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Abstract

Numerical reasoning, such as addition, sub-
traction, sorting and counting is a critical skill
in human’s reading comprehension, which has
not been well considered in existing machine
reading comprehension (MRC) systems. To
address this issue, we propose a numerical
MRC model named as NumNet, which uti-
lizes a numerically-aware graph neural net-
work to consider the comparing information
and performs numerical reasoning over num-
bers in the question and passage. Our sys-
tem achieves an EM-score of 64.56% on the
DROP dataset, outperforming all existing ma-
chine reading comprehension models by con-
sidering the numerical relations among num-
bers.

1 Introduction

Machine reading comprehension (MRC) aims to
infer the answer to a question given the docu-
ment. In recent years, researchers have proposed
lots of MRC models (Chen et al., 2016; Dhingra
et al., 2017; Cui et al., 2017; Seo et al., 2017) and
these models have achieved remarkable results in
various public benchmarks such as SQuAD (Ra-
jpurkar et al., 2016) and RACE (Lai et al., 2017).
The success of these models is due to two rea-
sons: (1) Multi-layer architectures which allow
these models to read the document and the ques-
tion iteratively for reasoning; (2) Attention mech-
anisms which would enable these models to focus
on the part related to the question in the document.

However, most of existing MRC models are
still weak in numerical reasoning such as addi-
tion, subtraction, sorting and counting (Dua et al.,
2019), which are naturally required when read-
ing financial news, scientific articles, etc. Dua
et al. (2019) proposed a numerically-aware QANet

*indicates equal contribution

(NAQANet) model, which divides the answer gen-
eration for numerical MRC into three types: (1)
extracting spans; (2) counting; (3) addition or sub-
traction over numbers. NAQANet makes a pio-
neering attempt to answer numerical questions but
still does not explicitly consider numerical reason-
ing.

To tackle this problem, we introduce a novel
model NumNet that integrates numerical reason-
ing into existing MRC models. A key problem
to answer questions requiring numerical reasoning
is how to perform numerical comparison in MRC
systems, which is crucial for two common types
of questions:

(1) Numerical Comparison: The answers of
the questions can be directly obtained via perform-
ing numerical comparison, such as sorting and
comparison, in the documents. For example, in
Table 1, for the first question, if the MRC system
knows the fact that “49 > 47 > 36 > 31 > 227,
it could easily extract that the second longest field
goal is 47-yard.

(2) Numerical Condition: The answers of the
questions cannot be directly obtained through sim-
ple numerical comparison in the documents, but
often require numerical comparison for under-
standing the text. For example, for the second
question in Table 1, an MRC system needs to
know which age group made up more than 7% of
the population to count the group number.

Hence, our NumNet model considers numerical
comparing information among numbers when an-
swering numerical questions. As shown in Fig-
ure 1, NumNet first encodes both the question
and passages through an encoding module consist-
ing of convolution layers, self-attention layers and
feed-forward layers as well as a passage-question
attention layer. After that, we feed the question
and passage representations into a numerically-
aware graph neural network (NumGNN) to further
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Question Passage Answer
What is the second ... The Seahawks immediately trailed on a scoring rally by the Raiders with kicker =~ 47-yard
longest field goal Sebastian Janikowski nailing a 31-yard field goal ... Then in the third quarter
made? Janikowski made a 36-yard field goal. Then he made a 22-yard field goal in the

fourth quarter to put the Raiders up 16-0 ... The Seahawks would make their only

score of the game with kicker Olindo Mare hitting a 47-yard field goal. However,

they continued to trail as Janikowski made a 49-yard field goal, followed by RB

Michael Bush making a 4-yard TD run.
How many age Of Saratoga Countys population in 2010, 6.3% were between ages of 5 and 9 years, 5

groups made up
more than 7% of
the population?

6.7% between 10 and 14 years, 6.5% between 15 and 19 years, 5.5% between 20
and 24 years, 5.5% between 25 and 29 years, 5.8% between 30 and 34 years, 6.6%
between 35 and 39 years, 7.9% between 40 and 44 years, 8.5% between 45 and
49 years, 8.0% between 50 and 54 years, 7.0% between 55 and 59 years, 6.4%

between 60 and 64 years, and /3.7% of age 65 years and over ...

Table 1: Example questions from the DROP dataset which require numerical comparison. We highlight the relevant

parts in the passage to infer the answer.

integrate the comparison information among num-
bers into their representations. Finally, we utilize
the numerically-aware representation of passages
to infer the answer to the question.

The experimental results on a public numerical
MRC dataset DROP (Dua et al., 2019) show that
our NumNet model achieves significant and con-
sistent improvement as compared to all baseline
methods by explicitly performing numerical rea-
soning over numbers in the question and passage.
In particular, we show that our model could effec-
tively deal with questions requiring sorting with
multi-layer NumGNN. The source code of our
paper is available at https://github.com/
rangiu92/NumNet.

2 Related Work

2.1 Machine Reading Comprehension

Machine reading comprehension (MRC) has be-
come an important research area in NLP. In recent
years, researchers have published a large number
of annotated MRC datasets such as CNN/Daily
Mail (Hermann et al., 2015), SQuAD (Rajpurkar
et al., 2016), RACE (Lai et al., 2017), Trivi-
aQA (Joshi et al., 2017) and so on. With the
blooming of available large-scale MRC datasets,
a great number of neural network-based MRC
models have been proposed to answer ques-
tions for a given document including Attentive
Reader (Kadlec et al., 2016), BiDAF (Seo et al.,
2017), Interactive AoA Reader (Cui et al., 2017),
Gated Attention Reader (Dhingra et al., 2017),
R-Net (Wang et al., 2017a), DCN (Xiong et al.,
2017), QANet (Yu et al.,, 2018), and achieve
promising results in most existing public MRC

datasets.

Despite the success of neural network-based
MRC models, researchers began to analyze the
data and rethink to what extent we have solved the
problem of MRC. Some works (Chen et al., 2016;
Sugawara et al., 2018; Kaushik and Lipton, 2018)
classify the reasoning skills required to answer
the questions into the following types: (1) Exact
matching/Paraphrasing; (2) Summary; (3) Logic
reasoning; (4) Utilizing external knowledge; (5)
Numerical reasoning. They found that most ex-
isting MRC models are focusing on dealing with
the first three types of questions. However, all
these models suffer from problems when answer-
ing the questions requiring numerical reasoning.
To the best of our knowledge, our work is the first
one that explicitly incorporates numerical reason-
ing into the MRC system. The most relevant work
to ours is NAQANet (Dua et al., 2019), which
adapts the output layer of QANet (Yu et al., 2018)
to support predicting answers based on counting
and addition/subtraction over numbers. However,
it does not consider numerical reasoning explicitly
during encoding or inference.

2.2 Arithmetic Word Problem Solving

Recently, understanding and solving arithmetic
word problems (AWP) has attracted the growing
interest of NLP researchers. Hosseini et al. (2014)
proposed a simple method to address arithmetic
word problems, but mostly focusing on subsets of
problems which only require addition and subtrac-
tion. After that, Roy and Roth (2015) proposed
an algorithmic approach which could handle arith-
metic word problems with multiple steps and op-
erations. Koncel-Kedziorski et al. (2015) further
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Figure 1: The framework of our NumNet model. Our model consists of an encoding module, a reasoning
module and a prediction module. The numerical relations between numbers are encoded with the topology of the
graph. For example, the edge pointing from “6” to “5” denotes “6” is greater than “5”. And the reasoning module
leverages a numerically-aware graph neural network to perform numerical reasoning on the graph. As numerical
comparison is modeled explicitly in our model, it is more effective for answering questions requiring numerical
reasoning such as addition, counting, or sorting over numbers.

formalized the AWP problem as that of generating
and scoring equation trees via integer linear pro-
gramming. Wang et al. (2017b) and Ling et al.
(2017) proposed sequence to sequence solvers for
the AWP problems, which are capable of gener-
ating unseen expressions and do not rely on so-
phisticated manual features. Wang et al. (2018)
leveraged deep Q-network to solve the AWP prob-
lems, achieving a good balance between effec-
tiveness and efficiency. However, all the exist-
ing AWP systems are only trained and validated
on small benchmark datasets. Huang et al. (2016)
found that the performance of these AWP systems
sharply degrades on larger datasets. Moreover,
from the perspective of NLP, MRC problems are
more challenging than AWP since the passages in
MRC are mostly real-world texts which require
more complex skills to be understood. Above all,
it is nontrivial to adapt most existing AWP mod-
els to the MRC scenario. Therefore, we focus on
enhancing MRC models with numerical reasoning
abilities in this work.

3 Methodology

In this section, we will introduce the framework of
our model NumNet and provide the details of the
proposed numerically-aware graph neural network
(NumGNN) for numerical reasoning.

3.1 Framework

An overview of our model NumNet is shown in
Figure 1. We compose our model with encoding
module, reasoning module and prediction module.
Our major contribution is the reasoning module,

which leverages a NumGNN between the encod-
ing module and prediction module to explicitly
consider the numerical comparison information
and perform numerical reasoning. As NAQANet
has been shown effective for handling numerical
MRC problem (Dua et al., 2019), we leverage it
as our base model and mainly focus on the design
and integration of the NumGNN in this work.

Encoding Module Without loss of generality,
we use the encoding components of QANet and
NAQANet to encode the question and passage into
vector-space representations. Formally, the ques-
tion () and passage P are first encoded as:

Q =
P =

QANet-Emb-Enc(Q), (1)
QANet-Emb-Enc(P), 2)

and then the passage-aware question representa-
tion and the question-aware passage representa-
tion are computed as:

Q =
P -

QANet-Att(P,Q), 3)
QANet-Att(Q, P), 4

where QANet -Emb-Enc(-) and QANet-Att(:)
denote the “stacked embedding encoder layer” and
“context-query attention layer” of QANet respec-
tively. The former consists of convolution, self-
attention and feed-forward layers. The latter is
a passage-question attention layer. @ and P are
used by the following components.

Reasoning Module First we build a heteroge-
neous directed graph G = (V; E), whose nodes
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(V) are corresponding to the numbers in the ques-
tion and passage, and edges (F) are used to encode
numerical relationships among the numbers. The
details will be explained in Sec. 3.2.

Then we perform reasoning on the graph based
on a graph neural network, which can be formally
denoted as:

MC® = QaNet-Mod-Enc(WMQ), (5)
M?Y = oaNet-Mod-Enc(WMP), (6)
U = Reasoning(g;MQ,MP), @)

where WM is a shared weight matrix, U is the
representations of the nodes corresponding to the
numbers, QANet -Mod-Enc(-) is the “model en-
coder layer” defined in QANet which is simi-
lar to QANet-Emb-Enc(+), and the definition of
Reasoning(-) will be given in Sec. 3.3.

Finally, as U only contains the representations
of numbers, to tackle span-style answers contain-
ing non-numerical words, we concatenate U with
M to produce numerically-aware passage repre-
sentation M. Formally,

N e
MM = {OU[I(z)] if w; is a number ’
My = Wo[M"; M™™] + by, ®)
M, = QANet-Mod-Enc(My)), 9)

where [-;-] denotes matrix concatenation, W [k]
denotes the k-th column of a matrix W, 0 is a zero
vector, I (i) denotes the node index corresponding
to the passage word w! which is a number, Wy is
a weight matrix, and by is a bias vector.

Prediction Module Following NAQANet (Dua
etal., 2019), we divide the answers into four types
and use a unique output layer to calculate the con-
ditional answer probability Pr(answer|type) for
each type :

e Passage span: The answer is a span of the
passage, and the answer probability is de-
fined as the product of the probabilities of the
start and end positions.

e Question span: The answer is a span of the
question, and the answer probability is also
defined as the product of the probabilities of
the start and end positions.

e Count: The answer is obtained by counting,
and it is treated as a multi-class classifica-
tion problem over ten numbers (0-9), which

covers most of the Count type answers in the
DROP dataset.

o Arithmetic expression: The answer is the re-
sult of an arithmetic expression. The expres-
sion is obtained in three steps: (1) extract all
numbers from the passage; (2) assign a sign
(plus, minus or zero) for each number; (3)
sum the signed numbers .

Meanwhile, an extra output layer is also used
to predict the probability Pr(type) of each an-
swer type. At training time, the final an-
swer probability is defined as the joint prob-
ability over all feasible answer types, i.e.,
> _ype Pr(type) Pr(answer|type). Here, the an-
swer type annotation is not required and the proba-
bility Pr(type) is learnt by the model. At test time,
the model first selects the most probable answer
type greedily and then predicts the best answer ac-
cordingly.

Without loss of generality, we leverage the defi-
nition of the five output layers in (Dua et al., 2019),
with M and @ as inputs. Please refer to the paper
for more details due to space limitation.

Comparison with NAQANet The major differ-
ence between our model and NAQANet is that
NAQANet does not have the reasoning module,
i.e., My is simply set as M. As a result, num-
bers are treated as common words in NAQANet
except in the prediction module, thus NAQANet
may struggle to learn the numerical relationships
between numbers, and potentially cannot well
generalize to unseen numbers. However, as dis-
cussed in Sec. 1, the numerical comparison is es-
sential for answering questions requiring numeri-
cal reasoning. In our model, the numerical rela-
tionships are explicitly represented with the topol-
ogy of the graph and a NumGNN is used to per-
form numerical reasoning. Therefore, our Num-
Net model can handle questions requiring numer-
ical reasoning more effectively, which is verified
by the experiments in Sec. 4.

3.2 Numerically-aware Graph Construction

We regard all numbers from the question and pas-
sage as nodes in the graph for reasoning > . The

'As few samples require multiplication/division expres-
sion in the DROP dataset, we simply adapt the module pro-
posed (Dua et al., 2019) and leave multiplication/division ex-
pression handling as future work.

2As a number in the question may serve as a critical com-
parison condition (refer to the second example in Table 1),
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set of nodes corresponding to the numbers occur-
ring in question and passage are denoted as V¢
and V' respectively. And we denote all the nodes
as V = VQUV?P, and the number corresponding
toanode v € V as n(v).

Two sets of edges are considered in this work:

e Greater Relation Edge (E): For two nodes
v;,v; € V, a directed edge ?ij = (v, v5)
pointing from v; to v; will be added to the
graph if n(v;) > n(v;), which is denoted as
solid arrow in Figure 1.

e Lower or Equal Relation Edge (%): For
two nodes v;, v; € V/, a directed edge %ij =
(vj,v;) will be added to the graph if n(v;) <
n(v;), which is denoted as dashed arrow in
Figure 1.

Theoretically, E and f are complement to each
other . However, as a number may occur several
times and represent different facts in a document,
we add a distinct node for each occurrence in the
graph to prevent potential ambiguity. Therefore, it
is more reasonable to use both E and % in order
to encode the equal information among nodes.

3.3 Numerical Reasoning

As we built the graph G = (V, E), we leverage
NumGNN to perform reasoning, which is corre-
sponding to the function Reasoning(-) in Eq. 7.
The reasoning process is as follows:

Initialization For each node ’UZP e VP its rep-
resentation is initialized as the corresponding col-
umn vector of M¥ Formal]y, the initial represen-
tation is v; = MT I (vF)], where I7 (v]) de-
notes the word index corresponding to vf. Simi-
larly, the initial representation ’U]fQ for a node UJQ €
V¥ is set as the corresponding column vector of
M®. We denote all the initial node representa-
tions as v° = {v/} U {’U]Q}

One-step Reasoning Given the graph G and the
node representations v, we use a GNN to perform
reasoning in three steps:

(1) Node Relatedness Measure: As only a
few numbers are relevant for answering a ques-
tion generally, we compute a weight for each node
to by-pass irrelevant numbers in reasoning. For-

mally, the weight for node v; is computed as:
a; = sigmoid(Wyv[i] + by), (10)

we also add nodes for them in the graph.

where W, is a weight matrix, and b, is a bias.

(2) Message Propagation: As the role a num-
ber plays in reasoning is not only decided by it-
self, but also related to the context, we propagate
messages from each node to its neighbors to help
to perform reasoning. As numbers in question
and passage may play different roles in reasoning
and edges corresponding to different numerical re-
lations should be distinguished, we use relation-
specific transform matrices in the message prop-
agation. Formally, we define the following prop-
agation function for calculating the forward-pass
update of a node:

’U

E oz]WrJ“v )

: 11
i |N| (1)

where v] is the message representation of node
v;, rj; is the relation assigned to edge e;j;, Wit
are relation-specific transform matrices, and ; =
{j|(vj,v;) € E} is the neighbors of node v;.

For each edge ¢j;, r;; is determined by the fol-
lowing two attributes:

e Number relation: > or <;

e Node types: the two nodes of the edge corre-
sponding to two numbers that: (1) both from
the question (g-q); (2) both from the passage
(p-p); (3) from the question and the passage
respectively (g-p); (4) from the passage and
the question respectively (p-q).

Formally, ri; € {>, <} x {q-q, p-p,q-p, p-q}.
(3) Node Representation Update: As the mes-
sage representation obtained in the previous step
only contains information from the neighbors, it
needs to be fused with the node representation to
combine with the information carried by the node
itself, which is performed as:
’U; = RGLU(Wf’Ui =+ ’17; + bf), (12)
where Wy is a weight matrix, and by is a bias vec-
tor.
We denote the entire one-step reasoning process
(Eq. 10-12) as a single function
v/ = Reasoning-Step(G,v). (13)
As the graph G constructed in Sec. 3.2 has en-
coded the numerical relations via its topology, the
reasoning process is numerically-aware.
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Multi-step Reasoning By single-step reason-
ing, we can only infer relations between adjacent
nodes. However, relations between multiple nodes
may be required for certain tasks, e.g., sorting.
Therefore, it is essential to perform multi-step rea-
soning, which can be done as follows

t

v = Reasoning—Step(vt_l), (14)

where ¢ > 1. Suppose we perform K steps of
reasoning, v’ is used as U in Eq. 7.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our proposed model on DROP
dataset (Dua et al., 2019), which is a public nu-
merical MRC dataset. The DROP dataset is con-
structed by crowd-sourcing, which asks the anno-
tators to generate question-answer pairs according
to the given Wikipedia passages, which require nu-
merical reasoning such as addition, counting, or
sorting over numbers in the passages. There are
77,409 training samples, 9, 536 development sam-
ples and 9, 622 testing samples in the dataset.

In this paper, we adopt two metrics including
Exact Match (EM) and numerically-focused F1
scores to evaluate our model following Dua et al.
(2019). The numerically-focused F1 is set to be
0 when the predicted answer is mismatched for
those questions with the numeric golden answer.

4.2 Baselines

For comparison, we select several public models

as baselines including semantic parsing models:

e Syn Dep (Duaetal., 2019), the neural seman-

tic parsing model (KDG) (Krishnamurthy

et al.,, 2017) with Stanford dependencies
based sentence representations;

e OpenlE (Dua et al., 2019), KDG with open
information extraction based sentence repre-
sentations;

e SRL (Dua et al., 2019), KDG with semantic
role labeling based sentence representations;

and traditional MRC models:

e BiDAF (Seo et al., 2017), an MRC model
which utilizes a bi-directional attention flow
network to encode the question and passage;

e QANet (Yu et al., 2018), which utilizes con-
volutions and self-attentions as the building
blocks of encoders to represent the question
and passage;

e BERT (Devlin et al., 2019), a pre-trained
bidirectional Transformer-based language
model which achieves state-of-the-art perfor-
mance on lots of public MRC datasets re-
cently;

and numerical MRC models:

e NAQANet (Dua et al., 2019), a numerical
version of QANet model.

e NAQANet+, an enhanced version of
NAQANet implemented by ourselves, which
further considers real number (e.g. ‘2.57),
richer arithmetic expression, data augmenta-
tion, etc. The enhancements are also used in
our NumNet model and the details are given
in the supplemental material.

4.3 Experimental Settings

In this paper, we tune our model on the develop-
ment set and use a grid search to determine the
optimal parameters. The dimensions of all the rep-
resentations (e.g., Q, P, M@, MP, U, M, M,
and v) are set to 128. If not specified, the rea-
soning step K is set to 3. Since other parameters
have little effect on the results, we simply follow
the settings used in (Dua et al., 2019).

We use the Adam optimizer (Kingma and Ba,
2015) with 8; = 0.8, B = 0.999, ¢ = 1077
to minimize the objective function. The learn-
ing rate is 5 x 1074, L2 weight decay A is 10~
and the maximum norm value of gradient clipping
is 5. We also apply exponential moving average
with a decay rate 0.9999 on all trainable variables.
The model is trained with a batch size of 16 for
40 epochs. Passages and questions are trimmed
to 400 and 50 tokens respectively during training,
and trimmed to 1, 000 and 100 tokens respectively

during prediction 3.

4.4 Overall Results

The performance of our NumNet model and other
baselines on DROP dataset are shown in Table 2.
From the results, we can observe that:

(1) Our NumNet model achieves better results
on both the development and testing sets on DROP
dataset as compared to semantic parsing-based
models, traditional MRC models and even numeri-
cal MRC models NAQANet and NAQANet+. The
reason is that our NumNet model can make full
use of the numerical comparison information over

3Trimming passages/questions introduces little impact be-
cause it only affects about 8% of the samples.
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Method Dev Test Method Comparison ~ Number ALL
EM F1 EM F1 EM F1 EM F1 EM Fl
Semantic Parsing GNN 69.86 75.91 67.77 67.78 61.90 65.16
Syn Dep 9.38 11.64 851 10.84 NumGNN 74.53 80.36 69.74 69.75 64.54 68.02
OpenlE 8.80 11.31 853 10.77 - question num 74.84 80.24 68.42 68.43 63.78 67.17
SRL 9.28 11.72 898 1145 - <typeedge 74.89 80.51 68.48 68.50 63.66 67.06
Traditional MRC - > type edge  74.86 80.19 68.77 68.78 63.64 66.96
BiDAF 26.06 28.85 24.75 2749 ) )
QANet 2750 3044 25.50 28.36 Table 3: Performance with different GNN structure.
BERT 30.10 3336 29.45 32.70 “Comparison”, “Number” and “ALL” denote the com-
Numerical MRC paring question subset, the number-type answer subset,
NAQANet 4620 49.24 4407 47.01 and the entire development set, respectively.
NAQANet+ 61.47 64.85 60.82 64.29
NumNet 64.92 68.31 64.56 67.97 80 :
B NumGNN (#L=1)
Human Performance - - 94.09 96.42

Table 2: Overall results on the development and test
set. The evaluation metrics are calculated as the max-
imum over a golden answer set. All the results except
“NAQANet+” and “NumNet” are obtained from (Dua
etal., 2019).

numbers in both question and passage via the pro-
posed NumGNN module.

(2) Our implemented NAQANet+ has a much
better performance compared to the original ver-
sion of NAQANet. It verifies the effectiveness of
our proposed enhancements for baseline.

4.5 Effect of GNN Structure

In this part, we investigate the effect of different
GNN structures on the DROP development set.
The results are shown in Table 3. The “Com-
parison”, “Number” and “ALL” are corresponding
to the comparing question subset 4, the number-
type answer subset, and the entire development
set, respectively °. If we replace the proposed
numerically-aware graph (Sec. 3.2) with a fully
connected graph, our model fallbacks to a tra-
ditional GNN, denoted as “GNN” in the table.
Moreover, “- question num” denotes the numbers
in the question is not included in the graph, and -
< type edge” and “- > type edge” denote edges of
< and > types are not adopted respectively.

*We find that many comparing questions in the DROP
dataset are biased, of which the answers are the former can-
didates in the questions. Hence, we employ crowdsourced
workers to identify and rewrite all comparing questions to
construct an enhanced development set. Specially, for those
comparing questions containing answer candidates, we also
ask the crowdsourced workers to swap the candidates manu-
ally to enlarge the dataset.

Note that the “ALL” result is not the average of “Com-
parison” and “Number”. It is the performance on the entire
development set which also includes questions of selection
type, coreference resolution type, etc.

B NumGNN (#L=2)
[ NumGNN (#L=3)

75+

70+

Exact Match

651

Number All

Comparison

Figure 2: Effect of GNN layer numbers (# L).

As shown in Table 3, our proposed NumGNN
leads to statistically significant improvements
compared to traditional GNN on both EM and F1
scores especially for comparing questions. It indi-
cates that considering the comparing information
over numbers could effectively help the numerical
reasoning for comparing questions. Moreover, we
find that the numbers in the question are often re-
lated to the numerical reasoning for answering the
question, thus considering numbers in questions
in NumGNN achieves better performance. And
the results also justify that encoding “greater rela-
tion” and “lower or equal relation” simultaneously
in the graph also benefits our model.

4.6 Effect of GNN Layer Number

The number of NumGNN layers represents the nu-
merical reasoning ability of our models. A K-
layer version has the ability for K -step numerical
inference. In this part, we additionally perform ex-
periments to understand the values of the numbers
of NumGNN layers. From Figure 2, we could ob-
serve that:

(1) The 2-layer version of NumNet achieves
the best performance for the comparing questions.
From careful analysis, we find that most compar-
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Question & Answer Passage NAQANet+ NumNet
Q: Which age group is The median age in the city was 22.1 years. /0./% of residents were ~ under the 18 and 24
larger: under the age under the age of 18; 56.2% were between the ages of 18 and 24; age of 18
of 18 or 18 and 24? 16.1% were from 25 to 44; 10.5% were from 45 to 64; and 7% were

65 years of age or older. The gender makeup of the city was 64.3%
A: 18 and 24 male and 35.7% female.
Q: How many more ... The Vikings would draw first blood with a 26-yard field goal by 26-19=7 26-22=4

yards was Longwell’s
longest field goal over
his second longest one?

kicker Ryan Longwell. In the second quarter, Carolina got a field
goal with opposing kicker John Kasay. The Vikings would respond
with another Longwell field goal (a 22-yard FG) ... In OT, Longwell

booted the game-winning /9-yard field goal to give Minnesota the

A:26-22=4

win. It was the first time in Vikings history that a coach ...

Table 4: Cases from the DROP dataset. We demonstrate the predictions of NAQANet+ and our NumNet model.
Note that the two models only output the arithmetic expressions but we also provide their results for clarity.

Question Passage Answer NumNet
Which ancestral groups  As of the census of 2000, there were 7,791 people, 3,155 households, =~ German; Irish
are at least 10%? and 2,240 families residing in the county. ... 33.7% were of Germans, — Swedish;

13.9% Swedish people, 10.1% Irish people, 8.8% United States, 7.0%  Irish
English people and 5.4% Danish people ancestry ...

Were more people 40
and older or 19 and
younger?

Of Saratoga Countys population in 2010, 6.3% were between ages of
5 and 9 years, 6.7% between 10 and 14 years, 6.5% between 15 and
19 years, ... , 7.9% between 40 and 44 years, 8.5% between 45 and 49

40 and
older

19 and younger

years, 8.0% between 50 and 54 years, 7.0% between 55 and 59 years,
6.4% between 60 and 64 years, and /3.7% of age 65 years and over ...

Table 5: Typical error examples. Row 1: the answer is multiple nonadjacent spans; Row 2: Intermediate numbers

are involved in reasoning.

ing questions only require at most 2-step reason-
ing (e.g., “Who was the second oldest player in
the MLB, Clemens or Franco?”), and therefore the
3-layer version of NumNet is more complex but
brings no gains for these questions.

(2) The performance of our NumNet model on
the overall development set is improved consis-
tently as the number of GNN layers increases. The
reason is that some of the numerical questions re-
quire reasoning over many numbers in the pas-
sage, which could benefit from the multi-step rea-
soning ability of multi-layer GNN. However, fur-
ther investigation shows that the performance gain
is not stable when K > 4. We believe it is due to
the intrinsic over smoothing problem of GNNs (Li
etal., 2018).

4.7 Case Study

We further give some examples to show why in-
corporating comparing information over numbers
in the passage could help numerical reasoning in
MRC in Table 4. For the first case, we observe
that NAQANet+ gives a wrong prediction, and we
find that NAQANet+ will give the same prediction
for the question “Which age group is smaller: un-
der the age of 18 or 18 and 24?”. The reason is

that NAQANet+ cannot distinguish which one is
larger for 10.1% and 56.2%. For the second case,
NAQANet+ cannot recognize the second longest
field goal is 22-yard and also gives a wrong pre-
diction. For these two cases, our NumNet model
could give the correct answer through the numeric
reasoning, which indicates the effectiveness of our
NumNet model.

4.8 Error Analysis

To investigate how well our NumNet model han-
dles sorting/comparison questions and better un-
derstand the remaining challenges, we perform an
error analysis on a random sample of NumNet pre-
dictions. We find that:

(1) Our NumNet model can answer about 76%
of sorting/comparison questions correctly, which
indicates that our NumNet model has achieved nu-
merical reasoning ability to some extend.

(2) Among the incorrectly answered sort-
ing/comparison questions, the most ones (26%)
are those whose golden answers are multiple non-
adjacent spans (row 1 in Table 5), and the second
most ones (19%) are those involving comparison
with an intermediate number that does not literally
occur in the document/question but has to be de-
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rived from counting or arithmetic operation (row 1
in Table 5).

4.9 Discussion

By combining the numerically-aware graph and
the NumGNN together, our NumNet model
achieves the numerical reasoning ability. On one
hand, the numerically-aware graph encodes num-
bers as nodes and relationships between them as
the edges, which is required for numerical com-
parison. On the other hand, through one-step
reasoning, our NumGNN could perform compar-
ison and identify the numerical condition. After
multiple-step reasoning, our NumGNN could fur-
ther perform sorting.

However, since the numerically-aware graph is
pre-defined, our NumNet is not applicable to the
case where an intermediate number has to be de-
rived (e.g., from arithmetic operation) in the rea-
soning process, which is a major limitation of our
model.

5 Conclusion and Future Work

Numerical reasoning skills such as addition, sub-
traction, sorting and counting are naturally re-
quired by machine reading comprehension (MRC)
problems in practice. Nevertheless, these skills are
not taken into account explicitly for most existing
MRC models. In this work, we propose a numeri-
cal MRC model named NumNet which performs
explicit numerical reasoning while reading the
passages. To be specific, NumNet encodes the nu-
merical relations among numbers in the question
and passage into a graph as its topology, and lever-
ages a numerically-aware graph neural network to
perform numerical reasoning on the graph. Our
NumNet model outperforms strong baselines with
a large margin on the DROP dataset.

In the future, we will explore the following di-
rections: (1)As we use a pre-defined reasoning
graph in our model, it is incapable of handling rea-
soning process which involves intermediate num-
bers that not presented in the graph. How to in-
corporate dynamic graph into our model is an in-
teresting problem. (2) Compared with methods
proposed for arithmetic word problems (AWPs),
our model has better natural language understand-
ing ability. However, the methods for AWPs can
handle much richer arithmetic expressions. There-
fore, how to combine both of their abilities to de-
velop a more powerful numerical MRC model is

an interesting future direction. (3) Symbolic rea-
soning plays a crucial role in human reading com-
prehension. Our work integrates numerical rea-
soning, which is a special case of symbolic rea-
soning, into traditional MRC systems. How to in-
corporate more sophisticated symbolic reasoning
abilities into MRC systems is also a valuable fu-
ture direction.
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