
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 2531–2540,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

2531

Abstract

Answering multiple-choice questions in a

setting in which no supporting documents

are explicitly provided continues to stand

as a core problem in natural language

processing. The contribution of this article

is two-fold. First, it describes a method

which can be used to semantically rank

documents extracted from Wikipedia or

similar natural language corpora. Second,

we propose a model employing the

semantic ranking that holds the first place

in two of the most popular leaderboards for

answering multiple-choice questions: ARC

Easy and Challenge. To achieve this, we

introduce a self-attention based neural

network that latently learns to rank

documents by their importance related to a

given question, whilst optimizing the

objective of predicting the correct answer.

These documents are considered relevant

contexts for the underlying question. We

have published the ranked documents so

that they can be used off-the-shelf to

improve downstream decision models.

1 Introduction

The article at hand devotes to the problem of

answering multiple-choice questions where the

input consists of an inquiry expressed solely in raw

natural language along with a small set of

candidate answers (usually 4) from which only one

is correct. Moreover, we are targeting questions

from a field of science (e.g. chemistry, biology) as

they are distinctly more challenging to answer than

regular questions (Clark et al., 2018). A relevant

example of such a question is the following:

Which of the following is an example of a

physical change? (A) Lighting a match (B)

Breaking a glass (C) Burning of gasoline

(D) Rusting of iron

An important characteristic of all solutions

developed for this task is that they are not given

explicitly any external information in the form of

documents supporting the correct answer or semi-

structured information. However, external

information is highly desirable, especially domain

and common-sense knowledge. Thus, most of the

state of the art solutions (Pîrtoacă et al., 2018;

Nicula et al., 2018; Ni et al., 2018; Zhang et al.,

2018) are using a two-step architecture, as shown

in Figure 1. In the first phase, an information

retrieval (IR) engine lexically searches for relevant

supporting paragraphs in Wikipedia and other

corpora considered relevant for the task. Having

extracted some pertinent paragraphs (usually only

one per candidate answer), potentially containing

relevant information, a machine learning model is

employed in the second step to reason about tuples

(question, candidate answer, external

information). Various downstream decision

models are trained to infer whether the candidate

answer is correct given the external information:

transformers (Pan et al., 2019), attention models

(Clark et al., 2018; Ni et al., 2018), or support

vector machines (Clark et al., 2016).

However, it has been previously reported that a

retrieval-based engine alone is not able to return

relevant documents from the reference corpora

(Pîrtoacă et al., 2018; Zhang et al., 2018).

Depending on the dataset used as an external

reference, about 50% of the questions have

insufficient and irrelevant support from a standard

retrieval model (Zhang et al., 2018). Therefore, the

decision engine that relies on the quality of the

supporting documents will be highly affected.

Irrelevant documents disturb the training process

since the models are trained on “wrong” (or noisy)

Answering questions by learning to rank -

Learning to rank by answering questions

George-Sebastian Pîrtoacă, Traian Rebedea, Ștefan Rușeți

University Politehnica of Bucharest, Faculty of Automatic Control and Computers

george.pirtoaca@stud.acs.upb.ro, {traian.rebedea, stefan.ruseti}@cs.pub.ro

mailto:george.pirtoaca@stud.acs.upb.ro
mailto:traian.rebedea@cs.pub.ro
mailto:stefan.ruseti@cs.pub.ro

2532

data. As a result, the end-to-end performance of

question answering (QA) systems decreases

considerably. This article improves the current

retrieval scheme by semantically ranking the

retrieved documents, placing the most relevant

ones at the top with a neural self-attention model.

We conduct our experiments on two significant

datasets containing science-related multiple-

choice questions collected from official

examinations: ARC Easy and ARC Challenge

(Clark et al., 2018). The former consists of easier

questions, whereas the latter incorporates more

difficult queries that require inference and external

knowledge. In the results section, we are going to

observe that our approach achieves state-of-the-art

accuracy on both datasets whilst acknowledging

their core difference stated by the large gap in the

performance: about 28% difference in the accuracy

between Easy and Challenge questions.

In this paper, we make the following important

contributions:

1) We introduce a neural network architecture,

called Attentive Ranker that latently learns to rank

supporting documents at a semantic level. The

classifier is trained to predict the correct answer to

a multiple-choice question achieving state of the

art accuracy on the two ARC datasets: Easy

(72.30%) and Challenge (44.72%).

2) We show that the set of documents computed

by our semantic ranking system can be off-the-

shelf adopted by various downstream classifiers to

boost their performance (by up to 7%).

2 Related Work

A lot of effort has been invested to extract more

relevant external documents from natural language

corpora to improve QA systems. One approach is

to identify the essential terms in questions

(Pîrtoacă et al., 2018; Khashabi et al., 2017) and

use these terms to improve the quality of the

1 Available at http://allenai.org/data.html

extracted documents. Essential terms are

particularly useful for long questions that are

intentionally injected with noisy information by

teachers to assess the reading comprehension of

examined students (which is the case of the ARC

dataset, collected indeed from examinations).

Pîrtoacă et al. (2018) propose a neural network

architecture, with a small number of parameters,

trained to annotate each term in the question with

an essentialness score from 0 to 5. The architecture

is based on LSTM units (Hochreiter and

Schmidhuber, 1997) but with some pre-computed

features added to the input to overcome the

problem of small datasets: part of speech, a

concreteness score for each term (Brysbaert et al.,

2014), dependency relations from the parsing tree.

The authors show that using the essential terms to

extract documents improves the accuracy of

multiple-choice QA systems by up to 4% on the

ARC dataset (versus a standard IR approach). This

highlights that more relevant documents are

retrieved using essential terms.

In a similar spirit, Khashabi et al. (2017) report

the importance of essential terms for the same

multiple-choice QA task but on different datasets.

They propose an essential term classifier in the

form of a linear Support Vector Machine (SVM)

trained on syntactic and semantic features

extracted from the question. In total, about 120

types of features (with their combinations) are fed

into the classifier. Incorporating the computed

essential terms in the IR engine yields an increase

in the number of questions correctly answered by

up to 5% on the REGENTS and the AI2PUBLIC

datasets1.

Furthermore, Jansen et al. (2017) formulate the

multiple-choice question answering problem into

extracting answer justifications and then ranking

them. A perceptron is trained to jointly rank the

answers along together with their justifications

considering the relevance of justifications as a

latent variable. The ranking model is tested on a

corpus of 1,000 primary school questions,

answering 44% of the questions correctly,

empirically showing that about 57% of the

justifications are meaningful.

On another note, the state of the art downstream

decision models are mainly based on transformers

(Vaswani et al., 2017) and pre-retrained language

models (Devlin et al., 2018; Radford et al., 2019).

Figure 1: The general high-level architecture of a
question answering system

http://allenai.org/data.html

2533

Sun et al. (2018) present some reading strategies

for machine reading comprehension such as back

and forth reading or highlighting. These strategies

are carried out by fine-tuning a generative

transformer (GPT) (Radford, 2018). Their model

was the state of the art approach on the ARC

dataset (both Easy and Challenge) prior to our

proposed model.

Previous work has shown that the performance

of models on QA datasets drops dramatically when

a document is not provided to support answering

the question. Chen et al. (2017) proposed a model,

called DrQA, that was trained on the SQuAD 1.1

dataset (Rajpurkar et al., 2016) to find the correct

answer to open-domain questions. When a valid

document is provided - guaranteed to contain the

correct answer - the exact match (EM) score

obtained by DrQA is 69.5. However, when the

supporting document has to be retrieved from

Wikipedia, by an information retrieval engine, the

EM score drops to 27.1. This suggests that research

has to be invested in improving retrieval strategies

and candidate document ranking methods.

As this related work section suggests, the main

direction currently approached for increasing the

quality of the extracted documents is to employ

essential term information in a form or another and

blend this knowledge in the query sent to the

retrieval engine. Our paper proposes a completely

different strategy, which is based on semantically

ranking the extracted documents using a neural

network that learns to select the most meaningful

and discriminative documents for a given question.

3 Proposed approach

We briefly describe how an IR engine is used to

extract external information (e.g. supporting

documents) from natural language resources like

Wikipedia to support QA systems. Then, the paper

continues with our proposed approach towards

rectifying the shortcomings of the current

retrieval-based extraction methods.

3.1 Extracting supporting documents

It is undeniable that external information is deeply

required in some form or another for answering a

given question. Humans capture that information

by learning, by experiencing and from common-

sense knowledge. For machine learning models,

external information is injected as input during

2 http://data.allenai.org/arc/arc-corpus/

training. Given a question and a candidate answer,

documents containing information relevant to each

(question, candidate answer) pair are usually

extracted from raw text corpora (Pîrtoacă et al.,

2018, Nicula et al., 2018). For the example

question mentioned earlier in this paper, a good

supporting document would be the following one:

“When a glass is broken, a lot of small sharp glass

pieces are formed and spread around.” Given this

information, a decision component such as a neural

network should be able to deduce that “breaking a

glass” is indeed an “example of a physical

change”, thus predicting the correct answer.

Natural language corpora like Wikipedia, ARC

Corpus2 , or a large collection of science books

crawled from the World Wide Web (Pîrtoacă et al.,

2018) are split into articles, paragraphs, or even at

the sentence level and then indexed using various

search engines: Lucene (Białecki et al., 2012) or

ElasticSearch (Gormley and Tong, 2015), to make

the entire query process a lot faster. After the

indexing phase is completed, queries are sent to the

IR engine in the format “question tokens” AND

“answer tokens”, thus retrieving documents that

contain tokens from the question and tokens from

the answer (at least one from each) which are,

desirably, semantically relevant – and they should

be up to one point, depending on the question

difficulty and how it is formulated. Notice that for

each candidate answer, a set of documents are

retrieved and they will be used by some decision

engine to derive if the candidate answer is correct

or not. In some cases, no decision engine is used at

all and the candidate answer with the highest

matching score (for example, TF-IDF (Manning et

al., 2010)) is predicted as the correct one. During

this paper, we will refer to this simple approach as

the “IR baseline”.

In this paper, we will build upon the

aforementioned IR baseline by adding a layer on

the top of it, which is a neural network capable of

latently learning to better rank the documents (as

compared to the IR baseline).

http://data.allenai.org/arc/arc-corpus/

2534

3.2 Towards a better retrieval engine

An important problem of QA systems is the IR

approach for extracting relevant documents. Using

a token-based retrieval (Lucene, ElasticSearch)

and keeping the most relevant document as dictated

by a lexical score (e.g. TF-IDF, Okapi BM25

(Manning et al., 2010)) does not produce relevant

supporting documents for a significant proportion

of the questions (Zhang et al., 2018). Our work is

a trade-off between the computational

performance of such systems and the expressivity

of semantic level retrieval. Our main research

hypothesis is that semantically ranking the first N

(e.g. N = 100 or 500) returned documents instead

of sorting them by a lexical metric produces better

results and delivers more meaningful documents

for answering the question at hand. In other words,

some better documents can be found in the first N

(where N is a small number), but the best is not

always the one with the highest lexical (e.g. TF-

IDF) score. We are going to validate our hypothesis

in the results section by showing that we can

achieve state-of-the-art accuracy on both ARC

Easy and Challenge, significantly improving the

performance of the same decision model without

the proposed semantic ranking.

In order to semantically discern relevant and

irrelevant documents for a given question, we are

designing a set of discriminators, each receiving a

tuple (question, candidate answer, and document)

and returning a confidence score. A higher score

means that the document contains relevant

information for answering the question, whereas a

score equal to 0 signifies a document that can be

ignored as it is noisy or unrelated. These

discriminators are the core idea in our approach

and they will be used further on to learn how to

rank the documents. As will be expanded, these are

deep learning models pre-trained to achieve some

particular (semantically related) objective. In the

next sections, various discriminators are

illustrated, and, after that, we present how they are

combined to produce the final ranking model.

3.3 Document relevance discriminator

This discriminator’s purpose is to determine

whether or not the document has any significance

in answering the question at hand. It ignores the

candidate answer and takes into account only the

question and the document. The intuition is that

some documents are clearly not helpful for the

question as they do not contain any relevant

information. For example, consider the question:

“How many electrons does a hydrogen atom

have?” and the following two possible extracted

documents: “The hydrogen atom is an electrically

neutral atom, usually denoted using the symbol

H.“, and “The hydrogen is a chemical element with

a single electron orbiting its nucleus.” It is clear

that the second context is relevant, whilst the first

one is not that important. Therefore, in the ranking

process, we should place the latter, lower in the list

of candidate documents, because semantically it is

not relevant for the question at hand, although it

has a large TF-IDF score.

We have constructed this discriminator by

training a neural network on an adapted version of

the SQuAD 2.0 dataset (Rajpurkar et al., 2018).

The network receives a question and a document

as input and produces a score between 0 and 1,

correlated with the significance of the document

for the question.

The SQuAD 2.0 dataset has the following

structure: a paragraph of raw text and a question

targeting the information in the paragraph. The

answer can be either a span from the paragraph or

“not answerable”, meaning that an answer cannot

be deduced based solely on the information in the

paragraph. Observe the duality of the task: a “not

answerable” entry also means that the paragraph is

not relevant to the question. This is the key insight

that we are going to exploit. We adopted the

SQuAD 2.0 dataset, but translated the task into a

binary one: is the question answerable or not?

Notice that if an answer exists, we pay no attention

to the answer itself, the important fact being that

the paragraph contains an answer for the question.

The resulting dataset has about 100k questions

where an answer exists and 50k questions with no

valid answer in the given paragraph.

The dataset size is generous enough to enable

training deep neural architectures. We have tried

four different neural networks to play the role of a

document relevance discriminator. The first model

encodes the question and the document via 2 layers

of independent Gated Recurrent Unit (GRU) cells

Model Validation Accuracy

GRU with GloVe 59.04%

GRU with ELMo 60.90%

BERT Base 75.30%

BERT Large 80.43%

Table 1: Discriminative performance of the models

on the adapted SQuAD 2.0 validation set

2535

(Cho et al., 2014) with the words embedded into a

50-dimensional vector space using pre-trained

GloVe word vectors (Pennington et al., 2014).

Replacing GRU with Long-Short Term Memory

(LSTM) cells (Hochreiter and Schmidhuber, 1997)

gives similar performance but the training

procedure is computationally more expensive. On

top of the representations computed by the GRUs,

we added 2 layers of feed-forward connections, the

decision phase of the network.

In the second approach, we replaced the first

layer of GRUs with the more expressive ELMo

encoder (Peters et al., 2018). The other parts of the

architecture have not been modified.

Last but not least, we deployed a pre-trained

transformer, BERT (Devlin et al., 2018), both the

base version with 12 layers and the large version

with 24 layers of transformers. BERT is currently

the state-of-the-art approach in multiple NLP tasks

including open-domain question answering and

reading comprehension (Devlin et al., 2018). We

fine-tuned the model on the SQuAD 2.0 dataset,

with the following hyperparameters: learning rate:

3e-5, warm-up steps: 10% (refer to the BERT

paper (Devlin et al., 2018) for further details),

sequence length: 425 tokens, batch size: 24 for

BERT Large and 10 for BERT base. In order to

fine-tune BERT Large, we employed one Tensor

Processing Unit (TPU) for about 2 hours. The

tokenization has been done following the

recommendations in the original paper (Devlin et

al., 2018) and the input to the network as the

following structure: “[CLS] question [SEP]

supporting document [SEP]”.

These four different discriminators were trained

with the objective of discerning between relevant

and irrelevant supporting documents for a given

question. Their binary accuracies are reported in

Table 1. All models were trained on the modified

SQuAD 2.0 train split and the performance is

reported on the validation dataset. The

effectiveness of the BERT Large model is much

better than the others, as expected. Therefore, this

fine-tuned model is chosen as the final document

relevance discriminator (DRD).

3.4 Answer verifier discriminator

The purpose of the second discriminator is to probe

whether the answer can be inferred to be correct

given the supporting document. Of course, we

want to rank documents taking into account if they

can be used to find the correct answer. Please

notice the core difference between the DRD and

the answer verifier discriminator (ARD). The latter

is also considering the answer at hand, whereas the

former only examines the question and the given

supporting document.

Training the discriminator is performed on the

RACE (Reading Comprehension Dataset) which is

also collected from English Examinations (Lai et

al., 2017). The structure of the dataset is perfect for

our situation. It contains multiple-choice questions

with relevant supporting paragraphs for the correct

answer. It is guaranteed that the answer can be

deduced by understanding the information in the

associated paragraph. We transform this dataset

into tuples (question, candidate answer,

paragraph) that are labeled either as negative,

meaning that the answer cannot be verified using

the paragraph (for incorrect answers), or as

positive – reinforcing the fact that the paragraph

can be used to infer that the answer is correct. The

RACE dataset is extremely suitable in this

situation as it always provides a paragraph that is

relevant to the question. This is not the case for the

ARC dataset, in which no supporting document is

given – thus, one has to be extracted and it is not

guaranteed to be always the “right” document.

We have fine-tuned the BERT Large model on

the joined RACE middle-school and RACE high-

school datasets, totaling near 100k questions with

28k documents. Each question generates 4 entries

for the ARD: the 3 wrong answers generate 3

negative examples and the correct answer

generates one positive example.

The hyperparameters used for fine-tuning BERT

are similar to the DRD discriminator, with

differences in the maximum sequence length (512

tokens for RACE vs. 425 tokens for SQuAD 2.0).

These hyperparameters were found by trying

multiple sensible assignments and selecting the

best one according to the validation error. Results

are reported in the next section on the test split.

Each tuple (question, answer, and document) is

fed into the BERT model as: “[CLS] question

[SEP] answer [SEP] document [SEP]”. The final

accuracy of the model on the merged RACE

middle and high test datasets is 68.28%.

As a remark, we want to highlight that both the

DRD and ARD discriminators have been trained

on different datasets than the final multiple choice

QA model, which is trained and evaluated on the

ARC Easy and Challenge datasets. Hence, our

intuition was that transfer learning will succeed

2536

even though there are some core differences in the

nature of the datasets.

3.5 TF-IDF discriminator

We decided to also consider the TF-IDF score

computed by Lucene as the third discriminator.

This is a lexical (non-semantic) discriminator but

it might helpful for simpler questions, especially

the ones in the ARC Easy dataset.

3.6 Ranking architecture

We have described three discriminators whose

purpose is to discern between relevant and useless

documents extracted by the IR engine. As

mentioned, our proposed approach is to retrieve the

first 𝑁 documents and then rank them taking into

account a semantic criterion (as dictated by the

pre-trained discriminators). In this section, we are

going to describe a neural network that is latently

learning to rank the extracted documents whilst

selecting the correct answer to the question.

In the ARC dataset, more than 95% of the

questions have exactly 4 candidate answers and

only one is correct. For a given question and a

candidate answer, we pass the extracted 𝑁

documents though the set of discriminators

obtaining a list of scores, one for each

discriminator. These scores need to be combined

into a final answer score by a mechanism, called

Attentive Ranker, inspired from self-attention

which we will describe in the next paragraphs.

As shown in Figure 2, each supporting

document is associated with a list of scores

computed by the discriminators. These scores are

projected into a higher dimensional space using a

learned projection matrix (we will denote by 𝐷 the

dimension of the projection space – in our

experiments, 𝐷 = 32). We then apply an attention

mechanism over the semantically labeled

documents to select the most relevant ones for a

given candidate answer. Let 𝐴 be a 𝐷 𝑥 𝑁 matrix

where each column is the encoding of a document

after applying the set of discriminators and the

projection step. As we are fetching 𝑁 documents

using the IR engine, matrix 𝐴 has 𝑁 columns.

Notice that this matrix encodes all the information

for a given candidate answer. Next, inspired by the

self-attention mechanism (Vaswani et al., 2017),

we developed a way to relate documents between

each other in order to compute a global

representation for them. First of all, we project

each row of the matrix 𝐴 into a key space (with 𝑀

dimensions) whose purpose is to encode aspects

about the quality (relevance) of the associated

document (a column in matrix 𝐴):

 𝐾 = tanh (𝑊𝑘𝐴 ⨁ 𝑏𝑘) (1)

where 𝐴 ∈ ℝ𝐷𝑥𝑁 , 𝑊𝑘 ∈ ℝ𝑀𝑥𝐷 , 𝑏𝑘 ∈ ℝ𝑀 and by

the ⨁ operator, we denote the addition of a vector

to each column of a matrix (here and throughout

the rest of the paper). Second, each column of

matrix 𝐴 is encoded into a value space (with 𝑄

dimensions), which is going to dictate the output of

the attention mechanism:

 𝑉 = relu (𝑊𝑉𝐴 ⨁ 𝑏𝑉) (2)

where 𝑊𝑉 ∈ ℝ𝑄𝑥𝐷 , 𝑏𝑉 ∈ ℝ𝑄. The intuition is that
the value space is dictating what the output of the

attention should be, whereas the key space encodes

necessary information about which elements
(documents in our case) the network should pay

attention to. Third, we normalize the key vectors

using the softmax function:

 𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑃𝐾 ⨁ 𝑏𝑃) (3)

where 𝑊𝑃 ∈ ℝ1𝑥𝑀 , 𝑏𝑃 ∈ ℝ and the bias is added

to each element of 𝑃 ∈ ℝ1𝑥𝑁 . As a result, the

weights in 𝑃 dictate to what extent the network

should attend each document. The output of the

layer is the weighted sum of the value vectors:

 𝑌 = 𝑉𝑃𝑇 (4)

The same procedure is applied to all candidate

answers and the attention weights are shared

because we want to have the same representation

regardless of the position of the answer in the

candidate list (e.g. answer A, B, C, or D). Figure 2

shows the entire encoding procedure and how the

attention network is applied.

Observe the fact that for each candidate answer

a score (a vector with the dimension of the value

space) is obtained by applying a general function.

This score is further used to infer which of the four

possible answers is, indeed, correct. This decision

Figure 2: Applying discriminators for a candidate

answer and ranking the documents

2537

step is accomplished by a simple feed-forward

network (Figure 3).

As a result, one can view this architecture as a

feedback loop system. The neural network learns

to predict the correct answer. In order to predict the

correct answer, it is constrained to select more

relevant documents. More relevant documents

result in better classification, and so on. Thus, the

proposed QA self-attention model, called Attentive

Ranker, is jointly Answering questions by learning

to rank and Learning to rank by answering

questions.

In the following section, we highlight how the

Attentive Ranker can improve QA systems by

combining semantic information from a small

number of supporting documents extracted with an

IR engine.

4 Results

We report our model performance on two of the

most important multiple-choice science questions

datasets: ARC Easy and ARC Challenge (Table 2).

During training, due to the small size of the

datasets, we experienced a large variance in

performance. To partially overcome this issue, we

have trained the models a number of times with

different random initialization and kept the weights

producing the lowest validation loss as the final

weights for the QA model.

We have used two knowledge bases in order to

retrieve external supporting information: the ARC

Corpus (Clark et al., 2018) which contains 14M

science-related sentences and a book collection

(Pîrtoacă et al., 2018) consisting of about 35 books

crawled from online resources such as CK12 3 .

Hereinafter, when we mention top 𝑁 retrieved

documents, it means that top 𝑁 / 2 are fetched

from ARC Corpus and 𝑁 / 2 are extracted from

3 https://www.ck12.org/

the book collection, giving the two knowledge

bases equal importance.

The ranking neural network is trained for about

50 epochs, batch size 128, with categorical cross

entropy loss, optimized using Adam (Kingma and

Ba, 2014).

First, it is important to observe the impact of the

number of documents, 𝑁 , on the model’s

performance (refer to Figure 4 and Figure 5).

Considering more than one document improves the

accuracy, thus verifying our initial assumption that

relevant supporting documents can be found in the

first 𝑁, but it is not always the case that the first

one is the most relevant. As it can be observed in

Figures 4 and 5, there is a large improvement in

accuracy when increasing from 1 to 5 documents.

The accuracy continues to increase for both ARC

Easy and ARC Challenge until it reaches a

maximum at about 40 documents. Thus, for the

next experiments, we set the number of documents

to 40 (20 from the ARC corpus and 20 from the

science book collection).

Figure 3: Applying discriminators for a candidate

answer and ranking the documents

Dataset Train Dev Test

ARC Easy 2,251 570 2,376

ARC Challenge 1,119 299 1,172

Table 2: Number of questions in the ARC dataset

Model Accuracy

Random guess 25.00%

IR Solver 62.55%

Reading Strategies (previous SOTA) 68.90%

Attentive Ranker (ours) 72.30%

Table 3: Results on ARC Easy test

Model Accuracy

Random guess 25.00%

BERT (our implementation) 40.00%

Reading Strategies 42.32%

BERT (previous SOTA - Microsoft) 44.62%

Attentive Ranker (ours) 44.72%

Table 4: Results on ARC Challenge test

Dataset TFD +DRD +AVD

ARC Easy 63.89% 67.48% 72.30%

ARC Challenge 26.70% 34.16% 44.72%

Table 5: The impact of adding more discriminators

on the test set accuracy

https://www.ck12.org/

2538

Second, we verified the model performance on

the ARC test sets in order to check how the model

generalizes on unseen data and to compare it with

other top models in the ARC public leaderboard

(https://leaderboard.allenai.org/arc/subm

issions/public). A summary of the results is

reported in Table 3 and Table 4. In both cases, our

Attentive Ranker model outperforms the current

state-of-the-art (SOTA) approach proving that,

indeed, performing a semantic ranking is very

effective for QA systems. For a fair comparison,

we also reported BERT results as obtained in our

implementation and training. The previous SOTA

was held by a Microsoft implementation of BERT.

As an ablation study, we wanted to identify the

contribution of the discriminators to the overall

performance of the Attentive Ranker. We

performed an experiment, where starting from the

TF-IDF lexical discriminator, other discriminators

are incrementally added to the scheme: document

relevance discriminator (DRD) and answer verifier

discriminator (AVD). The results are revealed in

Table 5 where we measured the total number of

questions correctly answered in the ARC Easy and

ARC Challenge test sets. The influence of both

semantic-level discriminators (DRD, AVD) is

fundamental: they increase the performance with

up to 20%, both contributing to the end-to-end

accuracy. Notice that the discriminators have a

greater impact on the challenge questions as those

are radically more difficult and require high-level

reasoning to determine the correct answer (that is

why the TF-IDF discriminator, which works at a

lexical level, has a performance close to random).

One other examination that we enforced is to

analyze whether the ranked documents that we

computed (semantically sorted by our Attentive

Ranker) are more relevant than the documents

sorted by the TF-IDF metric. We fine-tuned a

downstream BERT (Devlin et al., 2018) model that

selects the most probable answer from the

candidate list given a list of supporting documents.

In the experiment split A, we fed this model with

top 𝑁 documents as ranked by the TF-IDF metric

and in experiment split B we fed the model with

top 𝑁 documents as sorted by our ranking neural

network (given the weights in the attention layer).

Figure 4: Performance vs. number of documents

measured on the ARC Easy validation set

Figure 5: Performance vs. number of documents
measured on the ARC Challenge validation set

Dataset # docs Ranking Accuracy (Δ)

Val. Top 1 TF-IDF 35.59%

Val. Top 1 Ours 38.30% (+2.71)

Val. Top 10 TF-IDF 35.93%

Val. Top 10 Ours 43.72% (+7.79)

Test Top 1 TF-IDF 34.93%

Test Top 1 Ours 37.51% (+3.58)

Test Top 10 TF-IDF 37.08%

Test Top 10 Ours 40.00% (+2.92)

Table 6: Downstream model performance on

the ARC Challenge dataset comparing ranking with

Attentive Ranker vs. TF-IDF

Dataset # docs Ranking Accuracy (Δ)

Val. Top 1 doc2vec 36.61%

Val. Top 1 Ours 38.30% (+1.69)

Val. Top 10 doc2vec 39.66%

Val. Top 10 Ours 43.72% (+4.06)

Test Top 1 doc2vec 33.90%

Test Top 1 Ours 37.51% (+3.61)

Test Top 10 dov2vec 37.85%

Test Top 10 Ours 40.00% (+2.15)

Table 7: Downstream model performance on

the ARC Challenge dataset comparing ranking with

Attentive Ranker vs. doc2vec

https://leaderboard.allenai.org/arc/submissions/public
https://leaderboard.allenai.org/arc/submissions/public

2539

As we have previously shown, the ARC Challenge

dataset is more eloquent for this type of semantical

analysis due to the difficult questions it includes,

thus, we use it for this investigation.

Table 6 shows that using documents ranked by

our attentive neural network always leads to a

performance increase in downstream models,

compared to TF-IDF. On the validation set, the

improvement is considerably higher (+7.79) due to

a possible over-fitting of the hyperparameters

during the Attentive Ranker’s training.

We also investigated the ability of the Attentive

Ranker to sort the retrieved documents as

compared to document embeddings – which may

be used to measure the similarity between a

question and a candidate document. The question

and the documents are embedded using doc2vec

(Le and Mikolov, 2014) pre-trained on English

Wikipedia. Then, the documents are sorted by their

cosine distance to the question. Therefore, the

documents that are cosine-closest to a question

should be more relevant in answering that question

as they are more similar to the question in the

doc2vec embeddings space. We would like to note

that this approach, although reasonable, may suffer

from a subtle problem: the question and the

documents have different structures and it may be

difficult for an embedding function to capture

similarities defined as relevance: “the document is

helpful in answering the question”. Table 7

illustrates the performance of a downstream model

(BERT) in answering the questions when fed with

top 𝑁 (1 or 10) documents as ranked by Attentive

Ranker or doc2vec. In all cases, the Attentive

Ranker provided more relevant documents than

doc2vec, to the BERT-based decision layer. On

another hand, doc2vec yields better accuracies

than the simple TF-IDF metric.

Our hypothesis that the Attentive Ranker is

suitable to rank the retrieved documents by their

semantic value to the question is confirmed.

Therefore, we decided to make the ranked set of

documents public4 , in order to be used by other

models. Please refer to the GitHub repository for

instructions on how to use the ranked documents.

In the same repository, one can find the source

code and the full set of trained models.

4 https://bit.ly/2ZnBNLs

5 Conclusion

In this paper, we highlighted an important problem

with many of the current approaches developed for

multiple-choice question answering tasks. To

overcome the poor performance of the IR engines

used to retrieve supporting documents for

(question, candidate answer) pairs, we described a

method that semantically ranks the extracted

supporting documents. For this, we proposed an

attention-based neural network that latently learns

to rank supporting documents by their relevance in

answering the given question. The Attentive

Ranker architecture depends on the existence of

semantic discriminators which are pre-trained to

distinguish between relevant and pointless

documents. Our proposed model achieves state-of-

the-art accuracy on two significant datasets: ARC

Easy (72.30%) and ARC Challenge (44.72%).

Furthermore, we have shown that just replacing

TF-IDF sorted documents with documents

provided by our enhanced ranking method, highly

improves the accuracy of various downstream

decision models, by up to 7% in our experiments.

Therefore, we have made the ranked documents

public and further research can benefit from it.

References

Białecki, A., Muir, R., Ingersoll, G., & Imagination,

L. (2012, August). Apache lucene 4. In SIGIR

2012 workshop on open source information

retrieval (p. 17).

Brysbaert, M., Warriner, A.B., & Kuperman, V. (2014).

Concreteness ratings for 40 thousand generally

known English word lemmas. Behavior research

methods, 46 3, 904-11.

Chen, D., Fisch, A., Weston, J., & Bordes, A. (2017).

Reading wikipedia to answer open-domain

questions. arXiv preprint arXiv:1704.00051.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,

D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014). Learning phrase representations using

RNN encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal,

A., Schoenick, C., & Tafjord, O. (2018). Think you

have solved question answering? try arc, the ai2

reasoning challenge. arXiv preprint

arXiv:1803.05457.

https://bit.ly/2ZnBNLs
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457

2540

Clark, P., Etzioni, O., Khot, T., Sabharwal, A., Tafjord,

O., Turney, P.D., & Khashabi, D. (2016).

Combining Retrieval, Statistics, and Inference to

Answer Elementary Science Questions. AAAI.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.

(2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv

preprint arXiv:1810.04805.

Gormley, C., & Tong, Z. (2015). Elasticsearch: The

definitive guide: A distributed real-time search

and analytics engine. O'Reilly Media, Inc.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural computation, 9(8), 1735-

1780.

Jansen, P., Sharp, R., Surdeanu, M., & Clark, P. (2017).

Framing qa as building and ranking intersentence

answer justifications. Computational Linguistics,

43(2), 407-449.

 https://www.doi.org/10.1162/COLI_a_00287

Khashabi, D., Khot, T., Sabharwal, A., & Roth, D.

(2017). Learning What is Essential in Questions.

CoNLL.

Kingma, D. P., & Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint

arXiv:1412.6980.

Lai, G., Xie, Q., Liu, H., Yang, Y., & Hovy, E. (2017).

Race: Large-scale reading comprehension dataset

from examinations. arXiv preprint

arXiv:1704.04683.

Le, Q., & Mikolov, T. (2014, January). Distributed

representations of sentences and documents. In

International conference on machine learning (pp.

1188-1196).

Manning, C., Raghavan, P., & Schütze, H. (2010).

Introduction to information retrieval. Natural

Language Engineering, 16(1), 100-103.

Ni, J., Zhu, C., Chen, W., & McAuley, J. (2018).

Learning to attend on essential terms: An

enhanced retriever-reader model for scientific

question answering. arXiv preprint

arXiv:1808.09492.

Nicula, B., Ruseti, S., & Rebedea, T. (2018, March).

Improving Deep Learning for Multiple Choice

Question Answering with Candidate Contexts. In

European Conference on Information Retrieval

(pp. 678-683). Springer, Cham.

Pan, X., Sun, K., Yu, D., Ji, H., & Yu, D. (2019).

Improving Question Answering with External

Knowledge. arXiv preprint arXiv:1902.00993.

Pennington, J., Socher, R., & Manning, C. (2014).

Glove: Global vectors for word representation. In

Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP)

(pp. 1532-1543).

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M.,

Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep

contextualized word representations. arXiv

preprint arXiv:1802.05365.

Pirtoaca, G., Rebedea, T., & Ruseti, S. (2018).

Improving Retrieval-Based Question Answering

with Deep Inference Models. CoRR,

abs/1812.02971.

Pirtoaca, G.S., Ruseti, S., Rebedea, T. (2018).

Improving multi-choice question answering by

identifying essential terms in questions. In “Revista

Romana de Interactiune Om-Calculator”11(2),

145-162, 2018.

Radford, A. (2018). Improving Language

Understanding by Generative Pre-Training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

& Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAI Blog, 1,

8.

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P.

(2016). Squad: 100,000+ questions for machine

comprehension of text. arXiv preprint

arXiv:1606.05250.

Rajpurkar, P., Jia, R., & Liang, P. (2018). Know What

You Don't Know: Unanswerable Questions for

SQuAD. arXiv preprint arXiv:1806.03822.

 translation. arXiv preprint arXiv:1406.1078.

Sun, K., Yu, D., Yu, D., & Cardie, C. (2018).

Improving machine reading comprehension with

general reading strategies. arXiv preprint

arXiv:1810.13441.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).

Attention is all you need. In Advances in neural

information processing systems (pp. 5998-6008).

Zhang, Y., Dai, H., Toraman, K., & Song, L. (2018).

KG^ 2: Learning to Reason Science Exam

Questions with Contextual Knowledge Graph

Embeddings. arXiv preprint arXiv:1805.12393.

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/J17-2005
https://www.aclweb.org/anthology/J17-2005
https://www.doi.org/10.1162/COLI_a_00287
https://www.aclweb.org/anthology/K17-1
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1704.04683
https://arxiv.org/abs/1704.04683
https://arxiv.org/abs/1808.09492
https://arxiv.org/abs/1808.09492
https://arxiv.org/abs/1808.09492
https://arxiv.org/abs/1902.00993
https://arxiv.org/abs/1902.00993
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1812.02971
https://arxiv.org/abs/1812.02971
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1806.03822
https://arxiv.org/abs/1806.03822
https://arxiv.org/abs/1810.13441
https://arxiv.org/abs/1810.13441
https://arxiv.org/abs/1805.12393
https://arxiv.org/abs/1805.12393
https://arxiv.org/abs/1805.12393

