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Abstract

This paper provides a detailed comparison
of a data programming approach with (i)
off-the-shelf, state-of-the-art deep learning
architectures that optimize their representa-
tions (BERT) and (ii) handcrafted-feature ap-
proaches previously used in the discourse
analysis literature. We compare these ap-
proaches on the task of learning discourse
structure for multi-party dialogue. The data
programming paradigm offered by the Snorkel
framework allows a user to label training data
using expert-composed heuristics, which are
then transformed via the “generative step” into
probability distributions of the class labels
given the data. We show that on our task
the generative model outperforms both deep
learning architectures as well as more tradi-
tional ML approaches when learning discourse
structure—it even outperforms the combina-
tion of deep learning methods and hand-
crafted features. We also implement several
strategies for “decoding” our generative model
output in order to improve our results. We
conclude that weak supervision methods hold
great promise as a means for creating and im-
proving data sets for discourse structure.

1 Introduction

In this paper, we investigate and demonstrate the
potential of a weak supervision, data program-
ming approach (Ratner et al., 2016) to the task
of learning discourse structure for multi-party di-
alogue. We offer a detailed comparison of our
data programming approach with (i) off-the-shelf,
state-of-the-art deep learning architectures that
optimize their representations (BERT) and (ii)
handcrafted-feature approaches previously used in
the discourse analysis literature. Our data pro-
gramming paradigm exploits the Snorkel frame-
work that allows a user to label training data us-
ing expert-composed heuristics, which are then

transformed via the “generative step” into prob-
ability distributions of the class labels given the
data. We show that the generative model produced
from these heuristics outperforms both deep learn-
ing architectures as well as more traditional ML
approaches when learning discourse structure by
up to 20 points of F1 score; it even outperforms
the combination of generative and discriminative
approaches that are the foundation of the Snorkel
framework. We also implement several strategies
for “decoding” our generative model output that
improve our results.

We assume discourse structures are dependency
structures (Muller et al., 2012; Li et al., 2014) and
restrict the structure learning problem to predict-
ing edges or attachments between discourse unit
(DU) pairs in the dependency graph. Although the
problem of attachment is only a part of the over-
all task of discourse interpretation, it is a difficult
problem that serves as a useful benchmark for var-
ious approaches to discourse parsing. After train-
ing a supervised deep learning algorithm to pre-
dict attachments on the STAC annotated corpus1,
we then constructed a weakly supervised learning
system in which we used 10% of the corpus as a
development set. Experts on discourse structure
wrote a set of attachment rules, or labeling func-
tions (LFs), and tested them against this develop-
ment set. We treated the remainder of the corpus
as raw/unannotated data to be automatically anno-
tated using the data programming framework.

2 State of the Art

Discourse structures for texts represent causal,
topical, argumentative information through what
are called coherence relations. For dialogues
with multiple interlocutors, extraction of their dis-
course structures provides useful semantic infor-

1https://www.irit.fr/STAC/

https://www.irit.fr/STAC/
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mation to the “downstream” models used, for ex-
ample, in the production of intelligent meeting
managers or the analysis of user interactions in on-
line fora. However, despite considerable efforts to
retrieve discourse structures automatically (Fisher
and Roark, 2007; Duverle and Prendinger, 2009;
Li et al., 2014; Joty et al., 2013; Ji and Eisen-
stein, 2014; Yoshida et al., 2014; Li et al., 2014;
Surdeanu et al., 2015), we are still a long way
from usable discourse models, especially for di-
alogue. Standard supervised models struggle to
capture the sparse attachments, even when rela-
tively large annotated corpora are available. In ad-
dition, the annotation process is time consuming
and often fraught with errors and disagreements,
even among expert annotators. This motivated us
to explore the data programming approach that ex-
ploits expert linguistic knowledge in a more com-
pact and consistent rule based form.

Given our interest in the analysis of multi-party
dialogues, we used the STAC corpus of multi-
party chats, an initial version of which is described
in (Afantenos et al., 2015; Perret et al., 2016). In
all versions of this corpus, dialogue structures are
directed acyclical graphs (DAGs) formed accord-
ing to SDRT2 (Asher and Lascarides, 2003; Asher
et al., 2016). An SDRT discourse structure is a
graph, 〈V,E1, E2, `,Last〉, where: V is a set of
nodes or Discourse Units (DUs); E1 ⊆ V 2 is a set
of edges between DUs representing coherence re-
lations;E2 ⊆ V 2 represents a dependency relation
between DUs; `:E1 → R is a labeling function
that assigns a semantic type to an edge in E1 from
a set R of discourse relation types, and Last is a
designated element of V giving the last DU rela-
tive to textual or temporal order. E2 is used to rep-
resent Complex Discourse Units (CDUs), which
are clusters of two or more DUs connected as an
ensemble to other DUs in the graph. As learning
this type of recursive structure presents difficul-
ties beyond the scope of this paper, we followed
a “flattening” strategy similar to (Muller et al.,
2012) to remove CDUs. This process yields a set
V ∗, which is V without CDUs, and a set E∗1, a
flattened version of E1.

Building these structures typically requires
three steps: (i) segmenting the text into the ba-
sic units of the discourse, typically clauses - these
are EDUs or Elementary Discourse Units; these,
together with CDUs, form the set of nodes V in

2Segmented Discourse Representation Theory

the graph; (ii) predicting the attachments between
DUs, i.e. to identify the elements in E1; (iii) pre-
dicting the semantic type of the edge in E1. This
paper focuses on step (ii). Our dialogue structures
are thus of the form 〈V ∗, E∗1,Last〉. Step (ii) is a
difficult problem for automatic processing because
attachments are theoretically possible between any
two DUs in a dialogue or text, and often graphs in-
clude long-distance relations. Muller et al. (2012)
is the first paper we know of that focuses on the
discourse parsing attachment problem, albeit for
monologue. It targeted a restricted version of an
SDRT graph and trains a simple MaxEnt algorithm
to produce probability distributions over pairs of
EDUs, what we call a “local model” with a pos-
itive F1 attachment score of 0.635. They further
applied global decoding constraints to produce a
slight improvement in attachment scores (these are
discussed in more detail in Section 5). Afantenos
et al. (2015) used a similar strategy for dialogue on
an early version of the STAC corpus. Perret et al.
(2016) targeted a more elaborate approximation of
SDRT graphs on the same version of the STAC
corpus and reported a local model F1 attachment
of 0.483. They then used Integer Linear Program-
ming (ILP) to encode global decoding constraints
particular to SDRT to improve the F1 attachment
score to 0.689.

Having sketched recent progress in discourse
parsing, we briefly turn to the state of the art con-
cerning data programming. Ratner et al. (2016)
introduced the data programming paradigm, along
with a framework, Snorkel (Ratner et al., 2017),
which uses a weak supervision method (Zhou,
2017), to apply labels to large data sets by way
of heuristic labeling functions that can access dis-
tant, disparate knowledge sources. These labels
are then used to train classic data-hungry ma-
chine learning (ML) algorithms. The crucial step
in the data programming process uses a genera-
tive model to unify the noisy labels by generat-
ing a probability distribution for all labels for each
data point. This set of probabilities replaces the
ground-truth labels in a standard discriminative
model outfitted with a noise-aware loss function
and trained on a sufficiently large data set.

3 The STAC Annotated Corpus

3.1 Overview

While earlier versions only included linguistic
moves by players, STAC now contains in addi-
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tion a multimodal corpus of multi-party chats be-
tween players of an online game (Asher et al.,
2016; Hunter et al., 2018). It includes 2,593 di-
alogues (each with a weakly connected DAG dis-
course structure), 12,588 “linguistic” DUs, 31,811
“non-linguistic” DUs and 31,251 semantic rela-
tions. A dialogue begins at the beginning of a
player’s turn, and ends at the end of that player’s
turn. In the interim, players can bargain with each
other or make spontaneous conversation. These
player utterances are the “linguistic” turns. In ad-
dition the corpus contains information given visu-
ally in the game interface but transcribed in the
corpus into Server or interface messages, “non-
linguistic” turns (Hunter et al., 2018). All turns
are segmented into DUs, and these units are then
connected by semantic relations.

Each dialogue represents a complete conversa-
tion. There are typically many such conversations,
each beginning with a non-linguistic turn in which
a player is designated to begin negotiations (see
Figure 1). The dialogues end when this player per-
forms a non-linguistic action that signals the end
of their turn. The dialogues are the units on which
we build a complete discourse structure.

The STAC multimodal corpus is divided into a
development, train and test set. The development
and test sets are each 10% of the total size of the
corpus.

To compare our approach to earlier efforts, we
also used the corpus from (Perret et al., 2016).
This corpus was also useful to check for over fit-
ting of our Generative model developed on the
multi-modal data. The corpus from (Perret et al.,
2016) is an early version of a “linguistic only”
version of the STAC corpus. It contains no non-
linguistic DUs, unlike the STAC multimodal cor-
pus.3 It also contains quite a few errors; for ex-
ample, about 60 stories in the (Perret et al., 2016)
dataset have no discourse structure in them at all
and consist of only one DU. We eliminated these
from the Perret 2016 data set that we used in
our comparative experiments below, as these sto-

3 There is also on the STAC website an updated linguis-
tic only version of the STAC corpus. It has 1,091 dialogues,
11,961 linguistic only DUs and 10,191 semantic relations.
We have not reported results on that data set here. The dataset
from (Perret et al., 2016) is similar to our linguistic only
STAC corpus but is still substantially different and degraded
in quality. Asher et al. (2016) report significant error rates
in annotation on the earlier versions of the STAC corpus and
that the current linguistic only corpus of STAC offers an im-
provement over the (Perret et al., 2016) corpus.

ries were obviously not a correct representation
of what was going on in the game at the relevant
point.

3.2 Data Preparation
To concentrate on the attachment task, we imple-
mented the following simplifying measures on the
STAC corpus:

1. Roughly 56% of the dialogues in the corpus
contain only non-linguistic DUs. The dis-
course structure of these dialogues is more
regular and thus less challenging; so we ig-
nore these dialogues for our prediction task.

2. 98% of the discourse relations in our devel-
opment corpus span 10 DUs or less. To re-
duce class imbalance, we restricted the rela-
tions we consider to a distance of ≤ 10.

3. Following (Muller et al., 2012; Perret et al.,
2016) we “flatten” CDUs by connecting all
relations incoming or outgoing from a CDU
to the “head” of the CDU, or its first DU.

The STAC corpus as we use it in our learning ex-
periments thus includes 1,130 dialogues, 13,734
linguistic DUs, 18,767 non-linguistic DUs and
22,098 semantic relations.

We also performed these operations on our ver-
sion of the linguistic only corpus used by (Perret
et al., 2016).

4 Data Programming Experiments

4.1 Candidates and Labeling Functions
The Snorkel implementation of the data program-
ming paradigm inspired our weak supervision ap-
proach. We first identified and extracted candi-
dates from the data, and then wrote a set of la-
beling functions (LFs) to apply to the candidates
while only consulting the development set, the
10% of the STAC corpus set aside to develop and
test our LFs. We treated the training set (80% of
the corpus) as unseen/unlabeled data to which we
applied the finished LFs and the models. The last
10% of the STAC corpus was reserved as a final
test set.

Candidates are the units of data for which labels
are predicted. For this study, the candidates are all
DU pairs which could possibly be connected by a
semantic relation. We use our own method to cre-
ate candidates from the DUs culled from the texts
of the dialogues, making sure to limit the pairs to
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Figure 1: A dialogue from the STAC multi-
modal corpus featuring player (’linguistic’) turns
and Server/UI (’non-linguistic’) turns. There are
four instances of Result relations, shown in green.
Result connects a cause to its effect, i.e., the main
eventuality of the first argument is understood to
cause the eventuality given by the second.

Figure 2: Glosses of two rules that are meant to cap-
ture the Result relations when applied to the candi-
dates as pulled from the corpus, exemplified in Fig-
ure 1. Although the rules are written to capture spe-
cific relation types between segments, they return
1/0 for attached/not attached

those that occur in the same dialogues. We also
ruled out the possibility of backwards relations be-
tween two DUs which have different speakers: it
is linguistically impossible for a speaker of, say,
an assertion d1 at time t1 to answer a question d2,
asked by a different speaker at time t2 > t1, i.e.
before d2 was asked. That is, we include (d1, d2)
in our candidates but rule out (d2, d1).

LFs are expert-composed functions that make
an attachment prediction for a given candidate:
each LF returns a 1, a 0 or a -1 (“attached”/“do not
know”/“not attached”) for each candidate. How-
ever, each of our LFs is written and evaluated with
a specific relation type Result, Question-answer-
pair (QAP), Continuation, Sequence, Acknowl-
edgement, Conditional, Contrast, Elaboration and
Comment in mind. In this way, LFs leverage a kind
of type-related information, which makes sense
from an empirical perspective as well as an epis-
temological one. An attachment decision concern-
ing two DUs is tightly linked to the type of relation
relating the DUs: when an annotator decides that
two DUs are attached, he or she does so with some
knowledge of what type of relation attaches them.
Figure 2 shows a sample LFs used for attachment
prediction with the Result relation in mind.

LFs also exploit information about the DUs’
linguistic or non-linguistic status, the dialogue
acts they express, their lexical content, gram-
matical category and speaker, and the distance
between them—features also used in supervised
learning methods (Perret et al., 2016; Afantenos
et al., 2015; Muller et al., 2012). Finally, we
fix the order in which each LF ”sees” the can-
didates such that it considers adjacent DUs be-
fore distant DUs. This allows LFs to exploit
information about previously predicted attach-
ments and dialogue history in new predictions.
Our rule set and their description are available
here: https://tizirinagh.github.io/acl2019/. Figure
2 gives an example of a labeling function that we
used.

4.2 The Generative Model

Once the LFs are applied to all the candidates, we
have a matrix of labels (Λ) given by each LF Λ
for each candidate. The generative model, GEN,
as specified in (1), provides a general distribution
of marginal probabilities relative to n accuracy de-
pendencies φj(Λi, yi) for an LF λj with respect
inputs xi, the LF’s outputs on i Λij and true labels

https://tizirinagh.github.io/acl2019/
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yi that depend on parameters θj where:

φj(Λi, yi) := yiΛij

pθ(Λ, Y ) ∝ exp(
m∑
i=1

n∑
j=1

θjφj(Λi, yi)) (1)

The parameters are estimated by minimizing the
negative log marginal likelihood of the output of
an observed matrix Λ as in (2).

argminθ − log
∑
Y

pθ(Λ, Y ) (2)

GEN does not have access to the gold labels on
the Training set but uses the Training set as unla-
belled data. So in this model, the true class labels
yi are latent variables that generate the labeling
function outputs, which are estimated via Gibbs
sampling over the Training set (80% of the STAC
corpus), after it has been labeled by the LFs. The
objective in (2) is then optimized by interleaving
stochastic gradient descent steps with Gibbs sam-
pling ones. For each candidate, GEN thus uses
the accuracy measures for the LFs in (1) to assign
marginal probabilities that two DUs are attached.

GEN estimates the accuracy of each LF, a
marginal probability for each label, and conse-
quently a probability for positive attachment. In
this model, the true class labels yi are latent vari-
ables that generate the labeling function outputs.
The model in (1) presupposes that the LFs are in-
dependent, but this assumption does not always
hold: one LF might be a variation of another or
they might depend on a common source of infor-
mation (Mintz et al., 2009). If we don’t take these
dependencies into account, we risk assigning in-
correct accuracies to the LFs. Snorkel provides
a more complex model that automatically calcu-
lates the dependencies between LFs and marginal
probabilities which we use for the generative step
(Bach et al., 2017). The higher order dependen-
cies significantly improved the generative model’s
results on the full STAC corpus (see Table 1).

When we obtain the results from the genera-
tive model GEN, we choose on the development
corpus a threshold to apply to these marginals by
calculating the threshold that gives us the best F1
score. The best threshold is 0.85 (p > .85 for
positive attachment) in the STAC corpus. Fig-
ure 3 shows the probability distribution, on which
even taking 0.8 as a threshold gives a lower F1

Figure 3: Probability distribution for positive attach-
ment in the STAC development set.

score because of false positive attachment. Bina-
rizing these marginals allows us to pass these bi-
narized probabilities to the discriminative model.
This also allows us to evaluate GEN with respect
to gold label “attachment” 0/“non attachment” 1
on the STAC test data.

The generative model GEN shares with other
“local” models the feature that it considers pairs of
DUs in isolation of the whole structure. However,
unlike other local models, our LFs enable GEN to
exploit prior decisions on pairs of DUs, and thus
we exploit more contextual information about dis-
course structure in GEN than in our classical, su-
pervised local models. In addition, GEN uses the
Training set very differently from classical, super-
vised models.

4.3 Discriminative Model
The standard Snorkel approach inputs the
marginal probabilities from the generative step
directly into a discriminative model, which is
trained on those probabilities using a noise-aware
loss function (Ratner et al., 2016). Ideally, this
step generalizes the LFs by augmenting the fea-
ture representation - from, say, dozens of LFs to
a high dimensional feature space - and allows the
model to predict labels for more new data. Thus
the precision potentially lost in the generalization
is offset by a larger increase in recall.

We tested three discriminative models in our
study. Each one was trained on the gold la-
beled data in the Training set of the STAC corpus.
First we tried a single layer BI-LSTM with 300
neurons, which takes as input 100 dimensional-
embeddings for the text of each DU in the can-
didate pair. We concatenated the outputs of the
BI-LSTM and fed them to a simple perceptron
with one hidden layer and Rectified Linear Unit
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Generative Model on dev set Precision Recall F1 score Accuracy
Without higher order dependencies 0.45 0.70 0.55 0.87
With higher order dependencies 0.68 0.67 0.67 0.92

Table 1: Evaluations of attachment on Dev set with and without higher order dependencies.

(ReLU) activation (Hahnloser et al., 2000; Jar-
rett et al., 2009; Nair and Hinton, 2010) and
optimized with Adam (Kingma and Ba, 2014).
Given that our data is extremely unbalanced in fa-
vor of the “unattached” class (“attached” candi-
dates are roughly 13% of the candidates on the
development set), we also implemented a class-
balancing method inspired by (King and Zeng,
2001) which maps class indices to weight values
used for weighting the loss function during train-
ing.

We also implemented BERT (Devlin et al.,
2018)’s sequence classification model (source
code on the link below4) with 10 training epochs
and all default parameters otherwise. BERT,
the Bidirectional Encoder Representations from
Transformers, is a text encoder pre-trained using
language models where the system has to guess a
missing word or word piece removed at random
from the text. Originally designed for automatic
translation tasks, BERT uses bi-directional self-
attention to produce the encodings and performs
at the state of the art on many textual classification
tasks.

In order to use these methods, we had to bi-
narize the marginal probabilities before moving
to the discriminative step, using a threshold of
p > .85 as explained in Section 4.2. Though this
marks a departure from the standard Snorkel ap-
proach, we found that our discriminative model
results were higher when the marginals were bi-
narized and when the class re-balancing was used,
albeit much lower than expected overall.

Finally, to facilitate comparison with earlier
work, we also implemented a local model, Lo-
gReg* as mentioned in the following of the pa-
per, that used marginal probabilities together with
handcrafted features (the feature set used in (Afan-
tenos et al., 2015) listed in their Table 2) and a Lo-
gistic Regression classifier.

4Link to BERT sequence classification model code:
https://github.com/huggingface/pytorch-pretrained-
BERT/blob/master/examples/run classifier.py

5 Decoding

A set of highly accurate predictions for individ-
ual candidates does not necessarily lead to ac-
curate discourse structures; for instance, with-
out global structural constraints, GEN and local
models may not yield the directed acyclic graphs
(DAGs), required by SDRT. As in previous work
(Muller et al., 2012; Afantenos et al., 2015; Per-
ret et al., 2016), we use the Maximum Spanning
Tree (MST) algorithm, and a variation thereof, to
ensure that the dialogue structures predicted con-
form to some more general structural principle.
We implemented the Chu-Liu-Edmonds algorithm
(Chu, 1965; Edmonds, 1967), an efficient method
of finding the highest-scoring non-projective tree
in a directed graph, as described in Jurafsky and
Martin5. The algorithm greedily selects the rela-
tions with the highest probabilities from the de-
pendency graphs produced by the local model,
then removes any cycles. The result is a tree struc-
ture with one incoming relation per node. In cases
of nodes with multiple equiprobable incoming re-
lations, the algorithm takes whichever relation it
sees first.

Since SDRT structures can contain nodes with
multiple incoming relations, i.e. are not al-
ways tree-like, we altered the MST algorithm
in the manner of (Muller et al., 2012; Afan-
tenos et al., 2015; Perret et al., 2016), forcing
the MST to include all high-probability incoming
relations which do not create cycles. This pro-
duces MS-DAG structures which are in principle
more faithful to SDRT. In addition, since discourse
attachments in general follow an inverse power
law (many short-distance attachments and fewer
long-distance attachments), we implemented two
MST/MS-DAG variants that always choose the
shortest relation among multiple high-probability
relations (MST/short and MS-DAG/short).

6 Results and Analysis

We set out to test the performance of combinations
of generative and discriminative models along the

5https://web.stanford.edu/ jurafsky/slp3/13.pdf

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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lines of the data programming paradigm on the
task of dialogue structure prediction in order to au-
tomatically generate SDRT corpus data. While our
results were consistent with what data program-
ming promises—more data with accuracy com-
parable if not slightly below that of hand-labeled
data—our most surprising and interesting result
was the performance of the generative model on
its own. As seen in Table 2 on STAC test data,
GEN dramatically outperformed our deep learn-
ing baselines—BiLSTM, BERT, and BERT + Lo-
gReg* architectures on gold labels—as well as the
LAST baseline, which attaches every DU in a di-
alogue to the DU directly preceding it. In addi-
tion, stand alone GEN also outperformed all the
coupled Snorkel models, in which GEN is com-
bined with an added discriminative step, by up
to a 30 point improvement in F1 score (GEN vs.
GEN+BiLSTM). We did not expect this, given
that adding a discriminative model in Snorkel is
meant to generalize, and hence improve, what
GEN learns.

Critical to this success was the inclusion of
higher order dependencies in GEN and the fact
that our LFs exploited contextual information
about the DUs that was unavailable to the deep
learning models or even the handcrafted feature
model. GEN beats all competitors in terms of F1
score while taking a fraction of the annotated data
to develop and train the model, showing the power
and promise of the generative model.

One might wonder whether GEN and discrim-
inative models are directly comparable. Gener-
ative machine learning algorithms learn the joint
probability of X and Y, whereas discriminative
algorithms learn the conditional probability of Y
given X. Nevertheless, when we exploit the gener-
ative model we are trying to find the Y for which
P (X ∧ Y ) is maximized. In effect we are produc-
ing, though not learning, a conditional probabil-
ity. So it makes sense to compare our generative
model’s output with that of other, discriminative
machine learning approaches.

We also got surprising results concerning the
supervised model benchmarks. Table 2 shows that
LogReg* was the best supervised learning method
on the STAC data in terms of producing local mod-
els. This is evidence that hand crafted features
capturing non local information about a DU’s con-
texts do better than all purpose contextual encod-
ings from neural nets at least on this task. We

also implemented BERT+LogReg*, a learning al-
gorithm that uses BERT’s encodings together with
a Logistic Regression classifier trained on STAC’s
gold data with handcrafted features from (Afan-
tenos et al., 2015) and used in (Perret et al., 2016).
BERT+LogReg* outputs a local model that im-
proves upon BERT’s local model, but it did not do
as well as LogReg* on its own (let alone GEN),
suggesting that BERT’s encodings actually inter-
fered with the correct predictions.

We also investigated GEN coupled with various
discriminative models to test the standard Snorkel.
As we remarked above, we found that binariz-
ing GEN’s output improved the performance of
the coupled discriminative model, so Table 2 only
reports scores for various GEN-coupled discrim-
inative models that take the binarized GEN pre-
dictions as input. In keeping with our analysis
of the supervised benchmarks, we found that the
best discriminative model to couple with GEN in
the Snorkel architecture was LogReg*, far outper-
forming GEN with either a BiLSTM or BERT on
the STAC test set. Its results were only slightly
less good than those of stand alone GEN.

To further investigate comparisons between dif-
ferent architectures for solving the attachment
problem, we compared various local models ex-
tended with the MS-DAG decoding algorithm dis-
cussed in Section 5, giving the global results
shown in the righthand columns of Tables 3 and
4. With MS-DAG added, GEN continued to out-
perform all other approaches on STAC data. In
Table 5, we experimented with adding all decod-
ing algorithms to the local GEN result. This gave a
boost in F1 score—2 points with classic MST and
MS-DAG and 4 points with the variants favoring
relation instances with shorter attachments.

It is not surprising that MST improves the GEN
results, since it eliminates some of the false pos-
itive relations that pass the generative threshold
and includes some of the false negative relations
that fall below the threshold. The general inverse
power law distribution of discourse attachments
explains the good performance of the MST short-
est link variant. GEN + “MST-short” has the high-
est attachment score of all approaches to the prob-
lem of attachment in the literature (Morey et al.,
2018), though we are cautious in comparing scores
for systems applied to different corpora.

Finally, we wanted to see how GEN and our
other models fared on our version of the (Perret
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Precision Recall F1 score Accuracy
SUPERVISED BASELINES

LAST 0.54 0.55 0.55 0.84
BiLSTM on Gold labels 0.33 0.80 0.47 0.75
BERT on Gold labels 0.56 0.48 0.52 0.88
LogReg* on Gold labels 0.73 0.52 0.61 0.91
BERT+LogReg* on Gold labels 0.59 0.49 0.53 0.89

SNORKEL PIPELINE
GEN + Disc (BiLSTM) 0.28 0.59 0.38 0.74
GEN + Disc (BERT) 0.49 0.40 0.44 0.86
GEN + Disc (LogReg*) 0.68 0.65 0.67 0.91
GENERATIVE STAND ALONE
GEN 0.69 0.66 0.68 0.92
GEN + MST-short 0.73 0.71 0.72 0.93

Table 2: Evaluations of weakly supervised (Snorkel and stand alone GEN) and supervised approaches on STAC
data.

Local Model Global Model
Precision Recall F1 Precision Recall F1

GEN 0.69 0.66 0.68 0.71 0.69 0.70
LogReg* on STAC 0.73 0.52 0.61 0.65 0.64 0.65

Table 3: Comparison of local and global models on STAC data.

et al., 2016) data set. Comparing GEN to Lo-
gReg* on our version of the (Perret et al., 2016)
data set, GEN has higher scores than LogReg*’s
local model; but with a decoding mechanism sim-
ilar to that reported in (Perret et al., 2016), Lo-
gReg*’s global model significantly improves over
the GEN’s. We see a 6 point loss in F1 score on
GEN’s global model relative to LogReg*’s, even
though both used identical MST decoding mech-
anisms. This is what one would expect from a
Snorkel based architecture, although it’s not the
rule that we observed for GEN. The only reason
GEN did not beat LogReg* is that it did not get a
sufficient boost from decoding. We think that this
happened because our LFs already contain a lot of
global information about the discourse structure,
which meant that MST had less of an effect.

Note, however, that even on the (Perret et al.,
2016) data set, the MST decoding mechanism pro-
vided LogReg* only a boost of 12 F1 points, as
seen in Table 4, which is significantly lower than
what is reported in (Perret et al., 2016). This 12%
boost is the upper limit for boosts with MST that
we were able to reproduce. This could be a result
of our eliminating the degraded one EDU stories
from the data set.

7 Conclusions and Future Work

We have compared a weak supervision approach,
inspired by Snorkel, with a standard supervised
model on the difficult task of discourse attach-
ment. The results of the model from Snorkel’s
generative step surpass those of a standard su-
pervised learning approach, proving it more than
competitive with standard approaches. It can also
generate a lot of annotated data in a very short
time relative to what is needed for a traditional ap-
proach: Asher et al. (2016) state that the STAC
corpus took at least 4 years to build; we created
and refined our labeling functions in two months.
In addition, a big advantage of the generative
model from the learning point of view is that we
don’t have class balancing or drowning problems,
which plague problems like discourse attachment.
This is because the generative model’s predictions
are generated in a very different way from those of
a discriminative model, which are based on induc-
tive generalizations. Still it is clear that we must
further investigate the interaction of the genera-
tive and discriminative models in order to even-
tually leverage the power of generalization that a
discriminative model is supposed to afford.

In future work, we will enrich our weak supervi-
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Local Model Global Model
Precision Recall F1 Precision Recall F1

Perret et al. 2016 0.66 0.38 0.48 0.68 0.65 0.67
LogReg* 0.64 0.39 0.48 0.59 0.61 0.60
BERT 0.43 0.31 0.36 0.46 0.47 0.46
GEN 0.46 0.65 0.54 0.53 0.54 0.54
GEN + LogReg* 0.46 0.65 0.54 0.53 0.54 0.53

Table 4: Comparison of Perret 2016 and results of our methods on Perret 2016 data.

F1 scores of MST variants using GEN inputs
MS-DAG MST MST/short MS-DAG/short

F1 Score: 0.70 0.70 0.72 0.72

Table 5: F1 scores for different decoding mechanisms with GEN on STAC data.

sion system by giving the LFs access to more so-
phisticated contexts that take into account global
structuring constraints in order to see how they
compare to the simple, exogenous decoding con-
straints like MST. We think we can put much more
sophisticated decoding constraints that don’t just
work off local probabilities of arcs but on the full
information about the arc in its discourse context.
This will lead us to understand how weakly super-
vised methods can effectively capture the global
structural constraints on discourse structures di-
rectly without decoding or elaborate learning ar-
chitectures.
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