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Abstract

Attention mechanisms have become ubiqui-

tous in NLP. Recent architectures, notably

the Transformer, learn powerful context-aware

word representations through layered, multi-

headed attention. The multiple heads learn

diverse types of word relationships. How-

ever, with standard softmax attention, all at-

tention heads are dense, assigning a non-zero

weight to all context words. In this work, we

introduce the adaptively sparse Transformer,

wherein attention heads have flexible, context-

dependent sparsity patterns. This sparsity is

accomplished by replacing softmax with α-

entmax: a differentiable generalization of soft-

max that allows low-scoring words to receive

precisely zero weight. Moreover, we derive a

method to automatically learn the α parameter

– which controls the shape and sparsity of α-

entmax – allowing attention heads to choose

between focused or spread-out behavior. Our

adaptively sparse Transformer improves inter-

pretability and head diversity when compared

to softmax Transformers on machine transla-

tion datasets. Findings of the quantitative and

qualitative analysis of our approach include

that heads in different layers learn different

sparsity preferences and tend to be more di-

verse in their attention distributions than soft-

max Transformers. Furthermore, at no cost in

accuracy, sparsity in attention heads helps to

uncover different head specializations.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)

for deep neural networks has quickly risen to promi-

nence in NLP through its efficiency and perfor-

mance, leading to improvements in the state of the

art of Neural Machine Translation (NMT; Junczys-

Dowmunt et al., 2018; Ott et al., 2018), as well as

inspiring other powerful general-purpose models

like BERT (Devlin et al., 2019) and GPT-2 (Rad-

ford et al., 2019). At the heart of the Transformer
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Figure 1: Attention distributions of different self-

attention heads for the time step of the token “over”,

shown to compare our model to other related work.

While the sparse Transformer (Child et al., 2019) and

the adaptive span Transformer (Sukhbaatar et al., 2019)

only attend to words within a contiguous span of the

past tokens, our model is not only able to obtain differ-

ent and not necessarily contiguous sparsity patterns for

each attention head, but is also able to tune its support

over which tokens to attend adaptively.

lie multi-head attention mechanisms: each word

is represented by multiple different weighted aver-

ages of its relevant context. As suggested by recent

works on interpreting attention head roles, sepa-

rate attention heads may learn to look for various

relationships between tokens (Tang et al., 2018; Ra-

ganato and Tiedemann, 2018; Mareček and Rosa,

2018; Tenney et al., 2019; Voita et al., 2019).

The attention distribution of each head is pre-

dicted typically using the softmax normalizing

transform. As a result, all context words have

non-zero attention weight. Recent work on sin-

gle attention architectures suggest that using sparse

normalizing transforms in attention mechanisms

such as sparsemax – which can yield exactly zero

probabilities for irrelevant words – may improve

performance and interpretability (Malaviya et al.,

2018; Deng et al., 2018; Peters et al., 2019). Qual-

itative analysis of attention heads (Vaswani et al.,

2017, Figure 5) suggests that, depending on what

phenomena they capture, heads tend to favor flatter

or more peaked distributions.

Recent works have proposed sparse Transform-
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ers (Child et al., 2019) and adaptive span Trans-

formers (Sukhbaatar et al., 2019). However, the

“sparsity” of those models only limits the attention

to a contiguous span of past tokens, while in this

work we propose a highly adaptive Transformer

model that is capable of attending to a sparse set of

words that are not necessarily contiguous. Figure 1

shows the relationship of these methods with ours.

Our contributions are the following:

• We introduce sparse attention into the Trans-

former architecture, showing that it eases inter-

pretability and leads to slight accuracy gains.

• We propose an adaptive version of sparse at-

tention, where the shape of each attention

head is learnable and can vary continuously

and dynamically between the dense limit case

of softmax and the sparse, piecewise-linear

sparsemax case.1

• We make an extensive analysis of the added

interpretability of these models, identifying

both crisper examples of attention head behav-

ior observed in previous work, as well as novel

behaviors unraveled thanks to the sparsity and

adaptivity of our proposed model.

2 Background

2.1 The Transformer

In NMT, the Transformer (Vaswani et al., 2017)

is a sequence-to-sequence (seq2seq) model which

maps an input sequence to an output sequence

through hierarchical multi-head attention mech-

anisms, yielding a dynamic, context-dependent

strategy for propagating information within and

across sentences. It contrasts with previous seq2seq

models, which usually rely either on costly gated

recurrent operations (often LSTMs: Bahdanau

et al., 2015; Luong et al., 2015) or static convo-

lutions (Gehring et al., 2017).

Given n query contexts and m sequence items

under consideration, attention mechanisms com-

pute, for each query, a weighted representation of

the items. The particular attention mechanism used

in Vaswani et al. (2017) is called scaled dot-product

attention, and it is computed in the following way:

Att(Q,K,V ) = π

(

QK⊤

√
d

)

V , (1)

1Code and pip package available at https://github.

com/deep-spin/entmax.

where Q ∈ R
n×d contains representations of the

queries, K,V ∈ R
m×d are the keys and values

of the items attended over, and d is the dimen-

sionality of these representations. The π mapping

normalizes row-wise using softmax, π(Z)ij =
softmax(zi)j , where

softmax(z) =
exp(zj)

∑

j′ exp(zj′)
. (2)

In words, the keys are used to compute a relevance

score between each item and query. Then, normal-

ized attention weights are computed using softmax,

and these are used to weight the values of each item

at each query context.

However, for complex tasks, different parts of a

sequence may be relevant in different ways, moti-

vating multi-head attention in Transformers. This

is simply the application of Equation 1 in paral-

lel H times, each with a different, learned linear

transformation that allows specialization:

Headi(Q,K,V )=Att(QW
Q
i ,KWK

i ,V W V
i ) (3)

In the Transformer, there are three separate multi-

head attention mechanisms for distinct purposes:

• Encoder self-attention: builds rich, layered

representations of each input word, by attend-

ing on the entire input sentence.

• Context attention: selects a representative

weighted average of the encodings of the input

words, at each time step of the decoder.

• Decoder self-attention: attends over the par-

tial output sentence fragment produced so far.

Together, these mechanisms enable the contextual-

ized flow of information between the input sentence

and the sequential decoder.

2.2 Sparse Attention

The softmax mapping (Equation 2) is elementwise

proportional to exp, therefore it can never assign a

weight of exactly zero. Thus, unnecessary items

are still taken into consideration to some extent.

Since its output sums to one, this invariably means

less weight is assigned to the relevant items, po-

tentially harming performance and interpretabil-

ity (Jain and Wallace, 2019). This has motivated a

line of research on learning networks with sparse

mappings (Martins and Astudillo, 2016; Niculae

and Blondel, 2017; Louizos et al., 2018; Shao et al.,
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2019). We focus on a recently-introduced flexible

family of transformations, α-entmax (Blondel et al.,

2019; Peters et al., 2019), defined as:

α-entmax(z) := argmax
p∈△d

p⊤z + HT
α(p), (4)

where △d := {p ∈ R
d :

∑

i pi = 1} is the prob-

ability simplex, and, for α ≥ 1, HT
α is the Tsallis

continuous family of entropies (Tsallis, 1988):

HT
α(p) :=

{

1
α(α−1)

∑

j

(

pj − pαj

)

, α 6= 1,

−
∑

j pj log pj , α = 1.
(5)

This family contains the well-known Shannon and

Gini entropies, corresponding to the cases α = 1
and α = 2, respectively.

Equation 4 involves a convex optimization sub-

problem. Using the definition of HT
α, the optimality

conditions may be used to derive the following

form for the solution (Appendix B.2):

α-entmax(z) = [(α− 1)z − τ1]
1/α−1

+ , (6)

where [·]+ is the positive part (ReLU) function,

1 denotes the vector of all ones, and τ – which

acts like a threshold – is the Lagrange multiplier

corresponding to the
∑

i pi = 1 constraint.

Properties of α-entmax. The appeal of α-

entmax for attention rests on the following prop-

erties. For α = 1 (i.e., when HT
α becomes the

Shannon entropy), it exactly recovers the softmax

mapping (We provide a short derivation in Ap-

pendix B.3.). For all α > 1 it permits sparse solu-

tions, in stark contrast to softmax. In particular, for

α = 2, it recovers the sparsemax mapping (Martins

and Astudillo, 2016), which is piecewise linear. In-

between, as α increases, the mapping continuously

gets sparser as its curvature changes.

To compute the value of α-entmax, one must

find the threshold τ such that the r.h.s. in Equa-

tion 6 sums to one. Blondel et al. (2019) propose

a general bisection algorithm. Peters et al. (2019)

introduce a faster, exact algorithm for α = 1.5, and

enable using α-entmax with fixed α within a neu-

ral network by showing that the α-entmax Jacobian

w.r.t. z for p⋆ = α-entmax(z) is

∂ α-entmax(z)

∂z
= diag(s)− 1

∑

j sj
ss⊤,

where si =

{

(p⋆i )
2−α, p⋆i > 0,

0, p⋆i = 0.

(7)

Our work furthers the study of α-entmax by

providing a derivation of the Jacobian w.r.t. the

hyper-parameter α (Section 3), thereby allowing

the shape and sparsity of the mapping to be learned

automatically. This is particularly appealing in the

context of multi-head attention mechanisms, where

we shall show in Section 5.1 that different heads

tend to learn different sparsity behaviors.

3 Adaptively Sparse Transformers

with α-entmax

We now propose a novel Transformer architecture

wherein we simply replace softmax with α-entmax

in the attention heads. Concretely, we replace the

row normalization π in Equation 1 by

π(Z)ij = α-entmax(zi)j (8)

This change leads to sparse attention weights, as

long as α > 1; in particular, α = 1.5 is a sensible

starting point (Peters et al., 2019).

Different α per head. Unlike LSTM-based

seq2seq models, where α can be more easily tuned

by grid search, in a Transformer, there are many

attention heads in multiple layers. Crucial to the

power of such models, the different heads capture

different linguistic phenomena, some of them iso-

lating important words, others spreading out atten-

tion across phrases (Vaswani et al., 2017, Figure 5).

This motivates using different, adaptive α values

for each attention head, such that some heads may

learn to be sparser, and others may become closer

to softmax. We propose doing so by treating the α
values as neural network parameters, optimized via

stochastic gradients along with the other weights.

Derivatives w.r.t. α. In order to optimize α au-

tomatically via gradient methods, we must com-

pute the Jacobian of the entmax output w.r.t. α.

Since entmax is defined through an optimization

problem, this is non-trivial and cannot be simply

handled through automatic differentiation; it falls

within the domain of argmin differentiation, an ac-

tive research topic in optimization (Gould et al.,

2016; Amos and Kolter, 2017).

One of our key contributions is the derivation

of a closed-form expression for this Jacobian. The

next proposition provides such an expression, en-

abling entmax layers with adaptive α. To the best

of our knowledge, ours is the first neural network

module that can automatically, continuously vary
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in shape away from softmax and toward sparse

mappings like sparsemax.

Proposition 1. Let p⋆ := α-entmax(z) be the so-

lution of Equation 4. Denote the distribution p̃i :=
(p⋆i )

2−α/
∑

j(p
⋆
j )

2−α and let hi := −p⋆i log p
⋆
i . The ith

component of the Jacobian g := ∂ α-entmax(z)
∂α is

gi =







p⋆i−p̃i
(α−1)2

+
hi−p̃i

∑
j hj

α−1 , α > 1,

hi log p
⋆
i−p⋆i

∑
j hj log p

⋆
j

2 , α = 1.

(9)

The proof uses implicit function differentiation and

is given in Appendix C.

Proposition 1 provides the remaining missing

piece needed for training adaptively sparse Trans-

formers. In the following section, we evaluate this

strategy on neural machine translation, and analyze

the behavior of the learned attention heads.

4 Experiments

We apply our adaptively sparse Transformers on

four machine translation tasks. For comparison,

a natural baseline is the standard Transformer ar-

chitecture using the softmax transform in its multi-

head attention mechanisms. We consider two other

model variants in our experiments that make use of

different normalizing transformations:

• 1.5-entmax: a Transformer with sparse ent-

max attention with fixed α = 1.5 for all heads.

This is a novel model, since 1.5-entmax had

only been proposed for RNN-based NMT

models (Peters et al., 2019), but never in

Transformers, where attention modules are

not just one single component of the seq2seq

model but rather an integral part of all of the

model components.

• α-entmax: an adaptive Transformer with

sparse entmax attention with a different,

learned αt
i,j for each head.

The adaptive model has an additional scalar pa-

rameter per attention head per layer for each of the

three attention mechanisms (encoder self-attention,

context attention, and decoder self-attention), i.e.,

{

ati,j ∈ R : i ∈ {1, . . . , L}, j ∈ {1, . . . , H},
t ∈ {enc, ctx, dec}

}

,
(10)

and we set αt
i,j = 1+ sigmoid(ati,j) ∈]1, 2[. All or

some of the α values can be tied if desired, but we

keep them independent for analysis purposes.

Datasets. Our models were trained on 4 machine

translation datasets of different training sizes:

• IWSLT 2017 German → English (DE�EN, Cet-

tolo et al., 2017): 200K sentence pairs.

• KFTT Japanese → English (JA�EN, Neubig,

2011): 300K sentence pairs.

• WMT 2016 Romanian → English (RO�EN, Bo-

jar et al., 2016): 600K sentence pairs.

• WMT 2014 English → German (EN�DE, Bojar

et al., 2014): 4.5M sentence pairs.

All of these datasets were preprocessed with

byte-pair encoding (BPE; Sennrich et al., 2016),

using joint segmentations of 32k merge operations.

Training. We follow the dimensions of the

Transformer-Base model of Vaswani et al. (2017):

The number of layers is L = 6 and number of

heads is H = 8 in the encoder self-attention, the

context attention, and the decoder self-attention.

We use a mini-batch size of 8192 tokens and warm

up the learning rate linearly until 20k steps, after

which it decays according to an inverse square root

schedule. All models were trained until conver-

gence of validation accuracy, and evaluation was

done at each 10k steps for RO�EN and EN�DE

and at each 5k steps for DE�EN and JA�EN. The

end-to-end computational overhead of our methods,

when compared to standard softmax, is relatively

small; in training tokens per second, the models

using α-entmax and 1.5-entmax are, respectively,

75% and 90% the speed of the softmax model.

Results. We report test set tokenized BLEU (Pa-

pineni et al., 2002) results in Table 1. We can see

that replacing softmax by entmax does not hurt

performance in any of the datasets; indeed, sparse

attention Transformers tend to have slightly higher

BLEU, but their sparsity leads to a better poten-

tial for analysis. In the next section, we make use

of this potential by exploring the learned internal

mechanics of the self-attention heads.

5 Analysis

We conduct an analysis for the higher-resource

dataset WMT 2014 English → German of the at-

tention in the sparse adaptive Transformer model

(α-entmax) at multiple levels: we analyze high-

level statistics as well as individual head behavior.

Moreover, we make a qualitative analysis of the

interpretability capabilities of our models.
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activation DE�EN JA�EN RO�EN EN�DE

softmax 29.79 21.57 32.70 26.02
1.5-entmax 29.83 22.13 33.10 25.89
α-entmax 29.90 21.74 32.89 26.93

Table 1: Machine translation tokenized BLEU test results on IWSLT 2017 DE�EN, KFTT JA�EN, WMT 2016

RO�EN and WMT 2014 EN�DE, respectively.

5.1 High-Level Statistics

What kind of α values are learned? Figure 2

shows the learning trajectories of the α parameters

of a selected subset of heads. We generally observe

a tendency for the randomly-initialized α parame-

ters to decrease initially, suggesting that softmax-

like behavior may be preferable while the model

is still very uncertain. After around one thousand

steps, some heads change direction and become

sparser, perhaps as they become more confident

and specialized. This shows that the initialization

of α does not predetermine its sparsity level or the

role the head will have throughout. In particular,

head 8 in the encoder self-attention layer 2 first

drops to around α = 1.3 before becoming one of

the sparsest heads, with α ≈ 2.

The overall distribution of α values at conver-

gence can be seen in Figure 3. We can observe

that the encoder self-attention blocks learn to con-

centrate the α values in two modes: a very sparse

one around α → 2, and a dense one between soft-

max and 1.5-entmax. However, the decoder self

and context attention only learn to distribute these

parameters in a single mode. We show next that

this is reflected in the average density of attention

weight vectors as well.

Attention weight density when translating.

For any α > 1, it would still be possible for the

weight matrices in Equation 3 to learn re-scalings

so as to make attention sparser or denser. To visu-

alize the impact of adaptive α values, we compare

the empirical attention weight density (the aver-

age number of tokens receiving non-zero attention)

within each module, against sparse Transformers

with fixed α = 1.5.

Figure 4 shows that, with fixed α = 1.5, heads

tend to be sparse and similarly-distributed in all

three attention modules. With learned α, there are

two notable changes: (i) a prominent mode corre-

sponding to fully dense probabilities, showing that

our models learn to combine sparse and dense atten-

tion, and (ii) a distinction between the encoder self-

0 2000 4000 6000 8000 10000 12000
training steps

1.0

1.2

1.4

1.6

1.8

decoder, layer 1, head 8
encoder, layer 1, head 3
encoder, layer 1, head 4
encoder, layer 2, head 8
encoder, layer 6, head 2

Figure 2: Trajectories of α values for a subset of

the heads during training. Initialized at random, most

heads become denser in the beginning, before converg-

ing. This suggests that dense attention may be more

beneficial while the network is still uncertain, being re-

placed by sparse attention afterwards.

attention – whose background distribution tends

toward extreme sparsity – and the other two mod-

ules, who exhibit more uniform background distri-

butions. This suggests that perhaps entirely sparse

Transformers are suboptimal.

The fact that the decoder seems to prefer denser

attention distributions might be attributed to it be-

ing auto-regressive, only having access to past to-

kens and not the full sentence. We speculate that

it might lose too much information if it assigned

weights of zero to too many tokens in the self-

attention, since there are fewer tokens to attend to

in the first place.

Teasing this down into separate layers, Figure 5

shows the average (sorted) density of each head for

each layer. We observe that α-entmax is able to

learn different sparsity patterns at each layer, lead-

ing to more variance in individual head behavior, to

clearly-identified dense and sparse heads, and over-

all to different tendencies compared to the fixed

case of α = 1.5.

Head diversity. To measure the overall disagree-

ment between attention heads, as a measure of head



2179

0

10

20
E
nc

od
er

Se
lf-
At
te
nt
io
n

0

10

20

C
on

te
xt

At
te
nt
io
n

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

D
ec

od
er

Se
lf-
At
te
nt
io
n

Figure 3: Distribution of learned α values per attention

block. While the encoder self-attention has a bimodal

distribution of values of α, the decoder self-attention

and context attention have a single mode.

diversity, we use the following generalization of

the Jensen-Shannon divergence:

JS = HS





1

H

H
∑

j=1

pj



− 1

H

H
∑

j=1

HS(pj) (11)

where pj is the vector of attention weights as-

signed by head j to each word in the sequence, and

HS is the Shannon entropy, base-adjusted based on

the dimension of p such that JS ≤ 1. We average

this measure over the entire validation set. The

higher this metric is, the more the heads are taking

different roles in the model.

Figure 6 shows that both sparse Transformer

variants show more diversity than the traditional

softmax one. Interestingly, diversity seems to peak

in the middle layers of the encoder self-attention

and context attention, while this is not the case for

the decoder self-attention.

The statistics shown in this section can be found

for the other language pairs in Appendix A.

5.2 Identifying Head Specializations

Previous work pointed out some specific roles

played by different heads in the softmax Trans-

former model (Voita et al., 2018; Tang et al., 2018;

Voita et al., 2019). Identifying the specialization of

a head can be done by observing the type of tokens
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Figure 4: Distribution of attention densities (average

number of tokens receiving non-zero attention weight)

for all attention heads and all validation sentences.

When compared to 1.5-entmax, α-entmax distributes

the sparsity in a more uniform manner, with a clear

mode at fully dense attentions, corresponding to the

heads with low α. In the softmax case, this distribution

would lead to a single bar with density 1.

or sequences that the head often assigns most of its

attention weight; this is facilitated by sparsity.

Positional heads. One particular type of head, as

noted by Voita et al. (2019), is the positional head.

These heads tend to focus their attention on either

the previous or next token in the sequence, thus

obtaining representations of the neighborhood of

the current time step. In Figure 7, we show atten-

tion plots for such heads, found for each of the

studied models. The sparsity of our models allows

these heads to be more confident in their represen-

tations, by assigning the whole probability distribu-

tion to a single token in the sequence. Concretely,

we may measure a positional head’s confidence as

the average attention weight assigned to the pre-

vious token. The softmax model has three heads

for position −1, with median confidence 93.5%.

The 1.5-entmax model also has three heads for

this position, with median confidence 94.4%. The

adaptive model has four heads, with median con-

fidences 95.9%, the lowest-confidence head being

dense with α = 1.18, while the highest-confidence

head being sparse (α = 1.91).
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Figure 5: Head density per layer for fixed and learned

α. Each line corresponds to an attention head; lower

values mean that that attention head is sparser. Learned

α has higher variance.

For position +1, the models each dedicate one

head, with confidence around 95%, slightly higher

for entmax. The adaptive model sets α = 1.96 for

this head.

BPE-merging head. Due to the sparsity of our

models, we are able to identify other head special-

izations, easily identifying which heads should be

further analysed. In Figure 8 we show one such

head where the α value is particularly high (in the

encoder, layer 1, head 4 depicted in Figure 2). We

found that this head most often looks at the cur-

rent time step with high confidence, making it a

positional head with offset 0. However, this head

often spreads weight sparsely over 2-3 neighbor-

ing tokens, when the tokens are part of the same

BPE cluster2 or hyphenated words. As this head

is in the first layer, it provides a useful service to

the higher layers by combining information evenly

within some BPE clusters.

For each BPE cluster or cluster of hyphenated

words, we computed a score between 0 and 1 that

corresponds to the maximum attention mass as-

signed by any token to the rest of the tokens inside

the cluster in order to quantify the BPE-merging

2BPE-segmented words are denoted by ∼ in the figures.
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Figure 6: Jensen-Shannon Divergence between heads

at each layer. Measures the disagreement between

heads: the higher the value, the more the heads are dis-

agreeing with each other in terms of where to attend.

Models using sparse entmax have more diverse atten-

tion than the softmax baseline.

capabilities of these heads.3 There are not any at-

tention heads in the softmax model that are able

to obtain a score over 80%, while for 1.5-entmax

and α-entmax there are two heads in each (83.3%
and 85.6% for 1.5-entmax and 88.5% and 89.8%
for α-entmax).

Interrogation head. On the other hand, in Fig-

ure 9 we show a head for which our adaptively

sparse model chose an α close to 1, making it

closer to softmax (also shown in encoder, layer 1,

head 3 depicted in Figure 2). We observe that this

head assigns a high probability to question marks

at the end of the sentence in time steps where the

current token is interrogative, thus making it an

interrogation-detecting head. We also observe this

type of heads in the other models, which we also

depict in Figure 9. The average attention weight

placed on the question mark when the current to-

ken is an interrogative word is 98.5% for softmax,

97.0% for 1.5-entmax, and 99.5% for α-entmax.

Furthermore, we can examine sentences where

some tendentially sparse heads become less so, thus

identifying sources of ambiguity where the head

3If the cluster has size 1, the score is the weight the token
assigns to itself.
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Figure 7: Self-attention from the most confidently

previous-position head in each model. The learned pa-

rameter in the α-entmax model is α = 1.91. Quanti-

tatively more confident, visual inspection confirms that

the adaptive head behaves more consistently.
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Figure 8: BPE-merging head (α = 1.91) discovered

in the α-entmax model. Found in the first encoder

layer, this head learns to discover some subword units

and combine their information, leaving most words in-

tact. It places 99.09% of its probability mass within the

same BPE cluster as the current token: more than any

head in any other model.

is less confident in its prediction. An example is

shown in Figure 10 where sparsity in the same head

differs for sentences of similar length.

6 Related Work

Sparse attention. Prior work has developed

sparse attention mechanisms, including appli-

cations to NMT (Martins and Astudillo, 2016;

Malaviya et al., 2018; Niculae and Blondel, 2017;

Shao et al., 2019; Maruf et al., 2019). Peters et al.

(2019) introduced the entmax function this work

builds upon. In their work, there is a single atten-

tion mechanism which is controlled by a fixed α.

In contrast, this is the first work to allow such atten-
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Figure 9: Interrogation-detecting heads in the three

models. The top sentence is interrogative while the

bottom one is declarative but includes the interrogative

word “what”. In the top example, these interrogation

heads assign a high probability to the question mark in

the time step of the interrogative word (with ≥ 97.0%
probability), while in the bottom example since there

is no question mark, the same head does not assign a

high probability to the last token in the sentence dur-

ing the interrogative word time step. Surprisingly, this

head prefers a low α = 1.05, as can be seen from the

dense weights. This allows the head to identify the

noun phrase “Armani Polo” better.

tion mappings to dynamically adapt their curvature

and sparsity, by automatically adjusting the contin-

uous α parameter. We also provide the first results

using sparse attention in a Transformer model.

Fixed sparsity patterns. Recent research im-

proves the scalability of Transformer-like networks

through static, fixed sparsity patterns (Child et al.,

2019; Wu et al., 2019). Our adaptively-sparse

Transformer can dynamically select a sparsity pat-

tern that finds relevant words regardless of their po-

sition (e.g., Figure 9). Moreover, the two strategies

could be combined. In a concurrent line of research,

Sukhbaatar et al. (2019) propose an adaptive atten-

tion span for Transformer language models. While

their work has each head learn a different contigu-

ous span of context tokens to attend to, our work

finds different sparsity patterns in the same span.

Interestingly, some of their findings mirror ours –

we found that attention heads in the last layers tend

to be denser on average when compared to the ones

in the first layers, while their work has found that

lower layers tend to have a shorter attention span

compared to higher layers.
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Figure 10: Example of two sentences of similar length

where the same head (α = 1.33) exhibits different spar-

sity. The longer phrase in the example on the right

“a sexually transmitted disease” is handled with higher

confidence, leading to more sparsity.

Transformer interpretability. The original

Transformer paper (Vaswani et al., 2017) shows

attention visualizations, from which some specula-

tion can be made of the roles the several attention

heads have. Mareček and Rosa (2018) study the

syntactic abilities of the Transformer self-attention,

while Raganato and Tiedemann (2018) extract

dependency relations from the attention weights.

Tenney et al. (2019) find that the self-attentions in

BERT (Devlin et al., 2019) follow a sequence of

processes that resembles a classical NLP pipeline.

Regarding redundancy of heads, Voita et al. (2019)

develop a method that is able to prune heads of

the multi-head attention module and make an

empirical study of the role that each head has

in self-attention (positional, syntactic and rare

words). Li et al. (2018) also aim to reduce head

redundancy by adding a regularization term to

the loss that maximizes head disagreement and

obtain improved results. While not considering

Transformer attentions, Jain and Wallace (2019)

show that traditional attention mechanisms do not

necessarily improve interpretability since softmax

attention is vulnerable to an adversarial attack

leading to wildly different model predictions

for the same attention weights. Sparse attention

may mitigate these issues; however, our work

focuses mostly on a more mechanical aspect of

interpretation by analyzing head behavior, rather

than on explanations for predictions.

7 Conclusion and Future Work

We contribute a novel strategy for adaptively sparse

attention, and, in particular, for adaptively sparse

Transformers. We present the first empirical analy-

sis of Transformers with sparse attention mappings

(i.e., entmax), showing potential in both translation

accuracy as well as in model interpretability.

In particular, we analyzed how the attention

heads in the proposed adaptively sparse Trans-

former can specialize more and with higher con-

fidence. Our adaptivity strategy relies only on

gradient-based optimization, side-stepping costly

per-head hyper-parameter searches. Further speed-

ups are possible by leveraging more parallelism in

the bisection algorithm for computing α-entmax.

Finally, some of the automatically-learned be-

haviors of our adaptively sparse Transformers – for

instance, the near-deterministic positional heads or

the subword joining head – may provide new ideas

for designing static variations of the Transformer.
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