOTA) approach proving that, 

indeed, performing a semantic ranking is very 

effective for QA systems. For a fair comparison, 

we also reported BERT results as obtained in our 

implementation and training. The previous SOTA 

was held by a Microsoft implementation of BERT. 

As an ablation study, we wanted to identify the 

contribution of the discriminators to the overall 

performance of the Attentive Ranker. We 

performed an experiment, where starting from the 

TF-IDF lexical discriminator, other discriminators 

are incrementally added to the scheme: document 

relevance discriminator (DRD) and answer verifier 

discriminator (AVD). The results are revealed in 

Table 5 where we measured the total number of  

questions correctly answered in the ARC Easy and 

ARC Challenge test sets. The influence of both 

semantic-level discriminators (DRD, AVD) is 

fundamental: they increase the performance with 

up to 20%, both contributing to the end-to-end 

accuracy. Notice that the discriminators have a 

greater impact on the challenge questions as those 

are radically more difficult and require high-level 

reasoning to determine the correct answer (that is 

why the TF-IDF discriminator, which works at a 

lexical level, has a performance close to random). 

One other examination that we enforced is to 

analyze whether the ranked documents that we 

computed (semantically sorted by our Attentive 

Ranker) are more relevant than the documents 

sorted by the TF-IDF metric. We fine-tuned a 

downstream BERT (Devlin et al., 2018) model that 

selects the most probable answer from the 

candidate list given a list of supporting documents. 

In the experiment split A, we fed this model with 

top 𝑁 documents as ranked by the TF-IDF metric 

and in experiment split B we fed the model with 

top 𝑁 documents as sorted by our ranking neural 

network (given the weights in the attention layer). 

 

Figure 4: Performance vs. number of documents 

measured on the ARC Easy validation set 

 

Figure 5: Performance vs. number of documents 
measured on the ARC Challenge validation set 

Dataset # docs Ranking Accuracy (Δ) 

Val. Top 1 TF-IDF 35.59% 

Val. Top 1 Ours 38.30% (+2.71) 

Val. Top 10 TF-IDF 35.93% 

Val. Top 10 Ours 43.72% (+7.79) 

Test Top 1 TF-IDF 34.93% 

Test Top 1 Ours 37.51% (+3.58) 

Test Top 10 TF-IDF 37.08% 

Test Top 10 Ours 40.00% (+2.92) 

Table 6: Downstream model performance on  

the ARC Challenge dataset comparing ranking with 

Attentive Ranker vs. TF-IDF  

 

 

 

Dataset # docs Ranking Accuracy (Δ) 

Val. Top 1 doc2vec 36.61% 

Val. Top 1 Ours 38.30% (+1.69) 

Val. Top 10 doc2vec 39.66% 

Val. Top 10 Ours 43.72% (+4.06) 

Test Top 1 doc2vec 33.90% 

Test Top 1 Ours 37.51% (+3.61) 

Test Top 10 dov2vec 37.85% 

Test Top 10 Ours 40.00% (+2.15) 

Table 7: Downstream model performance on  

the ARC Challenge dataset comparing ranking with 

Attentive Ranker vs. doc2vec  
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As we have previously shown, the ARC Challenge 

dataset is more eloquent for this type of semantical 

analysis due to the difficult questions it includes, 

thus, we use it for this investigation. 

Table 6 shows that using documents ranked by 

our attentive neural network always leads to a 

performance increase in downstream models, 

compared to TF-IDF. On the validation set, the 

improvement is considerably higher (+7.79) due to 

a possible over-fitting of the hyperparameters 

during the Attentive Ranker’s training.  

We also investigated the ability of the Attentive 

Ranker to sort the retrieved documents as 

compared to document embeddings – which may 

be used to measure the similarity between a 

question and a candidate document. The question 

and the documents are embedded using doc2vec 

(Le and Mikolov, 2014) pre-trained on English 

Wikipedia. Then, the documents are sorted by their 

cosine distance to the question. Therefore, the 

documents that are cosine-closest to a question 

should be more relevant in answering that question 

as they are more similar to the question in the 

doc2vec embeddings space. We would like to note 

that this approach, although reasonable, may suffer 

from a subtle problem: the question and the 

documents have different structures and it may be 

difficult for an embedding function to capture 

similarities defined as relevance: “the document is 

helpful in answering the question”. Table 7 

illustrates the performance of a downstream model 

(BERT) in answering the questions when fed with 

top 𝑁 (1 or 10) documents as ranked by Attentive 

Ranker or doc2vec. In all cases, the Attentive 

Ranker provided more relevant documents than 

doc2vec, to the BERT-based decision layer. On 

another hand, doc2vec yields better accuracies 

than the simple TF-IDF metric. 

Our hypothesis that the Attentive Ranker is 

suitable to rank the retrieved documents by their 

semantic value to the question is confirmed. 

Therefore, we decided to make the ranked set of 

documents public4 , in order to be used by other 

models. Please refer to the GitHub repository for 

instructions on how to use the ranked documents. 

In the same repository, one can find the source 

code and the full set of trained models. 

                                                             
4 https://bit.ly/2ZnBNLs 

5 Conclusion 

In this paper, we highlighted an important problem 

with many of the current approaches developed for 

multiple-choice question answering tasks. To 

overcome the poor performance of the IR engines 

used to retrieve supporting documents for 

(question, candidate answer) pairs, we described a 

method that semantically ranks the extracted 

supporting documents. For this, we proposed an 

attention-based neural network that latently learns 

to rank supporting documents by their relevance in 

answering the given question. The Attentive 

Ranker architecture depends on the existence of 

semantic discriminators which are pre-trained to 

distinguish between relevant and pointless 

documents. Our proposed model achieves state-of-

the-art accuracy on two significant datasets: ARC 

Easy (72.30%) and ARC Challenge (44.72%). 

Furthermore, we have shown that just replacing 

TF-IDF sorted documents with documents 

provided by our enhanced ranking method, highly 

improves the accuracy of various downstream 

decision models, by up to 7% in our experiments. 

Therefore, we have made the ranked documents 

public and further research can benefit from it. 
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