
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 2510–2520,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

2510

Adversarial Domain Adaptation for Machine Reading Comprehension

Huazheng Wang1∗, Zhe Gan2, Xiaodong Liu3, Jingjing Liu2, Jianfeng Gao3, Hongning Wang1

1University of Virginia, 2Microsoft Dynamics 365 AI Research, 3Microsoft Research
{hw7ww,hw5x}@virginia.edu, {zhe.gan,xiaodl,jingjl,jfgao}@microsoft.com

Abstract

In this paper, we focus on unsupervised do-
main adaptation for Machine Reading Com-
prehension (MRC), where the source domain
has a large amount of labeled data, while
only unlabeled passages are available in the
target domain. To this end, we propose
an Adversarial Domain Adaptation framework
(AdaMRC), where (i) pseudo questions are
first generated for unlabeled passages in the
target domain, and then (ii) a domain classifier
is incorporated into an MRC model to predict
which domain a given passage-question pair
comes from. The classifier and the passage-
question encoder are jointly trained using ad-
versarial learning to enforce domain-invariant
representation learning. Comprehensive eval-
uations demonstrate that our approach (i) is
generalizable to different MRC models and
datasets, (ii) can be combined with pre-trained
large-scale language models (such as ELMo
and BERT), and (iii) can be extended to semi-
supervised learning.

1 Introduction

Recently, many neural network models have been
developed for Machine Reading Comprehension
(MRC), with performance comparable to human
in specific settings (Gao et al., 2019). However,
most state-of-the-art models (Seo et al., 2017; Liu
et al., 2018; Yu et al., 2018) rely on large amount
of human-annotated in-domain data to achieve
the desired performance. Although there exists a
number of large-scale MRC datasets (Rajpurkar
et al., 2016; Trischler et al., 2016; Bajaj et al.,
2016; Zhang et al., 2018), collecting such high-
quality datasets is expensive and time-consuming,
which hinders real-world applications for domain-
specific MRC.

∗Most of this work was done when the first author was
an intern at Microsoft Dynamics 365 AI Research.

Therefore, the ability to transfer an MRC model
trained in a high-resource domain to other low-
resource domains is critical for scalable MRC.
While it is difficult to collect annotated question-
answer pairs in a new domain, it is generally feasi-
ble to obtain a large amount of unlabeled text in a
given domain. In this work, we focus on adapting
an MRC model trained in a source domain to other
new domains, where only unlabeled passages are
available.

This domain adaptation issue has been a main
challenge in MRC research, and the only exist-
ing work that investigated this was the two-stage
synthesis network (SynNet) proposed in Golub
et al. (2017). Specifically, SynNet first generates
pseudo question-answer pairs in the target domain,
and then uses the generated data as augmenta-
tion to fine-tune a pre-trained MRC model. How-
ever, the source-domain labeled data and target-
domain pseudo data are directly combined without
considering domain differences (see Figure 1(a),
where the two feature distributions in two domains
are independently clustered). Directly transfer-
ing a model from one domain to another could be
counter-effective, or even hurt the performance of
the pre-trained model due to domain variance.

To achieve effective domain transfer, we need to
learn features that are discriminative for the MRC
task in the source domain, while simultaneously
indiscriminating with respect to the shift between
source and target domains. Motivated by this, we
propose Adversarial Domain Adaptation for MRC
(AdaMRC), a new approach that utilizes adversar-
ial learning to learn domain-invariant transferable
representations for better MRC model adaptation
across domains (see Figure 1(b), where the two
feature distributions learned by AdaMRC are in-
distinguishable through adversarial learning).

Specifically, our proposed method first gener-
ates synthetic question-answer pairs given pas-
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sages in the target domain. Different from Golub
et al. (2017), which only used pseudo question-
answer pairs to fine-tune pre-trained MRC mod-
els, our AdaMRC model uses the passage and
the generated pseudo-questions in the target do-
main, in addition to the human-annotated passage-
question pairs in the source domain, to train an ad-
ditional domain classifier as a discriminator. The
passage-question encoder and the domain classi-
fier are jointly trained via adversarial learning. In
this way, the encoder is enforced to learn domain-
invariant representations, which are beneficial for
transferring knowledge learned from one domain
to another. Based on this, an answer decoder is
then used to decode domain-invariant representa-
tion into an answer span.

The proposed approach is validated on a set
of popular benchmarks, including SQuAD (Ra-
jpurkar et al., 2016), NewsQA (Trischler et al.,
2016), and MS MARCO (Bajaj et al., 2016), using
state-of-the-art MRC models including SAN (Liu
et al., 2018) and BiDAF (Seo et al., 2017). Since
pre-trained large-scale language models, such as
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019), have shown strong performance to
learn representations that are generalizable to var-
ious tasks, in this work, to further demonstrate the
versatility of the proposed model, we perform ad-
ditional experiments to demonstrate that AdaMRC
can also be combined with ELMo and BERT to
further boost the performance.

The main contributions of this paper are sum-
marized as follows: (i) We propose AdaMRC,
an adversarial domain adaptation framework that
is specifically designed for MRC. (ii) We per-
form comprehensive evaluations on several bench-
marks, demonstrating that the proposed method
is generalizable to different MRC models and
diverse datasets. (iii) We demonstrate that
AdaMRC is also compatible with ELMo and
BERT. (iv) We further extend the proposed frame-
work to semi-supervised learning, showing that
AdaMRC can also be applied to boost the perfor-
mance of a pre-trained MRC model when a small
amount of labeled data is available in the target
domain.

2 Related Work

Machine Reading Comprehension The MRC
task has recently attracted a lot of attention in
the community. An MRC system is required

(a) SynNet (b) AdaMRC

Figure 1: t-SNE plot of encoded feature representa-
tions from (a) SynNet (Golub et al., 2017) and (b) the
proposed AdaMRC. We sampled 100 data points, each
from the development set of the source and the target
domains. Blue: SQuAD. Red: NewsQA.

to answer a question by extracting a text snip-
pet within a given passage as the answer. A
large number of deep learning models have been
proposed to tackle this task (Seo et al., 2017;
Xiong et al., 2017; Shen et al., 2017; Liu et al.,
2018; Yu et al., 2018). However, the success of
these methods largely relies on large-scale human-
annotated datasets (such as SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2016) and
MS MARCO (Bajaj et al., 2016)).

Different from previous work that focused on
improving the state of the art on particular MRC
datasets, we study the MRC task from a different
angle, and aim at addressing a critical yet chal-
lenging problem: how to transfer an MRC model
learned from a high-resource domain to other low-
resource domains in an unsupervised manner.

Although important for the MRC task, where
annotated data are limited in real-life applications,
this problem has not yet been well investigated.
There were some relevant studies along this line.
For example, Chung et al. (2018) adapted a pre-
trained model to TOEFL and MCTest dataset, and
Wiese et al. (2017) applied transfer learning to
the biomedical domain. However, both studies as-
sumed that annotated data in the target domain (ei-
ther questions or question-answer pairs) are avail-
able.

To the best of our knowledge, SynNet (Golub
et al., 2017) is the only work that also studied do-
main adaptation for MRC. Compared with Syn-
Net, the key difference in our model is adversar-
ial learning, which enables domain-invariant rep-
resentation learning for better model adaptation
to low-resource domains. Our approach is also
related to multi-task learning (Xu et al., 2019;
Caruana, 1997; Liu et al., 2015, 2019) and semi-
supervised learning (Yang et al., 2017) for MRC.
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Figure 2: Illustration of the proposed AdaMRC model for unsupervised domain adaptation of MRC.

In this work, we focus on purely unsupervised do-
main adaptation.

Domain Adaptation Domain adaptation aims
to make a machine learning model generalizable
to other domains, especially without any annotated
data in the target domain (or with only limited
data) (Ganin and Lempitsky, 2015). One line of
research on domain adaptation focuses on transit-
ing the feature distribution from the source domain
to the target domain (Gong et al., 2012; Long et al.,
2015). Another school of research focuses on
learning domain-invariant representations (Glorot
et al., 2011) (e.g., via adversarial learning (Ganin
et al., 2016; Tzeng et al., 2017)).

Domain adaptation has been successfully ap-
plied to many tasks, such as image classifi-
cation (Tzeng et al., 2017), speech recogni-
tion (Doulaty et al., 2015), sentiment classifica-
tion (Ganin et al., 2016; Li et al., 2017), ma-
chine translation (Johnson et al., 2017; Zoph et al.,
2016), relation extraction (Fu et al., 2017), and
paraphrase identification (Shah et al., 2018). Com-
pared to these areas, the application to MRC
presents additional challenges, since besides miss-
ing labeled data (i.e., answer spans), the ques-
tions in the target domain are also unavailable. To
our best knowledge, we are the first to investigate
the usage of adversarial domain adaptation for the
MRC task.

There are many prevailing unsupervised tech-
niques for domain adaptation. Our proposed ap-
proach is inspired by the seminal work of Ganin
et al. (2016) to validate its potential of solving
domain adaptation problem on a new task, with-
out any supervision for the target domain. There

are also other more advanced methods, such as
MMD-based adaptation (Long et al., 2017), resid-
ual transfer network (Long et al., 2016), and maxi-
mum classifier discrepancy (Saito et al., 2018) that
can be explored for future work.

3 Problem Definition

The problem of unsupervised domain adaptation
for MRC is defined as follows. First, let S =
{ps, qs, as} denote a labeled MRC dataset from
the source domain s, where ps, qs and as repre-
sent the passage, the question, and the answer of
a sample, respectively. An MRC model M s, tak-
ing as input the passage ps = (p1, p2, ..., pT ) of
length T and the question qs = (q1, q2, ..., qT ′) of
length T ′, is trained to predict the correct answer
span as = (asstart, a

s
end), where asstart, a

s
end repre-

sent the starting and ending indexes of the answer
in the passage ps.

We assume that only unlabeled passages are
available in the target domain t, i.e., T = {pt},
where pt represents a passage. This is a reasonable
assumption as it is easy to collect a large amount
of unlabeled passages in a new domain. Given
datasets S and T , the goal of unsupervised domain
adaptation is defined as learning an MRC model
M t based on S and T to answer questions in the
target domain t.

4 AdaMRC

As illustrated in Figure 2, AdaMRC consists of
three main components: (i) Question Generator
(Sec. 4.1), where pseudo question-answer pairs
are generated given unlabeled passages in the tar-
get domain; (ii) MRC Module (Sec. 4.2), where
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given an input document and a question, an answer
span is extracted from the document; (iii) Domain
Classifier (Sec. 4.3), where a domain label is pre-
dicted to distinguish a feature vector from either
the source domain or the target domain.

Specifically, the MRC module is composed of
an encoder and a decoder. The encoder with pa-
rameter θe embeds the input passage and the ques-
tion into a feature vector. The decoder with param-
eter θd takes the feature vector as input to predict
the answer span. The domain classifier with pa-
rameter θc takes the same feature vector as input
to classify the domain label. All the parameters
(θe, θd, θc) are jointly optimized, with the objec-
tive of training the encoder to correctly predict the
answer span, but also simultaneously fool the do-
main classifier. In other words, the encoder learns
to map text input into a feature space that is in-
variant to the switch of domains. The following
sub-sections describe each module, with training
details provided in Sec. 4.4.

4.1 Question Generation

First, we use an NER system to extract possible
answer spans at from the passages pt in the target
domain, under the assumption that any named en-
tity could be the potential answer of certain ques-
tions. Similar answer extraction strategy has been
applied in Yang et al. (2017) in a semi-supervised-
learning setting, while Golub et al. (2017) pro-
posed to train an answer synthesis network to pre-
dict possible answers spans. We tried both meth-
ods, and empirically observed that a simple NER
system provides more robust results, which is used
in our experiments.

Now, we describe how the question generation
(QG) model is trained. Given the passage ps =
(p1, p2, ..., pT ) and answer as = (astart, aend)
from the source domain, the QG model with pa-
rameter θQG learns the conditional probability of
generating a question qs = (q1, q2, ..., qT ′), i.e.,
P (qs|ps, as). We implement the QG model as a
sequence-to-sequence model with attention mech-
anism (Bahdanau et al., 2015), and also apply the
copy mechanism proposed in Gu et al. (2016);
Gulcehre et al. (2016) to handle rare/unknown
words.

Specifically, the QG model consists of a lexi-
con encoding layer, a BiLSTM contextual encod-
ing layer, and an LSTM decoder. For lexicon en-
coding, each word token pi of a passage is mapped

into a concatenation of GloVe vectors (Penning-
ton et al., 2014), part-of-speech (POS) tagging
embedding, and named-entity-recognition (NER)
embedding. We further insert answer informa-
tion by appending an additional zero/one feature
(similar to Yang et al. (2017)) to model the ap-
pearance of answer tokens in the passage. The
output of the lexicon encoding layer is appended
with CoVe vectors (McCann et al., 2017), and
then passed to the Bidirectional LSTM contextual
encoding layer, producing a sequence of hidden
states. The decoder is another LSTM with atten-
tion and copy mechanism over the encoder hidden
states. At each time step, the generation probabil-
ity of a question token qt is defined as:

P (qt) = gtP
v(qt) + (1− gt)P copy(qt) , (1)

where gt is the probability of generating a token
from the vocabulary, while (1 − gt) is the proba-
bility of copying a token from the passage. P v(qt)
and P copy(qt) are defined as softmax functions
over the words in the vocabulary and over the
words in the passage, respectively. gt, P v(qt) and
P copy(qt) are functions of the current decoder hid-
den state.

4.2 MRC Module
Encoder The encoder in the MRC module con-
tains lexicon encoding and contextual encoding,
similar to the encoder used in the question gen-
eration module. It also includes a cross-attention
layer for fusion. Specifically, the output of the
lexicon encoder is appended with the CoVe vector
and passed to the contextual encoding layer, which
is a 2-layer Bidirectional LSTM that produces hid-
den states of the passage Hp ∈ RT×2m and the
question Hq ∈ RT ′×2m, where m is the hidden
size of the BiLSTM. We then use cross attention to
fuseHp andHq, and construct a working memory
of passageMp ∈ RT×2m (see Liu et al. (2018) for
more details). The question memory M q ∈ R2m

is constructed by applying self-attention on Hq.

Decoder The decoder, or answer module, pre-
dicts an answer span a = (astart, aend) given a
passage p and a question q, by modeling the con-
ditional probability P (a|p, q). The initial state s0
is set as M q. Through T steps, a GRU (Cho et al.,
2014) is used to generate a sequence of state vec-
tors st = GRU(st−1, xt), where xt is computed
via attention between Mp and st−1. Two soft-
max layers are used to compute the distribution of
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Algorithm 1 AdaMRC training procedure.

1: Input: source domain labeled data S =
{ps, qs, as}, target domain unlabeled data
T = {pt}

2: Train the MRC model θs = (θse, θ
s
d) on source

domain S;
3: Train the QG model θQG on source domain S;
4: Generate Tgen = {pt, qt, at} using the QG

model;
5: Initialize θ = (θe, θd, θc) with θs;
6: for epoch← 1 to #epochs do
7: Optimize θ on S ∪ Tgen. Each minibatch

is composed with ks samples from S and kt
samples from Tgen;

8: end for
9: Output: Model with the best performance on

the target development set θ∗.

the start and the end of the answer span at each
step given st, and the final prediction is the aver-
age prediction of all steps. Stochastic prediction
dropout (Liu et al., 2018) is applied during train-
ing.

Note that we use SAN as an example MRC
model in the proposed framework. However, our
approach is compatible with any existing MRC
models. In experiments, in order to demonstrate
the versatility of the proposed model, we also con-
duct experiments with BiDAF (Seo et al., 2017).

4.3 Domain Classifier
The domain classifier takes the output of the en-
coder as input, including the aforementioned pas-
sage representation Mp ∈ RT×2m and the self-
attended question representation M q ∈ R2m from
different domains, and predicts the domain label d
by modeling the conditional probability P (d|p, q).
A self-attention layer is also applied to Mp to re-
duce its size to Mp′ ∈ R2m. We then concate-
nate it with M q, followed by a two-layer Multi-
Layer Perceptron (MLP), f(W [Mp′ ;M q]), and
use a sigmoid function to predict the domain la-
bel.

4.4 Training
Algorithm 1 illustrates the training procedure of
our proposed framework. We first train the ques-
tion generation model θQG on the source domain
dataset S by maximizing the likelihood of gener-
ating question qs given passage ps and answer as.
Given the unlabeled dataset in the target domain,

we extract candidate answers at on pt and use θQG

to generate pseudo questions qt, and then compose
a pseudo labeled dataset Tgen = {pt, qt, at}.

We initialize the MRC model θ for the target do-
main with the pre-trained MRC model θs from the
source domain, and then fine-tune the model using
both the source domain dataset S and the target
domain dataset Tgen. The goal of the decoder θd
is to predict P (a|p, q). The objective function is
denoted as:

LD(θe, θd) =
1

|S|
∑|S|

i=1 logP (a
(i)|p(i), q(i)) ,

(2)

where the superscript (i) indicates the i-th sam-
ple. It is worthwhile to emphasize that unlike
Golub et al. (2017), we only use source domain
data to update the decoder, without using pseudo
target domain data. This is because the synthetic
question-answer pairs could be noisy, and directly
using such data for decoder training may lead to
degraded performance of the answer module, as
observed both in Sachan and Xing (2018) and in
our experiments.

The synthetic target domain data and source do-
main data are both used to update the encoder θe
and the domain classifier θc. The classifier pre-
dicts a domain label d given the feature represen-
tation from the encoder. The objective function is:

LC(θe, θc) =
1

N

∑N
i=1 logP (d

(i)|p(i), q(i)) , (3)

whereN = |S|+ |Tgen|. In order to learn domain-
invariant representations from the encoder, we up-
date θe to maximize the loss while updating θc to
minimize the loss in an adversarial fashion. The
overall objective function is defined as:

L(θe, θd, θc) = LD(θe, θd)− λLC(θe, θc) , (4)

where λ is a trade-off parameter that balances the
two terms.

To optimize our model, instead of alternately
updating the adversaries like in GAN (Goodfel-
low et al., 2014), we use the gradient-reversal
layer (Ganin and Lempitsky, 2015) to jointly op-
timize all the components, as suggested in Chen
et al. (2018).

5 Experiments

5.1 Experimental Setting
Datasets We validate our proposed method on
three benchmarks: SQuAD (Rajpurkar et al.,
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Dataset Domain Train Dev Test
SQuAD (v1.1) Wiki 87,600 10,570 −
NewsQA News 92,549 5,166 5,165
MS MARCO (v1) Web 82,430 10,047 9,650

Table 1: Statistics of the datasets.

2016), NewsQA (Trischler et al., 2016), and MS
MARCO (Bajaj et al., 2016). The statistics of the
datasets are provided in Table 1. Note that these
datasets are all from different domains: SQuAD is
from Wikipedia; NewsQA is from CNN news; and
MS MARCO is from web search log.

Evaluation metrics For SQuAD and NewsQA,
we report results on two evaluation metrics: Exact
Match (EM), which measures the percentage of
span predictions that match any of the ground truth
answers exactly; and Macro-averaged F1 score,
which measures the average overlap between the
prediction and the ground-truth answer. For MS
MARCO, since the answer is free-formed, we use
BLEU and ROUGE-L scores for evaluation.

Implementation details1 We use spaCy2 to
generate POS and NER taggings, which are used
in answer extraction and the lexicon encoding
layer of the QG and MRC models. The QG model
is fixed after trained on source-domain labeled
data. The hidden size of the LSTM in the QG
model is set to 125. Parameters of the SAN model
follow Liu et al. (2018). The hidden size of the
MLP layer in the domain classifier is set to 125.
Both the QG and the MRC model are optimized
via Adamax (Kingma and Ba, 2015) with mini-
batch size set to 32. The learning rate is set to
0.002 and is halved every 10 epochs. To avoid
overfitting, we set the dropout rate to 0.3. For
each mini-batch, data are sampled from both do-
mains, with ks samples from the source domain
and kt samples from the target domain. We set
ks : kt = 2 : 1 as default in our experiments. For
the trade-off parameter λ, we gradually change it
from 0 to 1, following the schedule suggested in
Ganin and Lempitsky (2015).

5.2 Experimental Results

We implement the following baselines and models
for comparison.

1. SAN: we directly apply the pre-trained SAN
model from the source domain to answer
questions in the target domain.

1Code will be released for easy access.
2https://spacy.io/

Method EM/F1
SQuAD→ NewsQA

SAN 36.68/52.79
SynNet + SAN 35.19/49.61
AdaMRC 38.46/54.20
AdaMRC with GT questions 39.37,54.63

NewsQA→ SQuAD
SAN 56.83/68.62
SynNet + SAN 50.34/62.42
AdaMRC 58.20/69.75
AdaMRC with GT questions 58.82/70.14
SQuAD→MS MARCO (BLEU-1/ROUGE-L)
SAN 13.06/25.80
SynNet + SAN 12.52/25.47
AdaMRC 14.09/26.09
AdaMRC with GT questions 15.59/26.40

MS MARCO→ SQuAD
SAN 27.06/40.07
SynNet + SAN 23.67/36.79
AdaMRC 27.92/40.69
AdaMRC with GT questions 27.79/41.47

Table 2: Performance of AdaMRC compared with
baseline models on three datasets, using SAN as the
MRC model.

2. SynNet+SAN: we use SynNet3 (Golub et al.,
2017) to generate pseudo target-domain data,
and then fine-tune the pre-trained SAN
model.

3. AdaMRC: as illustrated in Algorithm 1.

4. AdaMRC with GT questions: the same as
AdaMRC, except that the ground-truth ques-
tions in the target domain are used for train-
ing. This serves as an upper-bound of the pro-
posed model.

Table 2 summarizes the experimental results.
We observe that the proposed method consis-
tently outperforms SAN and the SynNet+SAN
model on all datasets. For example, in the
SQuAD→NewsQA setting, where the source-
domain dataset is SQuAD and the target-domain
dataset is NewsQA, AdaMRC achieves 38.46%
and 54.20% in terms of EM and F1 scores, out-
performing the pre-trained SAN by 1.78% (EM)
and 1.41% (F1), respectively, as well as surpassing
SynNet by 3.27% (EM) and 4.59% (F1), respec-
tively. Similar improvements are also observed in
NewsQA→SQuAD, SQuAD→MS MARCO and
MS MARCO→SQuAD settings, which demon-
strates the effectiveness of the proposed model.

Interestingly, we find that the improvement
on adaptation between SQuAD and NewsQA
is greater than that between SQuAD and MS
MARCO. Our assumption is that it is because

3The officially released code is used in our experiments:
https://github.com/davidgolub/QuestionGeneration.

https://spacy.io/
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SQuAD and NewsQA datasets are more similar
than SQuAD and MS MARCO, in terms of ques-
tion style. For example, questions in MS MARCO
are real web search queries, which are short and
may have typos or abbreviations; while questions
in SQuAD and NewsQA are more formal and well
written. Furthermore, the ground-truth answers
in MS MARCO are human-synthesized and usu-
ally much longer (16.4 tokens in average) than
those in the other datasets, while our answer ex-
traction process focuses on named entities (which
are much shorter). We argue that extracting named
entities as possible answers is still reasonable for
most of the reading comprehension tasks such as
SQuAD and NewsQA. The problem of synthesiz-
ing answers across different domains will be in-
vestigated in future work.

SynNet vs. pre-trained SAN baseline One
observation is that SynNet performs worse than
the pre-trained SAN baseline. We hypothesize
that this is because the generated question-answer
pairs are often noisy and inaccurate, and directly
fine-tuning the answer module with synthetic data
may hurt the performance, which is also observed
in Sachan and Xing (2018), especially when a
well-performed MRC model is used as the base-
line. Note that we do observe improvements
from SynNet+BiDAF over the pre-trained BiDAF
model, which will be discussed in Sec. 6.2.

Comparing with upper-bound The “AdaMRC
with GT questions” model (in Section 5.2) serves
as the upper-bound of our proposed approach,
where ground-truth questions are used instead
of synthesized questions. By using ground-
truth questions, performance is further boosted by
around 1%. This suggests that our question gener-
ation model is effective as the margin is relatively
small, yet it could be further improved. We plan to
study if recent question generation methods (Du
et al., 2017; Duan et al., 2017; Sun et al., 2018;
Benmalek et al., 2019) could further help to close
the performance gap in future work.

6 Analysis

6.1 Visualization

To demonstrate the effectiveness of adversarial do-
main adaptation, we visualize the encoded repre-
sentation via t-SNE (Maaten and Hinton, 2008)
in Figure 1. We observe that with AdaMRC, the
two distributions of encoded feature representa-

(a) From SQuAD to NewsQA.

(b) From NewsQA to SQuAD.

Figure 3: Performance of our proposed method com-
pared with baselines, using BiDAF as the MRC model.

Method EM/F1
SAN 32.35/42.62
AdaMRC + SAN 33.61/44.16
BiDAF 27.85/36.82
AdaMRC + BiDAF 29.12/38.84

Table 3: Performance on DuoRC, adapting from Sel-
fRC (Wikipedia) to ParaphraseRC (IMDB).

tions are indistinguishable. Without AdaMRC, the
two distributions are independently clustered by
domain. We further use KL divergence for mea-
suring distributional differences. The KL diver-
gence of data samples between source and target
domains, with and without domain adaptation, are
0.278, 0.433, respectively (smaller is better).

6.2 Robustness of AdaMRC

Results on BiDAF To verify that our proposed
framework is compatible to existing MRC models,
we also apply our framework to the BiDAF model,
which has different encoder and decoder structures
compared to SAN. We follow the model architec-
ture and parameter settings in Seo et al. (2017). As
shown in Figure 3, the proposed AdaMRC model
clearly outperforms both SynNet+BiDAF and pre-
trained BiDAF model. We also observe that the
improvement of AdaMRC over BiDAF is more
significant than SAN. Our hypothesis is that since
BiDAF is a weaker baseline than SAN, a higher
performance improvement can be observed when
the domain adaptation approach is applied to en-
hance the model. This experiment confirms that
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Method EM/F1
SAN 36.68/52.79
AdaMRC + SAN 38.46/54.20
SAN + ELMo 39.61/55.18
AdaMRC + SAN + ELMo 40.96/56.25
BERTBASE 42.00/58.71
AdaMRC + BERTBASE 42.59/59.25

Table 4: Results of using ELMo and BERT. Setting:
adaptation from SQuAD to NewsQA.

our proposed approach is robust and can general-
ize to different MRC models.

Results on DuoRC We further test our model
on the newly-released DuoRC dataset (Saha et al.,
2018). This dataset contains two subsets: movie
descriptions collected from Wikipedia (SelfRC)
and from IMDB (ParaphraseRC). Although the
two subsets are describing the same movies, the
documents from Wikipedia are usually shorter
(580 words in average), while the documents from
IMDB are longer and more descriptive (926 words
in average). We consider them as two differ-
ent domains and perform domain adaptation from
Wikipedia to IMDB. This experiment broadens
our definition of domain.

In the DuoRC dataset, the same questions are
asked on both Wikipedia and IMDB documents.
Thus, question synthesis is not needed, and com-
parison with SynNet is not feasible. Note that the
answers of the same question could be different
in the two subsets (only 40.7% of the questions
have the same answers in both domains). We pre-
process the dataset and test the answer-span ex-
traction task following Saha et al. (2018). Results
are reported in Table 3. AdaMRC improves the
performance over both SAN (1.26%, 1.54% in EM
and F1) and BiDAF (1.27%, 2.02% in EM and
F1). This experiment validates that our method
can be applied to different styles of domain adap-
tation tasks as well.

6.3 AdaMRC with Pre-trained Language
Models

To verify that our approach is compatible with
large-scale pre-trained language models, we eval-
uate our model with ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019). To apply ELMo to
SAN, we use the model provided by AllenNLP4,
and append a 1024-dim ELMo vector to the con-
textual encoding layer, with dropout rate set to
0.5. For BERT, we experiment with the pre-

4https://allennlp.org/

Ratio SAN AdaMRC + SAN
0% 36.68/52.79 38.46/54.20
5% 47.61/62.69 48.50/63.17
10% 48.66/63.32 49.64/63.94
20% 50.75/64.80 51.14/65.38
50% 53.24/67.07 53.34/67.30

100% 56.48/69.14 56.29/68.97

Table 5: Semi-supervised domain adaptation experi-
ment with varied labeling ratio on the target-domain
dataset. Setting: adaptation from SQuAD to NewsQA.

trained BERTBASE uncased model5 due to lim-
ited computational resources. We use the original
design of finetuning BERT for the MRC task in
Devlin et al. (2019), instead of combining BERT
with SAN. Results are provided in Table 4. We
observe that using ELMo and BERT improves
both AdaMRC and the baseline model. However,
the improvement over ELMo and BERT is rela-
tively smaller than SAN. We believe this is be-
cause pre-trained language model provides addi-
tional domain-invariant information learned from
external data, and therefore limits the improve-
ment of domain-invariant feature learning in our
model. However, it is worth noting that combin-
ing AdaMRC with BERT achieves the best perfor-
mance, which validates that AdaMRC is compati-
ble with data augmentation from external sources.

6.4 Semi-supervised Setting

As an additional experiment, we also evalu-
ate the proposed AdaMRC framework for semi-
supervised domain adaptation. We randomly sam-
ple k portion of labeled data from the target do-
main, and feed them to the MRC model. The ratio
of labeled data ranges k from 0% to 100%. Table
5 shows that AdaMRC outperforms SAN. How-
ever, the gap is decreasing when the labeling ra-
tio increases. When the ratio is 20% or smaller,
there is noticeable improvement. When the ratio is
set to 50%, the two methods result in similar per-
formance. When the ratio is increased to 100%,
i.e., fully supervised learning, the performance of
AdaMRC is slightly worse than SAN. This is pos-
sibly because in a supervised learning setting, the
encoder is trained to preserve domain-specific fea-
ture information. The overall results suggest that
our proposed AdaMRC is also effective in semi-
supervised setting, when a small portion of target-
domain data is provided.

5https://github.com/google-research/
bert

https://allennlp.org/
https://github.com/google-research/bert
https://github.com/google-research/bert
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Refugee camps in eastern Chad house about 300,000 people who fled violence in the Darfur region of Sudan . The U.N.
High Commissioner for Refugees said on Monday that more than 12,000 people have fled militia attacks over the last few
days from Sudan ’s Darfur region to neighboring Chad...
Answer: 12,000
GT Question: How many have recently crossed to Chad?
Pseudo Question: How many people fled the Refugee region to Sudan?

Sources say the classified materials were taken from the East Tennessee Technology Park . Roy Lynn Oakley , 67 , of
Roane County , Tennessee , appeared in federal court in Knoxville on Thursday . Oakley was briefly detained for
questioning in the case in January ...
Answer: Roy Lynn Oakley
GT Question: Who is appearing in court ?
Pseudo Question: What is the name of the classified employee in Tennessee on East Tennessee ?

The Kyrgyz order became effective on Friday when President Kurmanbek Bakiyev reportedly signed legislation that the
parliament in Bishkek backed on Thursday , the Pentagon said . Pentagon spokesman Bryan Whitman said the Kyrgyz
Foreign Ministry on Friday officially notified the U.S. Embassy in Bishkek that a 180-day withdrawal process is under
way...
Answer: President Kurmanbek Bakiyev
GT Question: Who is the President of Kyrgyzstan ?
Pseudo Question: What spokesman signed legislation that the parliament was signed legislation in 2011 ?

A high court in northern India on Friday acquitted a wealthy businessman facing the death sentence for the killing of a
teen in a case dubbed " the house of horrors . " Moninder Singh Pandher was sentenced to death by a lower court in
February . The teen was one of 19 victims – children and young women – in one of the most gruesome serial killings in
India in recent years ...
Answer: one of 19
GT Question:What was the amount of children murdered?
Pseudo Question: How many victims were in India?

Table 6: Examples of generated questions given input paragraphs and answers, comparing with the ground-truth
human-written questions.

6.5 Examples of Generated Questions

The percentage of generated questions starting
with “what”, “who”, “when” and “where” are
63.2%, 12.8%, 2.3%, and 2.1%, respectively. We
provide several examples of generated questions
in Table 6. We observe that the generated ques-
tions are longer than human-written questions.
This is possibly due to the copy mechanism used
in the question generation model, which enables
directly copying words into the generated ques-
tions. On the one hand, the copy mechanism pro-
vides detailed background information for gener-
ating a question. However, if not copying cor-
rectly, the question could be syntactically incor-
rect. For instance, in the third example, “signed
legislation that the parliament” is copied from the
passage. The copied phrase is indeed describing
the answer “President Kurmanbek Bakiyev”; how-
ever, the question is syntactically incorrect and the
question generator should copy “the parliament
backed on Thursday” instead.

There is generally good correspondence be-
tween the answer type and generated questions.
For example, the question generator will produce
“What is the name of ” if the answer is about a per-
son, and ask “How many” if the answer is a num-
ber. We also observe that the generated questions

may encounter semantic errors though syntacti-
cally fluent. For instance, in the first example, the
passage suggests that people fled from Sudan to
Chad, while the generated question describes the
wrong direction. However, overall we think that
the current question generator provides reasonable
synthesized questions, yet there is still large room
to improve. The observation also confirms our
analysis that the synthetic question-answer pairs
could be noisy and inaccurate, thus could hurt the
performance when fine-tuning the answer module
with generated data.

7 Conclusion

In this paper, we propose a new framework, Adver-
sarial Domain Adaptation for MRC (AdaMRC),
to transfer a pre-trained MRC model from a source
domain to a target domain. We validate our pro-
posed framework on several datasets and observe
consistent improvement over baseline methods.
We verify the robustness of the proposed frame-
work by applying it to different MRC models.
Experiments also show that AdaMRC is compat-
ible with pre-trained language model and semi-
supervised learning setting. We believe our anal-
ysis provides insights that can help guide further
research in this task.
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