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Abstract

Recent progress in pretraining language mod-
els on large textual corpora led to a surge
of improvements for downstream NLP tasks.
Whilst learning linguistic knowledge, these
models may also be storing relational knowl-
edge present in the training data, and may
be able to answer queries structured as “fill-
in-the-blank” cloze statements. Language
models have many advantages over structured
knowledge bases: they require no schema en-
gineering, allow practitioners to query about
an open class of relations, are easy to extend to
more data, and require no human supervision
to train. We present an in-depth analysis of the
relational knowledge already present (without
fine-tuning) in a wide range of state-of-the-
art pretrained language models. We find that
(i) without fine-tuning, BERT contains rela-
tional knowledge competitive with traditional
NLP methods that have some access to ora-
cle knowledge, (ii) BERT also does remark-
ably well on open-domain question answer-
ing against a supervised baseline, and (iii) cer-
tain types of factual knowledge are learned
much more readily than others by standard lan-
guage model pretraining approaches. The sur-
prisingly strong ability of these models to re-
call factual knowledge without any fine-tuning
demonstrates their potential as unsupervised
open-domain QA systems. The code to re-
produce our analysis is available at https:
//github.com/facebookresearch/LAMA.

1 Introduction

Recently, pretrained high-capacity language mod-
els such as ELMo (Peters et al., 2018a) and BERT
(Devlin et al., 2018a) have become increasingly
important in NLP. They are optimised to either
predict the next word in a sequence or some
masked word anywhere in a given sequence (e.g.
“Dante was born in [Mask] in the year 1265.”).
The parameters of these models appear to store
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Figure 1: Querying knowledge bases (KB) and lan-
guage models (LM) for factual knowledge.

vast amounts of linguistic knowledge (Peters et al.,
2018b; Goldberg, 2019; Tenney et al., 2019) use-
ful for downstream tasks. This knowledge is
usually accessed either by conditioning on latent
context representations produced by the original
model or by using the original model weights to
initialize a task-specific model which is then fur-
ther fine-tuned. This type of knowledge transfer
is crucial for current state-of-the-art results on a
wide range of tasks.

In contrast, knowledge bases are effective so-
lutions for accessing annotated gold-standard re-
lational data by enabling queries such as (Dante,
born-in, X). However, in practice we often need
to extract relational data from text or other modal-
ities to populate these knowledge bases. This
requires complex NLP pipelines involving entity
extraction, coreference resolution, entity linking
and relation extraction (Surdeanu and Ji, 2014)—
components that often need supervised data and
fixed schemas. Moreover, errors can easily prop-
agate and accumulate throughout the pipeline. In-
stead, we could attempt to query neural language
models for relational data by asking them to fill in
masked tokens in sequences like “Dante was born

https://github.com/facebookresearch/LAMA
https://github.com/facebookresearch/LAMA
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in [Mask]”, as illustrated in Figure 1. In this set-
ting, language models come with various attractive
properties: they require no schema engineering,
do not need human annotations, and they support
an open set of queries.

Given the above qualities of language models as
potential representations of relational knowledge,
we are interested in the relational knowledge al-
ready present in pretrained off-the-shelf language
models such as ELMo and BERT. How much re-
lational knowledge do they store? How does this
differ for different types of knowledge such as
facts about entities, common sense, and general
question answering? How does their performance
without fine-tuning compare to symbolic knowl-
edge bases automatically extracted from text?
Beyond gathering a better general understand-
ing of these models, we believe that answers to
these questions can help us design better unsuper-
vised knowledge representations that could trans-
fer factual and commonsense knowledge reliably
to downstream tasks such as commonsense (vi-
sual) question answering (Zellers et al., 2018; Tal-
mor et al., 2019) or reinforcement learning (Brana-
van et al., 2011; Chevalier-Boisvert et al., 2018;
Bahdanau et al., 2019; Luketina et al., 2019).

For the purpose of answering the above ques-
tions we introduce the LAMA (LAnguage Model
Analysis) probe, consisting of a set of knowledge
sources, each comprised of a set of facts. We
define that a pretrained language model knows a
fact (subject, relation, object) such as (Dante,
born-in, Florence) if it can successfully predict
masked objects in cloze sentences such as “Dante
was born in ” expressing that fact. We test
for a variety of types of knowledge: relations be-
tween entities stored in Wikidata, common sense
relations between concepts from ConceptNet, and
knowledge necessary to answer natural language
questions in SQuAD. In the latter case we man-
ually map a subset of SQuAD questions to cloze
sentences.

Our investigation reveals that (i) the largest
BERT model from Devlin et al. (2018b)
(BERT-large) captures (accurate) relational
knowledge comparable to that of a knowledge
base extracted with an off-the-shelf relation
extractor and an oracle-based entity linker from
a corpus known to express the relevant knowl-
edge, (ii) factual knowledge can be recovered
surprisingly well from pretrained language mod-

els, however, for some relations (particularly
N-to-M relations) performance is very poor,
(iii) BERT-large consistently outperforms other
language models in recovering factual and com-
monsense knowledge while at the same time
being more robust to the phrasing of a query, and
(iv) BERT-large achieves remarkable results for
open-domain QA, reaching 57.1% precision@10
compared to 63.5% of a knowledge base con-
structed using a task-specific supervised relation
extraction system.

2 Background

In this section we provide background on language
models. Statistics for the models that we include
in our investigation are summarized in Table 1.

2.1 Unidirectional Language Models

Given an input sequence of tokens w =

[w1,w2, . . . ,wN], unidirectional language models
commonly assign a probability p(w) to the se-
quence by factorizing it as follows

p(w) =
∏

t

p(wt |wt−1, . . . ,w1). (1)

A common way to estimate this probability is us-
ing neural language models (Mikolov and Zweig,
2012; Melis et al., 2017; Bengio et al., 2003) with

p(wt |wt−1, . . . ,w1) = softmax(Wht + b) (2)

where ht ∈ R
k is the output vector of a neural net-

work at position t and W ∈ R|V| × k is a learned
parameter matrix that maps ht to unnormalized
scores for every word in the vocabulary V. Var-
ious neural language models then mainly differ in
how they compute ht given the word history, e.g.,
by using a multi-layer perceptron (Bengio et al.,
2003; Mikolov and Zweig, 2012), convolutional
layers (Dauphin et al., 2017), recurrent neural net-
works (Zaremba et al., 2014; Merity et al., 2016;
Melis et al., 2017) or self-attention mechanisms
(Radford et al., 2018; Dai et al., 2019; Radford
et al., 2019).
fairseq-fconv: Instead of commonly used recur-
rent neural networks, Dauphin et al. (2017) use
multiple layers of gated convolutions. We use
the pretrained model in the fairseq1 library in our
study. It has been trained on the WikiText-103 cor-
pus introduced by Merity et al. (2016).

1https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq
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Model Base Model #Parameters Training Corpus Corpus Size

fairseq-fconv (Dauphin et al., 2017) ConvNet 324M WikiText-103 103M Words
Transformer-XL (large) (Dai et al., 2019) Transformer 257M WikiText-103 103M Words

ELMo (original) (Peters et al., 2018a) BiLSTM 93.6M Google Billion Word 800M Words
ELMo 5.5B (Peters et al., 2018a) BiLSTM 93.6M Wikipedia (en) & WMT 2008-2012 5.5B Words
BERT (base) (Devlin et al., 2018a) Transformer 110M Wikipedia (en) & BookCorpus 3.3B Words
BERT (large) (Devlin et al., 2018a) Transformer 340M Wikipedia (en) & BookCorpus 3.3B Words

Table 1: Language models considered in this study.

Transformer-XL: Dai et al. (2019) introduce a
large-scale language model based on the Trans-
former (Vaswani et al., 2017). Transformer-XL
can take into account a longer history by caching
previous outputs and by using relative instead of
absolute positional encoding. It achieves a test
perplexity of 18.3 on the WikiText-103 corpus.

2.2 Bidirectional “Language Models”2

So far, we have looked at language models that
predict the next word given a history of words.
However, in many downstream applications we
mostly care about having access to contextual rep-
resentations of words, i.e., word representations
that are a function of the entire context of a unit
of text such as a sentence or paragraph, and not
only conditioned on previous words. Formally,
given an input sequence w = [w1,w2, . . . ,wN]
and a position 1 ≤ i ≤ N, we want to esti-
mate p(wi) = p(wi |w1, . . . ,wi−1,wi+1, . . . ,wN) us-
ing the left and right context of that word.
ELMo: To estimate this probability, Peters et al.
(2018a) propose running a forward and backward
LSTM (Hochreiter and Schmidhuber, 1997), re-
sulting in

−→
h i and

←−
h i which consequently are used

to calculate a forward and backward language
model log-likelihood. Their model, ELMo, uses
multiple layers of LSTMs and it has been pre-
trained on the Google Billion Word dataset. An-
other version of the model, ELMo 5.5B, has been
trained on the English Wikipedia and monolingual
news crawl data from WMT 2008-2012.
BERT: Instead of a standard language model ob-
jective, Devlin et al. (2018a) propose to sample
positions in the input sequence randomly and to
learn to fill the word at the masked position. To
this end, they employ a Transformer architecture
and train it on the BookCorpus (Zhu et al., 2015)
as well as a crawl of English Wikipedia. In addi-

2Contextual representation models (Tenney et al., 2019)
might be a better name, but we keep calling them language
models for simplicity.

tion to this pseudo language model objective, they
use an auxiliary binary classification objective to
predict whether a particular sentence follows the
given sequence of words.

3 Related Work

Many studies have investigated pretrained word
representations, sentence representations, and lan-
guage models. Existing work focuses on un-
derstanding linguistic and semantic properties of
word representations or how well pretrained sen-
tence representations and language models trans-
fer linguistic knowledge to downstream tasks. In
contrast, our investigation seeks to answer to what
extent pretrained language models store factual
and commonsense knowledge by comparing them
with symbolic knowledge bases populated by tra-
ditional relation extraction approaches.

Baroni et al. (2014) present a systematic com-
parative analysis between neural word represen-
tation methods and more traditional count-based
distributional semantic methods on lexical seman-
tics tasks like semantic relatedness and concept
categorization. They find that neural word rep-
resentations outperform count-based distributional
methods on the majority of the considered tasks.
Hill et al. (2015) investigate to what degree word
representations capture semantic meaning as mea-
sured by similarity between word pairs.

Marvin and Linzen (2018) assess the gram-
maticality of pretrained language models. Their
dataset consists of sentence pairs with a grammat-
ical and an ungrammatical sentence. While a good
language model should assign higher probability
to the grammatical sentence, they find that LSTMs
do not learn syntax well.

Another line of work investigates the ability of
pretrained sentence and language models to trans-
fer knowledge to downstream natural language un-
derstanding tasks (Wang et al., 2018). While such
an analysis sheds light on the transfer-learning
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abilities of pretrained models for understanding
short pieces of text, it provides little insight into
whether these models can compete with traditional
approaches to representing knowledge like sym-
bolic knowledge bases.

More recently, McCoy et al. (2019) found that
for natural language inference, a model based on
BERT learns to rely heavily on fallible syntac-
tic heuristics instead of a deeper understanding of
the natural language input. Peters et al. (2018b)
found that lower layers in ELMo specialize on lo-
cal syntactic relationships, while higher layers can
learn to model long-range relationships. Similarly,
Goldberg (2019) found that BERT captures En-
glish syntactic phenomena remarkably well. Ten-
ney et al. (2019) investigate to what extent lan-
guage models encode sentence structure for differ-
ent syntactic and semantic phenomena and found
that they excel for the former but only provide
small improvements for tasks that fall into the lat-
ter category. While this provides insights into the
linguistic knowledge of language models, it does
not provide insights into their factual and com-
monsense knowledge.

Radford et al. (2018) introduce a pretrained lan-
guage model based on the Transformer which they
termed generative pretraining (GPTv1). The first
version of GPT (Radford et al., 2018) has been
trained on the Book Corpus (Zhu et al., 2015) con-
taining 7000 books. The closest to our investiga-
tion is the work by Radford et al. (2019) which
introduces GPTv2 and investigates how well their
language model does zero-shot transfer to a range
of downstream tasks. They find that GPTv2
achieves an F1 of 55 for answering questions in
CoQA (Reddy et al., 2018) and 4.1% accuracy on
the Natural Questions dataset (Kwiatkowski et al.,
2019), in both cases without making use of anno-
tated question-answer pairs or an information re-
trieval step. While these results are encouraging
and hint at the ability of very large pretrained lan-
guage models to memorize factual knowledge, the
large GPTv2 model has not been made public and
the publicly available small version achieves less
than 1% on Natural Questions (5.3 times worse
than the large model). Thus, we decided to not
include GPTv2 in our study. Similarly, we do not
include GPTv1 in this study as it uses a limited
lower-cased vocabulary, making it incompatible to
the way we assess the other language models.

4 The LAMA Probe

We introduce the LAMA (LAnguage Model Anal-
ysis) probe to test the factual and commonsense
knowledge in language models. It provides a set
of knowledge sources which are composed of a
corpus of facts. Facts are either subject-relation-
object triples or question-answer pairs. Each fact
is converted into a cloze statement which is used to
query the language model for a missing token. We
evaluate each model based on how highly it ranks
the ground truth token against every other word
in a fixed candidate vocabulary. This is similar
to ranking-based metrics from the knowledge base
completion literature (Bordes et al., 2013; Nickel
et al., 2016). Our assumption is that models which
rank ground truth tokens high for these cloze state-
ments have more factual knowledge. We discuss
each step in detail next and provide considerations
on the probe below.

4.1 Knowledge Sources

To assess the different language models in Sec-
tion 2, we cover a variety of sources of factual
and commonsense knowledge. For each source,
we describe the origin of fact triples (or question-
answer pairs), how we transform them into cloze
templates, and to what extent aligned texts exist
in Wikipedia that are known to express a partic-
ular fact. We use the latter information in super-
vised baselines that extract knowledge representa-
tions directly from the aligned text.

4.1.1 Google-RE
The Google-RE corpus3 contains ∼60K facts man-
ually extracted from Wikipedia. It covers five re-
lations but we consider only three of them, namely
“place of birth”, “date of birth” and “place of
death”. We exclude the other two because they
contain mainly multi-tokens objects that are not
supported in our evaluation. We manually define
a template for each considered relation, e.g., “[S]
was born in [O]” for “place of birth”. Each fact
in the Google-RE dataset is, by design, manually
aligned to a short piece of Wikipedia text support-
ing it.

4.1.2 T-REx
The T-REx knowledge source is a subset of
Wikidata triples. It is derived from the T-REx

3https://code.google.com/archive/p/
relation-extraction-corpus/

https://code.google.com/archive/p/relation-extraction-corpus/
https://code.google.com/archive/p/relation-extraction-corpus/


2467

dataset (Elsahar et al., 2018) and is much larger
than Google-RE with a broader set of relations.
We consider 41 Wikidata relations and subsam-
ple at most 1000 facts per relation. As with the
Google-RE corpus, we manually define a tem-
plate for each relation (see Table 3 for some ex-
amples). In contrast to the Google-RE knowledge
source, T-REx facts were automatically aligned to
Wikipedia and hence this alignment can be noisy.
However, Elsahar et al. (2018) report an accuracy
of 97.8% for the alignment technique over a test
set.

4.1.3 ConceptNet
ConceptNet (Speer and Havasi, 2012) is a multi-
lingual knowledge base, initially built on top of
Open Mind Common Sense (OMCS) sentences.
OMCS represents commonsense relationships be-
tween words and/or phrases. We consider facts
from the English part of ConceptNet that have
single-token objects covering 16 relations. For
these ConceptNet triples, we find the OMCS sen-
tence that contains both the subject and the object.
We then mask the object within the sentence and
use the sentence as template for querying language
models. If there are several sentences for a triple,
we pick one at random. Note that for this knowl-
edge source there is no explicit alignment of facts
to Wikipedia sentences.

4.1.4 SQuAD
SQuAD (Rajpurkar et al., 2016) is a popular ques-
tion answering dataset. We select a subset of 305
context-insensitive questions from the SQuAD de-
velopment set with single token answers. We man-
ually create cloze-style questions from these ques-
tions, e.g., rewriting “Who developed the theory of
relativity?” as “The theory of relativity was devel-
oped by ”. For each question and answer pair,
we know that the corresponding fact is expressed
in Wikipedia since this is how SQuAD was cre-
ated.

4.2 Models

We consider the following pretrained case-
sensitive language models in our study (see Ta-
ble 1): fairseq-fconv (Fs), Transformer-XL large
(Txl), ELMo original (Eb), ELMo 5.5B (E5B),
BERT-base (Bb) and BERT-large (Bl). We use the
natural way of generating tokens for each model
by following the definition of the training objec-
tive function.

Assume we want to compute the generation for
the token at position t. For unidirectional language
models, we use the network output (ht−1) just be-
fore the token to produce the output layer soft-
max. For ELMo we consider the output just be-
fore (

−→
h t−1) for the forward direction and just after

(
←−
h t+1) for the backward direction. Following the

loss definition in (Peters et al., 2018a), we average
forward and backward probabilities from the cor-
responding softmax layers. For BERT, we mask
the token at position t, and we feed the output vec-
tor corresponding to the masked token (ht) into the
softmax layer. To allow a fair comparison, we let
models generate over a unified vocabulary, which
is the intersection of the vocabularies for all con-
sidered models (∼21K case-sensitive tokens).

4.3 Baselines

To compare language models to canonical ways
of using off-the-shelf systems for extracting sym-
bolic knowledge and answering questions, we
consider the following baselines.
Freq: For a subject and relation pair, this baseline
ranks words based on how frequently they appear
as objects for the given relation in the test data. It
indicates the upper bound performance of a model
that always predicts the same objects for a partic-
ular relation.
RE: For the relation-based knowledge sources, we
consider the pretrained Relation Extraction (RE)
model of Sorokin and Gurevych (2017). This
model was trained on a subcorpus of Wikipedia
annotated with Wikidata relations. It extracts rela-
tion triples from a given sentence using an LSTM-
based encoder and an attention mechanism. Based
on the alignment information from the knowledge
sources, we provide the relation extractor with the
sentences known to express the test facts. Using
these datasets, RE constructs a knowledge graph
of triples. At test time, we query this graph by
finding the subject entity and then rank all ob-
jects in the correct relation based on the confi-
dence scores returned by RE. We consider two ver-
sions of this procedure that differ in how the en-
tity linking is implemented: REn makes use of a
naı̈ve entity linking solution based on exact string
matching, while REo uses an oracle for entity link-
ing in addition to string matching. In other words,
assume we query for the object o of a test subject-
relation fact (s, r, o) expressed in a sentence x. If
RE has extracted any triple (s′, r, o′) from that sen-
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tence x, s′ will be linked to s and o′ to o. In
practice, this means RE can return the correct so-
lution o if any relation instance of the right type
was extracted from x, regardless of whether it has
a wrong subject or object.
DrQA: Chen et al. (2017) introduce DrQA, a pop-
ular system for open-domain question answering.
DrQA predicts answers to natural language ques-
tions using a two step pipeline. First, a TF/IDF
information retrieval step is used to find rele-
vant articles from a large store of documents (e.g.
Wikipedia). On the retrieved top k articles, a neu-
ral reading comprehension model then extracts an-
swers. To avoid giving the language models a
competitive advantage, we constrain the predic-
tions of DrQA to single-token answers.

4.4 Metrics

We consider rank-based metrics and compute re-
sults per relation along with mean values across all
relations. To account for multiple valid objects for
a subject-relation pair (i.e., for N-M relations), we
follow Bordes et al. (2013) and remove from the
candidates when ranking at test time all other valid
objects in the training data other than the one we
test. We use the mean precision at k (P@k). For
a given fact, this value is 1 if the object is ranked
among the top k results, and 0 otherwise.

4.5 Considerations

There are several important design decisions we
made when creating the LAMA probe. Below
we give more detailed justifications for these de-
cisions.

Manually Defined Templates For each relation
we manually define a template that queries for the
object slot in that relation. One can expect that
the choice of templates has an impact on the re-
sults, and this is indeed the case: for some rela-
tions we find both worse and better ways to query
for the same information (with respect to a given
model) by using an alternate template. We argue
that this means we are measuring a lower bound
for what language models know. We make this
argument by analogy with traditional knowledge
bases: they only have a single way of querying
knowledge for a specific relation, namely by us-
ing the relation id of that relation, and this way is
used to measure their accuracy. For example, if
the relation ID is works-For and the user asks for
is-working-for, the accuracy of the KG would

be 0.

Single Token We only consider single token ob-
jects as our prediction targets. The reason we in-
clude this limitation is that multi-token decoding
adds a number of additional tuneable parameters
(beam size, candidate scoring weights, length nor-
malization, n-gram repetition penalties, etc.) that
obscure the knowledge we are trying to measure.
Moreover, well-calibrated multi-token generation
is still an active research area, particularly for bidi-
rectional models (see e.g. Welleck et al. (2019)).

Object Slots We choose to only query object
slots in triples, as opposed to subject or rela-
tion slots. By including reverse relations (e.g.
contains and contained-by) we can also query
subject slots. We do not query relation slots for
two reasons. First, surface form realisations of
relations will span several tokens, and as we dis-
cussed above, this poses a technical challenge that
is not in the scope of this work. Second, even if
we could easily predict multi-token phrases, rela-
tions can generally be expressed with many dif-
ferent wordings, making it unclear what the gold
standard pattern for a relation should be, and how
to measure accuracy in this context.

Intersection of Vocabularies The models that
we considered are trained with different vocabu-
laries. For instance, ELMo uses a list of ∼800K
tokens while BERT considers only ∼30K tokens.
The size of the vocabulary can influence the per-
formance of a model for the LAMA probe. Specif-
ically, the larger the vocabulary the harder it would
be to rank the gold token at the top. For this rea-
son we considered a common vocabulary of ∼21K
case-sensitive tokens that are obtained from the
intersection of the vocabularies for all considered
models. To allow a fair comparison, we let every
model rank only tokens in this joint vocabulary.

5 Results

We summarize the main results in Table 2, which
shows the mean precision at one (P@1) for the dif-
ferent models across the set of corpora considered.
In the remainder of this section, we discuss the re-
sults for each corpus in detail.

Google-RE We query the LMs using a standard
cloze template for each relation. The base and
large versions of BERT both outperform all other
models by a substantial margin. Furthermore, they
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Corpus Relation
Statistics Baselines KB LM

#Facts #Rel Freq DrQA REn REo Fs Txl Eb E5B Bb Bl

Google-RE

birth-place 2937 1 4.6 - 3.5 13.8 4.4 2.7 5.5 7.5 14.9 16.1
birth-date 1825 1 1.9 - 0.0 1.9 0.3 1.1 0.1 0.1 1.5 1.4
death-place 765 1 6.8 - 0.1 7.2 3.0 0.9 0.3 1.3 13.1 14.0

Total 5527 3 4.4 - 1.2 7.6 2.6 1.6 2.0 3.0 9.8 10.5

T-REx

1-1 937 2 1.78 - 0.6 10.0 17.0 36.5 10.1 13.1 68.0 74.5
N-1 20006 23 23.85 - 5.4 33.8 6.1 18.0 3.6 6.5 32.4 34.2
N-M 13096 16 21.95 - 7.7 36.7 12.0 16.5 5.7 7.4 24.7 24.3

Total 34039 41 22.03 - 6.1 33.8 8.9 18.3 4.7 7.1 31.1 32.3

ConceptNet Total 11458 16 4.8 - - - 3.6 5.7 6.1 6.2 15.6 19.2

SQuAD Total 305 - - 37.5 - - 3.6 3.9 1.6 4.3 14.1 17.4

Table 2: Mean precision at one (P@1) for a frequency baseline (Freq), DrQA, a relation extraction with naı̈ve
entity linking (REn), oracle entity linking (REo), fairseq-fconv (Fs), Transformer-XL large (Txl), ELMo original
(Eb), ELMo 5.5B (E5B), BERT-base (Bb) and BERT-large (Bl) across the set of evaluation corpora.

obtain a 2.2 and 2.9 respective average accuracy
improvement over the oracle-based RE baseline.
This is particularly surprising given that with the
gold-aligned Google-RE source we know for cer-
tain that the oracle RE baseline has seen at least
one sentence expressing each test fact. Moreover,
the RE baseline was given substantial help through
an entity linking oracle.

It is worth pointing out that while BERT-large
does better, this does not mean it does so for the
right reasons. Although the aligned Google-RE
sentences are likely in its training set (as they
are part of Wikipedia and BERT has been trained
on Wikipedia), it might not “understand” them
to produce these results. Instead, it could have
learned associations of objects with subjects from
co-occurrence patterns.

T-REx The knowledge source derived from
Google-RE contains relatively few facts and only
three relations. Hence, we perform experiments
on the larger set of facts and relations in T-REx.
We find that results are generally consistent with
Google-RE. Again, the performance of BERT in
retrieving factual knowledge are close to the per-
formance obtained by automatically building a
knowledge base with an off-the-shelf relation ex-
traction system and oracle-based entity linking.
Broken down by relation type, the performance of
BERT is very high for 1-to-1 relations (e.g., capi-
tal of ) and low for N-to-M relations.

Note that a downstream model could learn to
make use of knowledge in the output representa-
tions of a language model even if the correct an-
swer is not ranked first but high enough (i.e. a hint
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Figure 2: Mean P@k curve for T-REx varying k. Base-
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about the correct answer can be extracted from the
output representation). Figure 2 shows the mean
P@k curves for the considered models. For BERT,
the correct object is ranked among the top ten in
around 60% of the cases and among the top 100 in
80% of the cases.

To further investigate why BERT achieves such
strong results, we compute the Pearson correlation
coefficient between the P@1 and a set of metrics
that we report in Figure 3. We notice, for instance,
that the number of times an object is mentioned
in the training data positively correlates with per-
formance while the same is not true for the sub-
ject of a relation. Furthermore, the log probabil-
ity of a prediction is strongly positively correlated
with P@1. Thus, when BERT has a high confi-
dence in its prediction, it is often correct. Perfor-
mance is also positively correlated with the cosine
similarity between subject and object vectors, and
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SM
subject

mentions
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object

mentions

LPFP
log probability
first prediction

SOCS
subject object
vectors cosine

similarity
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P@1

-0.0048

-0.075 0.074

0.12 -0.051 0.2

-0.18 0.042 0.052 0.11
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Figure 3: Pearson correlation coefficient for the P@1
of the BERT-large model on T-REx and a set of met-
rics: SM and OM refer to the number of times a sub-
ject and an object are mentioned in the BERT training
corpus4respectively; LPFP is the log probability score
associated with the first prediction; SOCS is the co-
sine similarity between subject and object vectors (we
use spaCy5); ST and SWP are the number of tokens in
the subject with a standard tokenization and the BERT
WordPiece tokenization respectively.

slightly with the number of tokens in the subject.
Table 3 shows randomly picked examples for

the generation of BERT-large for cloze template
queries. We find that BERT-large generally pre-
dicts objects of the correct type, even when the
predicted object itself is not correct.

To understand how the performance of a pre-
trained language model varies with different ways
of querying for a particular fact, we analyze a
maximum of 100 random facts per relation for
which we randomly select 10 aligned sentences in
Wikipedia from T-REx.6 In each of the sentences,
we mask the object of the fact, and ask the model
to predict it. For several of our language models
this also tests their ability to memorize and recall
sentences from the training data since as the mod-
els have been trained on Wikipedia (see Table 1).

Figure 4 shows the average distribution of the
rank for ten queries per fact. The two BERT mod-
els and ELMo 5.5B exhibit the lowest variabil-
ity while ranking the correct object close to the
top on average. Surprisingly, the performance of
ELMo original is not far from BERT, even though
this model did not see Wikipedia during train-
ing. Fairseq-fconv and Transformer-XL experi-

5The original training corpus is not available, we created
our version using the same sources.

5https://spacy.io
6We exclude all facts with less than 10 alignments.
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Figure 4: Average rank distribution for 10 different
mentions of 100 random facts per relation in T-REx.
ELMo 5.5B and both variants of BERT are least sen-
sitive to the framing of the query but also are the most
likely to have seen the query sentence during training.

ence a higher variability in their predictions. Note
that BERT and ELMo 5.5B have been trained on
a larger portion of Wikipedia than fairseq-fconv
and Transformer-XL and may have seen more sen-
tences containing the test queries during training.

ConceptNet The results on the ConceptNet cor-
pus are in line with those reported for retriev-
ing factual knowledge in Google-RE and T-REx.
The BERT-large model consistently achieves the
best performance, and it is able to retrieve com-
monsense knowledge at a similar level to factual
knowledge. The lower half of Table 3 shows gen-
erations by BERT-large for randomly sampled ex-
amples. Some of the concepts generated by the
language models are surprisingly reasonable in ad-
dition to being syntactically correct.

SQuAD Next we evaluate our system on open-
domain cloze-style question answering and com-
pare against the supervised DrQA model. Table
2 shows a performance gap between BERT-large
and the DrQA open-domain QA system on our
cloze SQuAD task. Again, note that the pretrained
language model is completely unsupervised, it is
not fine-tuned, and it has no access to a ded-
icated information retrieval system. Moreover,
when comparing DrQA and BERT-large in terms
of P@10, we find that gap is remarkably small
(57.1 for BERT-large and 63.5 for DrQA).

6 Discussion and Conclusion

We presented a systematic analysis of the factual
and commonsense knowledge in publicly avail-
able pretrained language models as is and found
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Relation Query Answer Generation

T-
R

ex
P19 Francesco Bartolomeo Conti was born in . Florence Rome [-1.8] , Florence [-1.8] , Naples [-1.9] , Milan [-2.4] , Bologna [-2.5]

P20 Adolphe Adam died in . Paris Paris [-0.5] , London [-3.5] , Vienna [-3.6] , Berlin [-3.8] , Brussels [-4.0]

P279 English bulldog is a subclass of . dog dogs [-0.3] , breeds [-2.2] , dog [-2.4] , cattle [-4.3] , sheep [-4.5]

P37 The official language of Mauritius is . English English [-0.6] , French [-0.9] , Arabic [-6.2] , Tamil [-6.7] , Malayalam [-7.0]

P413 Patrick Oboya plays in position. midfielder centre [-2.0] , center [-2.2] , midfielder [-2.4] , forward [-2.4] , midfield [-2.7]

P138 Hamburg Airport is named after . Hamburg Hess [-7.0] , Hermann [-7.1] , Schmidt [-7.1] , Hamburg [-7.5] , Ludwig [-7.5]

P364 The original language of Mon oncle Benjamin is . French French [-0.2] , Breton [-3.3] , English [-3.8] , Dutch [-4.2] , German [-4.9]

P54 Dani Alves plays with . Barcelona Santos [-2.4] , Porto [-2.5] , Sporting [-3.1] , Brazil [-3.3] , Portugal [-3.7]

P106 Paul Toungui is a by profession . politician lawyer [-1.1] , journalist [-2.4] , teacher [-2.7] , doctor [-3.0] , physician [-3.7]

P527 Sodium sulfide consists of . sodium water [-1.2] , sulfur [-1.7] , sodium [-2.5] , zinc [-2.8] , salt [-2.9]

P102 Gordon Scholes is a member of the political party. Labor Labour [-1.3] , Conservative [-1.6] , Green [-2.4] , Liberal [-2.9] , Labor [-2.9]
P530 Kenya maintains diplomatic relations with . Uganda India [-3.0] , Uganda [-3.2] , Tanzania [-3.5] , China [-3.6] , Pakistan [-3.6]

P176 iPod Touch is produced by . Apple Apple [-1.6] , Nokia [-1.7] , Sony [-2.0] , Samsung [-2.6] , Intel [-3.1]

P30 Bailey Peninsula is located in . Antarctica Antarctica [-1.4] , Bermuda [-2.2] , Newfoundland [-2.5] , Alaska [-2.7] , Canada [-3.1]

P178 JDK is developed by . Oracle IBM [-2.0] , Intel [-2.3] , Microsoft [-2.5] , HP [-3.4] , Nokia [-3.5]

P1412 Carl III used to communicate in . Swedish German [-1.6] , Latin [-1.9] , French [-2.4] , English [-3.0] , Spanish [-3.0]

P17 Sunshine Coast, British Columbia is located in . Canada Canada [-1.2] , Alberta [-2.8] , Yukon [-2.9] , Labrador [-3.4] , Victoria [-3.4]

P39 Pope Clement VII has the position of . pope cardinal [-2.4] , Pope [-2.5] , pope [-2.6] , President [-3.1] , Chancellor [-3.2]

P264 Joe Cocker is represented by music label . Capitol EMI [-2.6] , BMG [-2.6] , Universal [-2.8] , Capitol [-3.2] , Columbia [-3.3]

P276 London Jazz Festival is located in . London London [-0.3] , Greenwich [-3.2] , Chelsea [-4.0] , Camden [-4.6] , Stratford [-4.8]

P127 Border TV is owned by . ITV Sky [-3.1] , ITV [-3.3] , Global [-3.4] , Frontier [-4.1] , Disney [-4.3]

P103 The native language of Mammootty is . Malayalam Malayalam [-0.2] , Tamil [-2.1] , Telugu [-4.8] , English [-5.2] , Hindi [-5.6]

P495 The Sharon Cuneta Show was created in . Philippines Manila [-3.2] , Philippines [-3.6] , February [-3.7] , December [-3.8] , Argentina [-4.0]

C
on

ce
pt

N
et

AtLocation You are likely to find a overflow in a . drain sewer [-3.1] , canal [-3.2] , toilet [-3.3] , stream [-3.6] , drain [-3.6]
CapableOf Ravens can . fly fly [-1.5] , fight [-1.8] , kill [-2.2] , die [-3.2] , hunt [-3.4]

CausesDesire Joke would make you want to . laugh cry [-1.7] , die [-1.7] , laugh [-2.0] , vomit [-2.6] , scream [-2.6]

Causes Sometimes virus causes . infection disease [-1.2] , cancer [-2.0] , infection [-2.6] , plague [-3.3] , fever [-3.4]

HasA Birds have . feathers wings [-1.8] , nests [-3.1] , feathers [-3.2] , died [-3.7] , eggs [-3.9]

HasPrerequisite Typing requires . speed patience [-3.5] , precision [-3.6] , registration [-3.8] , accuracy [-4.0] , speed [-4.1]
HasProperty Time is . finite short [-1.7] , passing [-1.8] , precious [-2.9] , irrelevant [-3.2] , gone [-4.0]

MotivatedByGoal You would celebrate because you are . alive happy [-2.4] , human [-3.3] , alive [-3.3] , young [-3.6] , free [-3.9]

ReceivesAction Skills can be . taught acquired [-2.5] , useful [-2.5] , learned [-2.8] , combined [-3.9] , varied [-3.9]

UsedFor A pond is for . fish swimming [-1.3] , fishing [-1.4] , bathing [-2.0] , fish [-2.8] , recreation [-3.1]

Table 3: Examples of generation for BERT-large. The last column reports the top five tokens generated together
with the associated log probability (in square brackets).

that BERT-large is able to recall such knowledge
better than its competitors and at a level remark-
ably competitive with non-neural and supervised
alternatives. Note that we did not compare the
ability of the corresponding architectures and ob-
jectives to capture knowledge in a given body of
text but rather focused on the knowledge present in
the weights of existing pretrained models that are
being used as starting points for many researchers’
work. Understanding which aspects of data our
commonly-used models and learning algorithms
are capturing is a crucial field of research and this
paper complements the many studies focused on
the learned linguistic properties of the data.

We found that it is non-trivial to extract a knowl-
edge base from text that performs on par to di-
rectly using pretrained BERT-large. This is de-
spite providing our relation extraction baseline
with only data that is likely expressing target facts,
thus reducing potential for false negatives, as well
as using a generous entity-linking oracle. We
suspected BERT might have an advantage due to
the larger amount of data it has processed, so we
added Wikitext-103 as additional data to the re-
lation extraction system and observed no signif-
icant change in performance. This suggests that
while relation extraction performance might be
difficult to improve with more data, language mod-

els trained on ever growing corpora might become
a viable alternative to traditional knowledge bases
extracted from text in the future.

In addition to testing future pretrained language
models using the LAMA probe, we are interested
in quantifying the variance of recalling factual
knowledge with respect to varying natural lan-
guage templates. Moreover, assessing multi-token
answers remains an open challenge for our evalu-
ation setup.

Acknowledgments

We would like to thank the reviewers for their
thoughtful comments and efforts towards improv-
ing our manuscript. In addition, we would like
to acknowledge three frameworks that were used
in our experiments: AllenNLP7, Fairseq8 and the
Hugging Face PyTorch-Transformers9 library.

References

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward
Hughes, Pushmeet Kohli, and Edward Grefenstette.
2019. Learning to understand goal specifications by

7https://github.com/allenai/allennlp
8https://github.com/pytorch/fairseq
9https://github.com/huggingface/

pytorch-transformers

https://github.com/allenai/allennlp
https://github.com/pytorch/fairseq
https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers


2472

modelling reward. In International Conference on
Learning Representations (ICLR).

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014, June 22-27,
2014, Baltimore, MD, USA, Volume 1: Long Papers,
pages 238–247.
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