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Abstract

Rhetorical structure trees have been shown to
be useful for several document-level tasks in-
cluding summarization and document classi-
fication. Previous approaches to RST pars-
ing have used discriminative models; however,
these are less sample efficient than generative
models, and RST parsing datasets are typically
small. In this paper, we present the first gen-
erative model for RST parsing. Our model
is a document-level RNN grammar (RNNG)
with a bottom-up traversal order. We show
that, for our parser’s traversal order, previous
beam search algorithms for RNNGs have a
left-branching bias which is ill-suited for RST
parsing. We develop a novel beam search
algorithm that keeps track of both structure-
and word-generating actions without exhibit-
ing this branching bias and results in absolute
improvements of 6.8 and 2.9 on unlabelled and
labelled F1 over previous algorithms. Overall,
our generative model outperforms a discrimi-
native model with the same features by 2.6 F1
points and achieves performance comparable
to the state-of-the-art, outperforming all pub-
lished parsers from a recent replication study
that do not use additional training data.

1 Introduction

Understanding a document’s discourse-level or-
ganization is important for correctly interpreting
it, and discourse analyses have been shown to be
helpful for several NLP tasks (Bhatia et al., 2015;
Ji and Smith, 2017; Feng and Hirst, 2014b; Fer-
racane et al., 2017). A popular formalism for
discourse analysis is Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) (Fig. 1)
which represents a document as a tree of discourse
units recursively built by connecting smaller units
through rhetorical relations. Learning to predict
RST trees is difficult because it depends on prag-
matics as well as literal meaning, and the En-

glish RST Discourse Treebank (RST-DT) (Carlson
et al., 2003) is small by the standards of modern
parsing datasets, with 347 training documents.

Previous approaches to RST parsing (Ji and
Eisenstein, 2014; Feng and Hirst, 2014a; Joty
et al., 2015; Braud et al., 2017) have used lo-
cally normalized discriminative models. However,
these are known to have worse performance than
generative models when there is little training data
(Ng and Jordan, 2002; Yogatama et al., 2017).

Unlike locally normalised discriminative mod-
els, generative models are not susceptible to label
bias (Lafferty et al., 2001). The success of gener-
ative (Dyer et al., 2016; Charniak et al., 2016) and
globally normalised (Andor et al., 2016) syntactic
parsers suggests that reducing label bias leads to
better performance. We hypothesize that using a
generative parser would also lead to improved per-
formance on RST parsing. However, while they
are free from label bias, generative parsers require
more sophisticated search algorithms for decod-
ing. Fried et al. (2017) presented a word-level
beam search algorithm that made it possible to de-
code directly from neural generative parsers rather
than using them as rerankers.

In this paper, we present the first generative
RST parser1. Our model is a document-level ver-
sion of an RNN Grammar (RNNG, Dyer et al.
(2016)) defined through a transition system with
both word- and structure-generating actions. It
uses distributed representations of discourse units
and transition probabilities parametrized by RNNs
to model unbounded dependencies in a document.

For our discourse parser, we find that Fried et al.
(2017)’s word-level beam search algorithm is bi-

1Ji et al. (2016) introduced a neural generative discourse
parser, but they used the annotation scheme of the Penn
Discourse Treebank (Prasad et al., 2008) and Switchboard
Dialog Act (Godfrey et al., 1992) corpora, predicting flat
discourse representations between adjacent sentences, rather
than hierarchical relations among clauses.
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Figure 1: An example of an RST tree.

ased towards producing left-branching trees. We
analyse the source of this bias and develop a novel
beam search algorithm that removes it by tracking
both word- and structure-generating actions. On
the RST-DT development set, our algorithm leads
to improvements of 6.8% and 2.9% on unlabelled
and labelled attachment accuracies when decod-
ing from the same parser, compared to word-level
beam search. On the RST-DT test set, our gener-
ative parser outperforms a discriminative version
with the same features by 2.6% on labelled attach-
ment accuracy. Overall, our parser obtains a la-
belled attachment score of 45.0%, outperforming
all published parsers in a recent replication study
that do not use additional training data.

2 Rhetorical Structure Theory

Rhetorical Structure Theory describes the struc-
ture of a document in terms of text spans that form
discourse units and the relations between them.
The basic unit of analysis is an elementary dis-
course unit (EDU) which can be assumed to be a
syntactic clause. A unit is made up of two or more
adjacent discourse units (which can be EDUs or
other units) that are in some rhetorical relation.

Most rhetorical relations are binary and asym-
metric with one argument, the nucleus, being more
important than the other, the satellite. Importance
is defined through a deletion test: a text becomes
incoherent if a nucleus is deleted, but not if a
satellite is. These binary asymmetric relations are
called mononuclear relations. The remaining re-
lations are symmetric, having two or more argu-
ments of equal importance, and are called multin-
uclear relations.

An RST tree or analysis is a nested collection
of discourse units that are either EDUs or units,
where the top unit spans the whole text (Mann and
Thompson, 1988). RST parsing is the task of au-
tomatically predicting RST trees for documents.

3 Rhetorical Structure RNNGs

In this section, we present a generative model for
predicting RST trees given a document segmented
into a sequence of EDUs e1:m2. The model is a
document-level RNNG in bottom-up traversal or-
der (Kuncoro et al., 2018). We first describe syn-
tactic RNNGs in section 3.1. We then describe
our parser’s transition system in section 3.2, and
its transition model in section 3.3.

3.1 Recurrent Neural Network Grammars
Recurrent neural network grammars are a class
of syntactic language models that define a joint
probability distribution p(x,y) over sentences and
their phrase structure trees. An RNNG is defined
by a triple (N,Σ,Θ) with N a finite set of nonter-
minal symbols, Σ a finite set of terminal symbols
and Θ neural network parameters.

RNNGs generate sentences and their parse trees
through actions3 in an abstract state machine. A
machine state is a tuple 〈S,B〉 where S is a stack
which holds partial phrase structure trees and B is
a buffer which holds sentence prefixes. The tran-
sitions push new subtrees onto the stack, combine
subtrees already there, and append terminals to
the buffer until the stack contains a single phrase
structure tree and the buffer contains a complete
sentence. The original presentation in Dyer et al.
(2016) used the following transition system:

NT(X) Push the nonterminal node (X onto the
top of the stack, where X ∈ N .

GEN(w) Push the terminal symbol w ∈ Σ onto
the top of the stack and the end of the buffer.

REDUCE Pop subtrees τ1, · · · , τl from the top of
the stack until the first nonterminal node (X
is reached and push the subtree (Xτ1 · · · τl)
onto the top of the stack.

A sentence x and phrase structure tree y are
generated by a unique sequence of actions a1:k.
The joint distribution p(x,y) is defined as the
probability of the action sequence a1:k:

p(x,y) =

k∏
j=1

p(aj |a<j) =

k∏
j=1

p(aj |Sj , Bj) (1)

2As in most previous work on RST parsing, we use gold
EDU segmentations in our experiments, but our parser would
use the output of an EDU segmenter in practice.

3We use “action” and “transition” interchangeably.
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Action Before After Probability Condition

GEN(e) 〈S,B〉 〈S|EDU(e), B|e〉 ptrans(GEN|S) · pgen(e|S) |B| < m
RE(r, n) 〈S|UL|UR, B〉 〈S|

(
Unit(r, n) UL UR

)
, B〉 ptrans(RE(r, n)|S) |S| ≥ 2

Table 1: Our transition system. |S| is the number of discourse units on the stack, |B| is the number of EDUs in the
buffer and m is the number of EDUs in the whole document, r is a relation label and n is a nuclearity label.

Stack Buffer Prediction

ε ε GEN(e1)
EDU(e1) e1 GEN(e2)

EDU(e1)|EDU(e2) e1|e2 GEN(e3)
EDU(e1)|EDU(e2)|EDU(e3) e1|e2|e3 RE(ATTR, SN)

EDU(e1)|(Unit(ATTR, SN) EDU(e2) EDU(e3)) e1|e2|e3 RE(JUST,NS)(
Unit(JUST,NS) EDU(e1)

(
Unit(ATTR, SN) EDU(e2) EDU(e3)

))
e1|e2|e3

[e1 Acme Inc. has closed several widget factories. ] [e2 The CEO told investors ] [e3 they were no longer profitable. ]

Table 2: An example of a completed computation in our transition system.

The next action distribution p(aj |Sj , Bj) is
parametrized using neural embeddings of the stack
and buffer. Briefly, the next action distribution is
computed using a softmax on the output of a lin-
ear transformation on the state embedding, which
is the concatenation of a buffer embedding and a
stack embedding. The buffer embedding is the fi-
nal hidden state of an LSTM that reads the word
embeddings of the words in the buffer. The stack
embedding is the hidden state of a stack LSTM
that reads the embeddings of the subtrees on the
stack. The embeddings of the subtrees on the
stack are computed recursively using a bidirec-
tional LSTM that reads the embeddings of the
nonterminal symbol and its children.

3.2 Transition System

We modify the RNNG generative process so that
it generates an EDU-segmented document and its
RST tree. In our model, the stack S holds par-
tial RST trees and the buffer B holds a sequence
of EDUs (a prefix of a document’s EDU segmen-
tation). The transitions generate EDUs and push
them onto the stack and buffer, and combine RST
subtrees on the stack into new subtrees. The pro-
cess terminates when the buffer contains a com-
plete document and the stack a single RST tree.

Kuncoro et al. (2018) presented an RNNG vari-
ant with a bottom-up transition system that re-
places the NT(X) and REDUCE transitions with a
single REDUCE(X,n) transition, as in traditional
shift-reduce parsers. In initial experiments, we
found this variant outperformed a model using the

original top-down transition system. We hypoth-
esize this is because an RST non-terminal’s label
is more difficult to predict from its parent’s label
than is the case in phrase structure trees, while a
parent’s label can be predicted once its children
have been seen.

Finally, RST trees are traditionally binarized so
we modify the REDUCE transitions accordingly,
resulting in the following transition system (see
also Table 1):

GEN(e) Generate the EDU e and push it onto the
top of the stack and the end of the buffer.

RE(r, n) Pop the top two discourse units (UL

and UR) from the stack and push the unit(
Unit(r, n) UL UR

)
onto the top of the stack,

with r and n relation and nuclearity labels.

In our experiments, the relation labels r are
the 18 coarse-grained relations of Carlson and
Marcu (2001), while the nuclearity labels n are
in {SN,NS,NN} corresponding respectively to a
mononuclear relation with the nucleus on the right
or the left and a binarized multinuclear relation.

Both transitions have conditions on when they
can be performed (Table 1). A computation is
a sequence of transitions where the condition for
each transition is satisfied in its preceding state. A
completed computation for an input sequence is a
computation where the final state buffer contains
the input sequence and the final state stack con-
tains a single tree. Table 2 shows an example of a
completed computation for our transition system.
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3.3 Transition Model

In initial experiments we found, as did Kuncoro
et al. (2017) for syntactic parsing, that condi-
tioning only on the stack led to better parsing
accuracy, so we specify the next action distri-
bution as p(aj |Sj). To handle the unbounded
number of possible EDUs, we parametrize the
probabilities of GEN(e) actions using a neu-
ral language model. The next action dis-
tribution is factorised into a structural action
distribution ptrans and a generation distribu-
tion pgen as in Buys and Blunsom (2018), so
that p(RE(r, n)|S) = ptrans(RE(r, n)|S) and
p(GEN(e)|S) = ptrans(GEN|S) ·pgen(e|S) where
pgen is the neural language model.

We parametrize ptrans as a feedforward neu-
ral network on an embedding of the stack hS(S).
In initial experiments we found, consistent with
Morey et al. (2017), that a model with neural em-
beddings as its only features performed poorly.
We therefore compute the representation using
both neural embeddings of the discourse units on
the stack (Section 3.3.1) and a set of structural fea-
tures extracted from the stack (Section 3.3.2).

3.3.1 Neural Embeddings
To produce the stack embedding, we first require
embeddings for both EDUs and units. We embed
EDUs with bidirectional LSTMs4. If e is an EDU
consisting of the word sequence w1:k, then

h→k = LSTM(→)(w1:k,h
→
0 )

h←k = LSTM(←)(wk:1,h
←
0 )

(2)

where wt is the word embedding of wt. The em-
bedding for e, hEDU (e), is the concatenation of
the final forward and backward hidden states:

hEDU (e) = [h→k ;h←k ] (3)

We embed units by composing their arguments
with a Tree LSTM5 (Teng and Zhang, 2017). A
Tree LSTM recursively composes vectors while
using memory cells to track long-term depen-
dencies. We produce a new representation for
each EDU e by applying a linear transformation

4We track memory cells and use them when updating the
hidden state in LSTMs and Tree LSTMs, but use only the
hidden states for stack embeddings. Initial hidden states and
memory cells are learned parameters.

5Since constituency trees are n-ary branching, RNNGs
for constituency parsing have used a bidirectional LSTM
composition function (Dyer et al., 2016; Kuncoro et al., 2017,
2018) to compose the variable number of children. RST trees
are binarized so we do not need this feature.

to the EDU embeddings (omitting bias terms for
brevity):

hU (e) = WU,h · hEDU (e) (4)

For a unit, we define the “nuclear” EDU of a
unit recursively as the nucleus if the nucleus is
an EDU, or the nuclear EDU of the nucleus if
the nucleus is itself a unit. For multinuclear re-
lations, we take the left-most nucleus. Then, if(
Unit(r, n) UL UR

)
is a unit and eN is its nu-

clear EDU, hEDU (eN ) is the embedding of the
nuclear EDU, and hR(r, n) is an embedding of the
nuclearity-relation pair (r, n) in a lookup table:

hU (U) = TREELSTM([hEDU (eN );hR(r, n)],

hU (UL),hU (UR))

(5)

where hU (UL) and hU (UR) are the hidden state
and memory cell of the left and right argument of
the unit respectively.

We embed the stack with a stack LSTM (Dyer
et al., 2015). If the stack contents are D1| · · · |Dm

with each Di being a discourse unit, then

hN
S (S) = LSTMS(hU (D1:m),hS

0 ) (6)

3.3.2 Structural Features
We extract additional features from the stack that
have been found to be useful in prior work. As
in Braud et al. (2017), for each discourse unit, we
extract the word embeddings of up to three words
whose syntactic head is not in the unit, adding
padding if there are fewer than three. We con-
catenate these features for the top two discourse
units on the stack, using a dummy embedding if
the stack only contains one discourse unit. We
write hhead

S (S) for these features.
We use a categorical feature for whether the top

two discourse units are: in the same sentence; in
different sentences; or incomparable since one of
them spans multiple sentences. We also use an
equivalent feature for paragraphs. Feature values
are represented by embeddings in a lookup table.
We write hcomp

S (S) for these features.
Finally, we extract features describing the domi-

nance relation (Soricut and Marcu, 2003) between
the top two discourse units on the stack. If there
is a word in one discourse unit whose syntactic
head is in the other, we extract the word embed-
dings of these two words as well as an embedding
of the dependency relation between them, other-
wise we use a single dummy embedding. We write
hdom
S (S) for these features.
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The structural feature representation is then the
concatenation of these three features:

hF
S (S) = [hhead

S (S);hcomp
S (S);hdom

S (S)] (7)

and the full stack representation is the concatena-
tion of the neural embedding and the feature rep-
resentation:

hS(S) = [hN
S (S);hF

S (S)] (8)

3.3.3 Probability Distributions

The action distribution is parametrized using the
stack representation and an MLP:

ptrans(a|S) = ptrans(a|hS(S))

= softmax(Wtrans · hS(S))
(9)

We parametrize the EDU generation distribu-
tion pgen(e|S) with an LSTM decoder:

hDEC
t = LSTMDEC(wt,h

DEC
t−1 ) (10)

If e = w1:k then

pgen(e|S) = pgen(w1:k|S) (11)

=
k∏

t=1

pgen(wt|w<t, S) (12)

=

k∏
t=1

pgen(wt|hDEC
t−1 ,hS(S)) (13)

where

pgen(wt|hDEC
t−1 ,hS(S)) (14)

= softmax(Wgen · [hS(S);hDEC
t−1 ]) (15)

4 Inference

Our generative model specifies a joint probability
p(x,y). We parse a document x by finding the
MAP tree y∗:

y∗ = argmax
y∈Y(x)

p(y|x) (16)

= argmax
y∈Y(x)

p(x,y) (17)

The search space grows exponentially with the in-
put length, so we must perform inexact search as
our model conditions on the entire relation struc-
ture of every subtree on the stack.

Search is generally more difficult for genera-
tive models than for discriminative ones, requir-
ing more complex search algorithms. For this
reason, Dyer et al. (2016) used RNNGs only to
rerank the output of a discriminative parser. Fried

et al. (2017) presented the first algorithm for de-
coding directly from RNNGs to give competitive
performance. They found that action-level beam
search (Zhang and Clark, 2008) gave poor per-
formance for constituency parsing with RNNGs.
The problem was that GEN actions almost always
have lower probabilities than structure-generating
actions, causing computations where GEN actions
come earlier to “fall off the beam” even if the com-
pleted computation would have a higher probabil-
ity than other completed computations.

To address this problem, Fried et al. (2017)
proposed word-level beam search (Algorithm 1).
Briefly, the algorithm keeps an array of beams
indexed by the current position in the sequence
and the number of structure-generating actions
taken since this position was reached. The first
beam for the current position B(i, 0) is filled from
the successors of beams for the previous position
B(i− 1, j) (lines 4 to 17) starting with B(i− 1, 0)
(line 4) and incrementing j (line 17) until there are
at least k items in B(i, 0) (line 5). The intuition is
that analyses with the smallest number of struc-
tural actions since the previous beam was pruned
have priority on the current beam.

We applied Fried et al. (2017)’s algorithm6 to
our model, but found it was biased towards pro-
ducing left-branching trees. This led to poor per-
formance as the right-frontier constraint (Polanyi,
1988; Webber, 1988; Asher, 2012; Asher et al.,
2003) suggests discourse trees should be generally
right-branching. In the next section, we present an
analysis of the source of this bias and a novel beam
search algorithm that corrects it.

4.1 Diagnosing Branching Bias

The trees returned by a trained parser depend on
both the (learned) scoring model and the search al-
gorithm. We can isolate bias in search algorithms
by studying the trees they return when the scoring
model contains no information. Intuitively, if the
scoring model has no preference over trees, then
any preference shown by the parser is the result of
biases in the search algorithm.

We tested whether the left-branching bias came
from the word-level beam search (the search algo-
rithm of Fried et al. (2017)) by using it to parse
sequences of various lengths using a bottom-up
RNNG with a uniform scoring model. We broke

6We used candidate fast-tracking as described in Stern
et al. (2017)’s extension to Fried et al. (2017)’s algorithm.
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Algorithm 1 Word-level Beam Search
1: function SEARCH(x1:m, k)
2: B[0, 0],← {

(
1, (ε, ε)

)
}

3: for i← RANGE(0, m)
4: j ← 0
5: while |B[i, j]| ≥ 0 and |B[i+ 1, 0]| < k
6: for (v, s)← TOP(B[i, j], b)
7: for (a, s′)← SUCC(s)
8: v′ ← v · p(a|s)
9: if COMPLETE(s′) then

10: PUSH(B[m+ 1, 0], (v′, s′))
11: else
12: switch a
13: case GEN(ei+1)
14: PUSH(B[i+1, 0], (v′, s′))
15: case RE(r, n)
16: PUSH(B[i, j + 1], (v′, s′))
17: j ← j + 1

18: return TOP(B[m+ 1, 0], 1)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

n

P
L

(T
)

Figure 2: Median degree of left branching for trees ob-
tained from a bottom-up RNNG with a uniform scoring
model using word-level beam search for sequences of
various lengths (n).

ties at beam cut-offs by uniform sampling with-
out replacement. We measured branching bias
using Sampson (1997)’s production-based mea-
sure of left-branching for parse trees which we
write as PL(T ) for a tree T . The measure is
the fraction of non-terminals whose left child is
also a non-terminal, and varies from 0 for a fully
right-branching tree to n−2

n−1 → 1 for a fully left-
branching tree, where n is the number of leaves.
Figure 2 shows the median value of this measure
for 100 trees each for sequences of various lengths
from our uniform scoring model. It shows sub-
stantial left-branching bias which increases with
sequence length.

Word-level beam search has two sources of
bias: first, computations with fewer RE actions
since the last GEN action are added to the next
beam first (lines 4 and 17 in Alg. 1). Computa-
tions with more actions are only considered if the
next beam is not already full by the time they are
reached (line 5 in Alg. 1). This means the next
beam may fill up before these computations are
even considered and they will “fall off the beam”.
A right-branching subtree over k leaves has k con-
secutive GEN actions followed by k − 1 consecu-
tive RE actions, meaning it results in a computa-
tion in B(ik, k − 1) where ik is the position of the
k-th leaf. Thus right-branching subtrees are later
in line to be considered and are increasingly likely
to fall off the beam as they span more leaves.

Second, the beamsB(i, j) contain computations
with unequal numbers of actions. For a binary tree

with m leaves, all completed computations have
m GEN and m − 1 RE actions. The total num-
ber of actions up to the k-th GEN action varies,
though, from k to 2k − 2. Since the probability of
a computation a1:l is

∏l
j=1 p(aj |a<j), this means

word-level beam search compares computations
with different numbers of factors contributing to
their probabilities. This bias does not necessarily
favour left-branching trees, but it does introduce a
potential problem when comparing computations.

4.2 Bag-Level Beam Search

We now present a beam search algorithm without
these sources of bias (Algorithm 2). Our algorithm
is based on a simple dynamic program that keeps
track of the number of GEN and RE actions sep-
arately. This (i) allows us to consider computa-
tions from all source beams simultaneously and
(ii) ensures all computations in a beam have the
same number of actions. Since this is equivalent
to keeping separate beams for different bags of un-
labelled actions, we call the algorithm bag-level
beam search.

We write C(i, j) for the set of computations with
i GEN actions and j RE actions. Then all com-
pleted computations are in C(m,m− 1) for an in-
put sequence of length m.

For each computation c ∈ C(i, j), the last action
was either a GEN or an RE action, so c is either of
the form c = GEN|c′ where c′ ∈ C(i − 1, j) or it
is of the form c = RE|c′′ where c

′′ ∈ C(i, j − 1).
The highest scoring computation in C(i, j),
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Figure 3: Word-level and bag-level beam search (left and right respectively) for an input sequence with 6 tokens.
Nodes represent beams and paths represent computations. The horizontal axis is the number of GEN actions and
the vertical axis is the number of RE actions for bag-level search and the number of RE actions since the last
GEN for word-level search. We show the path of a left-branching tree in blue with dashed and dotted lines and a
right-branching tree in red with dashed lines. We show possible transitions between beams that do not belong to
either of these paths in gray with dotted lines. Red, blue and purple dots respectively show the beam where the
computation of a right-branching tree, left-branching tree or both are completed.

Algorithm 2 Bag-level Beam Search
1: function SEARCH(x1:m, k)
2: B[0, 0]← {

(
1, (ε, ε)

)
}

3: for i← RANGE(0, m) . GEN(ei)
4: for j ← RANGE(0, i− 1) . RE(r, n)
5: for (v, s)← TOP(B[i, j], k)
6: for (a, s′)← SUCC(s)
7: v′ ← v · p(a|s)
8: switch a
9: case GEN(ei+1)

10: PUSH(B[i+ 1, j], (v′, s′))
11: case RE(r, n)
12: PUSH(B[i, j + 1], (v′, s′))
13:
14: return TOP(B[m,m− 1], 1)

c∗(i, j) = argmax
c∈C(i,j)

p(c), is then the highest scor-

ing computation ending on a GEN or an RE7:

c∗(i, j) = argmax

{
p(c)

∣∣∣∣∣c = GEN|c
′
, c

′
∈ C(i− 1, j);

c = RE|c
′′
, c

′′
∈ C(i, j − 1)

}
(18)

There are exponentially many computations in
C(i, j) so taking exact maxima is intractable.
Therefore we only take maxima over beams
B(i, j) which we update according to

B(i, j) = argmaxk

{
p(c)

∣∣∣∣∣c = GEN|c
′
, c

′
∈ B(i− 1, j);

c = RE|c
′′
, c

′′
∈ B(i, j − 1)

}
(19)

7We omit actions’ parameters for conciseness.

where, in the set notation, “;” means “or”.

We perform this recursive calculation for all i
and j using the dynamic program in Algorithm 2.

Figure 3 shows the differences between word-
level and bag-level beam search with example tra-
jectories through the array of beams for compu-
tations corresponding to a left-branching (blue,
dashed and dotted) and a right-branching (red,
dashed) tree. Each path through the lattice from
(0, 0) to (i, j) defines a computation and shows the
beams it must pass through to end up in B(i, j).

The path length is equal to the number of ac-
tions taken to reach (i, j). In word-level beam
search, paths through beams with more consecu-
tive RE actions (higher values on the vertical axis)
are only explored if the next word beam is not
already full (lines 4, 5 and 17 in Algorithm 1).
This means the final beam may be full before the
red path is considered, causing it to “fall off the
beam”. In bag-level beam search, paths into a
beam from both source beams are considered and
pruned simultaneously. This addresses the first
source of bias, namely that sequences with fewer
consecutive RE actions are given priority. All
paths to (i, j) also have the same length; in other
words, all computations in B(i, j) have the same
number of actions (i + j), addressing the second
source of bias.
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Metric Algorithm Beam Size
10 20 40 80

S
Word-level Search 58.3 58.4 58.4 60.8
Bag-level Search 66.4 67.3 67.0 67.6

N
Word-level Search 50.3 50.5 50.5 51.8
Bag-level Search 56.1 56.4 56.2 56.9

R
Word-level Search 43.1 43.2 43.2 43.7
Bag-level Search 45.4 46.8 46.5 46.9

F
Word-level Search 42.0 42.3 42.3 42.9
Bag-level Search 44.7 45.5 45.3 45.8

Table 3: Dev. set micro-averaged F1 scores on labelled
attachment for word-level and bag-level beam search.

5 Experiments

5.1 Dataset

We train and evaluate our models on the RST Dis-
course Treebank (RST-DT) (Carlson and Marcu,
2001). We evaluate on the standard test set, but
we use 25 documents from the training set as a
development set. To reduce the rare token count,
we use the spaCy (Honnibal and Montani, 2017)
named entity recognition model to replace named
entities with their named entity tags.

5.2 Evaluation

We follow the evaluation setup used by Morey
et al. (2017). They performed a replication study
of several competitive RST parsers and imple-
mented a consistent evaluation procedure. They
found that micro- and macro-averaged F1 had
been used inconsistently in the RST parsing lit-
erature, and that the standard evaluation metrics
(RST Parseval) gave inflated results. Following
this study we evaluate using micro-averaged F1

scores on labelled attachment decisions as calcu-
lated by the EDUCE python package8. We report
F1 for predicting span attachments (S), span at-
tachments with nuclearity (N), span attachments
with relation labels (R) and span attachments with
nuclearity and relation labels (F).

We compare our results against the numbers
from Morey et al. (2017), since they include sev-
eral competitive parers under a consistent evalua-
tion scheme.9

As a baseline, we use a discriminative version of
8https://github.com/irit-melodi/educe
9We do not compare against Yu et al. (2018), Zhang et al.

(2018) and Lin et al. (2019)’s recent neural RST parsers since
they do not evaluate labelled attachment decisions so their
results are not comparable to ours.

our model. This is a shift-reduce parser with the
same EDU, unit and stack representations as our
model, but with a lookahead buffer representation
as well. For the buffer representation, we run a
backward LSTM over the representations of the
remaining EDUs in the buffer.

5.3 Training and Hyperparameters

We use 300-dimensional word embeddings ini-
tialized to word2vec vectors (Mikolov et al.,
2013). We tie the embeddings in the EDU
LSTM and the decoder LSTM input and out-
put embeddings. We use a 2-layer bidirectional
LSTM with 512-dimensional hidden state for the
EDU LSTM. The TreeLSTM composition func-
tion also has a 512-dimensional (in total) hid-
den state with 100-dimensional relation embed-
dings. The stack LSTM and decoder LSTM also
have 512-dimensional hidden states. For the struc-
tural features, we use 10-dimensional sentence and
paragraph boundary feature embeddings and 50-
dimensional dependency relation embeddings.

We train the models with Adam (Kingma and
Ba, 2014) using an initial learning rate of 10−3

and default values for the other hyperparameters.
We apply blank noise variational smoothing (Kong
et al., 2019) with a dropout rate of 0.25 to the tied
embeddings to regularize the model. In particular,
for each document we sample a set of word types
to drop and replace their word embeddings with
the < UNK > token’s word embedding.

We extract structural features using the sen-
tence and paragraph boundary annotation in the
RST-DT, and dependency trees obtained from the
spaCy parser. Our models were implemented in
PyTorch (Paszke et al., 2017).

5.4 Results

5.4.1 Search Comparison
Table 3 shows RST-DT development set labelled
attachment metrics for our parser using word-level
and bag-level beam search. Our search algorithm
outperforms word-level beam search on all of the
metrics across beam sizes.10 On spans with nu-
clearity (N), bag-level beam search outperforms
word-level beam search by 5.9% to 8.1%. This

10Word-level beam search has three beam size parameters:
the structural action beam size k, the next-word beam size
kw and the fast-track beam size ks. For top-down parsers,
Stern et al. (2017) set kw = k/10, ks = k/100, but in tuning
these parameters on the development set we found the best
performance with kw = k, ks = k/10 for our parser.
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Model S N R F

Feature-based parsers
Hayashi et al. (2016) 65.1 54.6 44.7 44.1
Surdeanu et al. (2015) 65.3 54.2 45.1 44.2

Joty et al. (2015) 65.1 55.5 45.1 44.3
Feng and Hirst (2014a) 68.6 55.9 45.8 44.6

Neural parsers
Braud et al. (2016) 59.5 47.2 34.7 34.3

Li et al. (2016) 64.5 54.0 38.1 36.6
Braud et al. (2017) (mono) 61.9 53.4 44.5 44.0

Our work
Discriminative Baseline 65.2 54.9 42.8 42.4

Generative Model 67.1 57.4 45.5 45.0

Unpublished
Ji and Eisenstein (2014) (updated) 64.1 54.2 46.8 46.3
Additional data
Braud et al. (2017) (cross + dev) 62.7 54.5 45.5 45.1

Table 4: Test set micro-averaged F1 scores on labelled attachment decisions. We report numbers for other parsers
from Morey et al. (2017)’s replication study. For each metric, the highest score for all the parsers in the comparison
is shown in bold, while the highest score among parsers of that type (neural or feature-based) is in italics.

is consistent with the branching bias in word-level
search leading it to return trees whose structure
differs from the trees in the RST-DT. The poor
performance on structure prediction also seems to
have a knock-on effect on the relation and full tree
prediction accuracy.

5.4.2 Parsing Performance
Table 4 shows RST-DT test set labelled attachment
metrics for various parsers. Our model outper-
forms all of the published11 neural models that do
not use additional training data12 in Morey et al.
(2017)’s replication study on all of the metrics.
On span accuracy (S), we outperform all of the
other parsers except for Feng and Hirst (2014a)’s
graph CRF model. On spans with nuclearity (N),
the equivalent of the unlabelled attachment score
for discourse dependencies, we outperform all of
the parsers in the study. We perform competitively
on spans with relations (R), and we outperform all
of the published parsers that do not use additional
data on spans with nuclearity and relations (F).

Our model also outperforms the discriminative
11Ji and Eisenstein (2014) presented a transition-based

parser that used continuous bag-of-words representations for
EDUs and an SVM as the next action classifier. For Morey
et al. (2017)’s study, they submitted predicted discourse trees
from an updated, unpublished version of their parser.

12In the cross+dev setting, Braud et al. (2017) train their
parser on RST discourse treebanks for several languages.

baseline using the same features and implementa-
tion on all metrics by between 1.9% and 2.7%.

6 Conclusion

We introduced the first generative model for RST
parsing. We showed that word-level beam search
has a branching bias for bottom-up RNNGs which
hurt performance on our task. We proposed a
novel beam search algorithm that does not have
this branching bias and that outperformed word-
level beam search across beam sizes and with dif-
ferent evaluation metrics. With our search algo-
rithm, our generative model achieved state-of-the
art-level RST parsing performance, outperform-
ing all of the published RST parsers from a re-
cent study that do not use additional training data
on labelled attachment F1. Our results show that
generative modelling is an effective approach to
RST parsing, with superior structure prediction
and competitive relation prediction performance.
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